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Abstract. In [3], Lepović described all connected graphs whose reduced en-
ergy, i.e., the sum of absolute values of all eigenvalues except the least and
the largest ones, does not exceed 2.5. Here we describe all connected graphs
whose reduced energy does not exceed 3.

We consider only finite connected graphs having no loops or multiple edges. The
vertex set of a graph G is denoted by V (G), and its order (number of vertices) by
|G|. The spectrum of such a graph is the family λ1 > λ2 > · · · > λn of eigenvalues
of its 0 − 1 adjacency matrix, and we also write λi(G) = λi (i = 1, 2, . . . , n). The
eigenvalue λ1(G) = r(G) is called the spectral radius of G, while the eigenvalue
λn(G) is the least eigenvalue of G.

The sum of eigenvalues |λ2|+ |λ3|+ · · ·+ |λn−1| is denoted by T1(G) and called
the reduced energy of G. For any real a > 0, we can consider the class of graphs

E1(a) = {G|T1(G) 6 a}.
In [3] M. Lepović completely described the class E1(2.5). Here we completely

describe the class E1(3), i.e., the class of all connected graphs whose reduced energy
does not exceed 3.

Briefly, any graph G ∈ E1(3) is called admissible, and any other graph impos-
sible (or forbidden) for this class.

If H is any connected (induced) subgraph of a graph G, we write H ⊆ G.
Making use of the known interlacing theorem [1] we have T1(H) 6 T1(G). Whence,
we have that any connected subgraph of an admissible graph is also admissible. This
implies that the method of forbidden subgraphs can be consistently applied.

Since the complete bipartite graph Km,n belongs to the class E1(a) for every
m,n ∈ N we conclude that the class E1(a) is infinite for every constant a > 0.

In order to generate all graphs from the class E1(3) we first determine the
complete set of the so-called canonical graphs in this class.
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We say that two vertices x, y ∈ V (G) are equivalent in G and denote it by
x ∼ y if x is nonadjacent to y, and x and y have exactly the same neighbors in G.
Relation ∼ is an equivalence relation on the vertex set V (G). The corresponding
quotient graph is denoted by g, and called the canonical graph of G. The graph g
is also connected, and we obviously have g ⊆ G. For instance, if G = Km1,m2,...,mp

(p > 2) is the complete p-partite graph, then its canonical graph is the complete
graph Kp. The canonical graph of the complete graph Kn is the same graph Kn.

We say that G is canonical if |G| = |g|, that is if G has no two equivalent
vertices. Let g be the canonical graph of G, |g| = k, and N1, N2, . . . , Nk be the cor-
responding sets of equivalent vertices in G. Then we denote G = g(N1, N2, . . . , Nk),
or simplyG = (n1, n2, . . . , nk), where |Ni| = ni (i = 1, 2, . . . , k), understanding that
g is a labelled graph. We call N1, . . . , Nk the characteristic sets of G. Obviously,
each set Ni ⊆ V (G) (i = 1, . . . , k) consists only of isolated vertices, and if at least
one edge between the sets Ni, Nj (i 6= j) is present, then all possible edges between
these sets are also present.

It was proved in [5] that the characteristic polynomial PG(λ) of the graph G
takes the form

(1) PG(λ) = n1 · n2 · . . . · nkλn−k ·

∣∣∣∣∣∣∣∣∣

λ/n1 −ã12 . . . −ã1k

−ã21 λ/n2 . . . −ã2k

...
...

. . .
...

−ãk1 −ãk2 . . . λ/nk

∣∣∣∣∣∣∣∣∣
where n = n1 + n2 + · · · + nk and [ãij ] is the adjacency matrix of the canonical
graph g.

If g is the canonical graph of a graph G we have that g ⊆ G whence we obtain

G ∈ E1(a)⇒ g ∈ E1(a).

Hence, it is very convenient to describe first the set of all canonical graphs from
the set E1(a).

We note that many other hereditary problems in the spectral theory of graphs
can be reduced to finding first the corresponding sets of canonical graphs.

Creating the complete set of canonical graphs in this paper is based on the
following general theorem proved in [6], which can be very valuable for other similar
problems.

Theorem A. In all but a sequence of exceptional cases, each connected canon-
ical graph on n vertices (n > 3) contains an induced subgraph on n − 1 vertices,
which is also connected and canonical. The mentioned exceptional cases are the
graphs in Fig. 1. (In graphs in Fig. 1 vertices yi and xj are adjacent whenever
i 6 j).

The above exceptional graphs satisfy the relations T0 ⊆ T1 ⊆ T2 ⊆ · · · .
Now, we give an important property of the general class E1(a) (a > 0), which

is proved in [3]. It is based on Theorem B which is proved in [5].

Theorem B. For every n ∈ N the complete set of canonical graphs which have
n non-zero eigenvalues is finite.
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Figure 1

Theorem 1. For every constant a > 0, the set of canonical graphs from the
class E1(a) is finite.

By a direct inspection of all connected graphs with at most 5 vertices (see,
for example, tables in [1]), we find that class E1(3) contains exactly 16 canonical
graphs with at most 5 vertices.

Besides, by a direct inspection of spectra of all connected graphs with 6 and
7 vertices, (see, for example [2]) we find that the class E1(3) contains 8 canonical
graphs with 6 vertices and no canonical graph with 7 vertices. Therefore, according
to Theorem A it follows that the class E1(3) contains no canonical graph of order
n > 7.

Theorem 2. There are exactly 24 canonical graphs which belonging to the class
E1(3). They are displayed in Fig. 2.

Proposition 1. A graph G = g1(m,n) ∈ E1(3) (m 6 n) for all values of
parameters m,n.

Proof. Since g1 = K2, graph G = Km,n is the complete bipartite graph and
it has exactly one positive and one negative eigenvalue. Consequently T1(G) = 0
for any complete bipartite graph Km,n. �

Proposition 2. A graph G = g2(m,n, k) (m 6 n 6 k) belongs to the class
E1(3) if and only if (m,n, k) has one of the following values:

(1, 1̇, 1̇), (2, 6, 6̇), (2, 7, 15), (2, 8, 10), (2, 9, 9), (3, 3, 3̇).

where ṗ means that the corresponding parameter is greater or equal p.

Proof. Since g2 = K3, graph G is the complete 3-partite graph Km,n,k. It
has only three nonzero eigenvalues, which are the roots of the polynomial (see (1))

P (λ) = λ3 − (mn+mk + nk)λ− 2mnk.

Therefore G ∈ E1(3) if and only if |λ2| 6 3, that is if and only if P (−3) > 0.
Whence we easily find the statement. �
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Figure 2

Proposition 3. A graph G = g3(m,n, k, l) (m 6 l) belongs to the class E1(3)
if and only if (m,n, k, l) has one of the following values:

(1, 2, 1̇, 1̇), (1, 1̇, 1̇, 2), (1, 1̇, 1, 4), (1, 3, 1̇, 9),
(1, 3, 2, 10), (1, 3, 1, 11), (1, 4, 1̇, 5), (1, 4, 1, 7),
(1, 4, 2, 6), (1, 5, 1̇, 4), (1, 5, 1, 6), (1, 5, 2, 5),
(1, 12, 1, 5), (1, 11, 13, 3), (1, 12, 9, 3), (1, 13, 8, 3),
(1, 14, 7, 3), (1, 15, 6, 3), (1, 9, 1̇, 3), (1, 6, 5, 4),
(1, 7, 3, 4), (1, 10, 2, 4), (1, 10, 23, 3), (1, 10, 1̇, 2),
(1, 19, 5, 3), (1, 29, 4, 3), (1, 1̇, 3, 3), (2, 1, 1, 1̇),
(2, 2, 1̇, 2), (2, 3, 11, 2), (2, 4, 5, 2), (2, 2, 5, 3),
(2, 2, 1, 4), (2, 1, 1̇, 5), (3, 1, 1, 5), (3, 1, 2, 4).
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Proof. It is easy to check that each of the above graphs belongs to the class
E1(3). Next, according to (1) it is easily to see that non-zero eigenvalues of such a
graph are determined by equation

λ4 − (mn+ nk + kl)λ2 +mnkl = 0.

Hence, these eigenvalues can be explicitly found. Therefore, it is easy to prove
that G = g3(m,n, k, l) ∈ E1(3) if and only if 16mnkl− 36(mn+ nk+ kl) + 81 6 0.

Hence we immediately get the statement. �
In a similar way, one can prove the next 19 propositions. The corresponding

polynomials which are used in these propositions are determined in [4].

Proposition 4. A graph G = g4(m,n, k, l) (k 6 l) belongs to the class E1(3)
if and only if (m,n, k, l) has one of the following values:

(1, 1, 1̇, 1̇), (1, 2, 2, 1̇), (1, 3, 2, 4), (1, 1̇, 2, 3),
(2, 1̇, 1, 1̇), (1̇, 1̇, 1, 2), (2, 1̇, 2, 2), (2, 1, 4, 1̇),
(2, 1, 5, 8), (2, 1, 6, 6), (4, 1, 1, 1̇), (4, 2, 2, 2),
(3, 2, 1, 18), (3, 3, 1, 9), (3, 4, 1, 8), (3, 11, 1, 7),
(3, 1̇2, 1, 6), (4, 2, 1, 6), (4, 1̇, 1, 5), (5, 1, 1, 6),
(5, 1, 2, 2), (5, 1̇, 1, 4), (6, 3, 1, 4), (7, 1, 1, 4),

(12, 2, 1, 3), (13, 1, 1, 3), (11, 1̇, 1, 3).

Proposition 5. A graph G = g5(m,n, k, l) (m 6 n 6 k 6 l) belongs to the
class E1(3) if and only if (m,n, k, l) has one of the following values:

(1, 1, 4, 1̇), (1, 1, 5, 8), (1, 1, 6, 6).

Proposition 6. A graph G = g6(m,n, k, l, p) (m 6 p) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1, 1̇, 1̇), (1, 2, 1̇, 2, 1), (1, 1, 1̇, 3, 2),
(1, 1, 9, 4, 2), (1, 1, 6, 5, 2), (1, 1, 5, 6, 2),
(1, 1, 4, 12, 2), (1, 1, 3, 1̇, 2), (1, 1, 3, 2, 3),
(1, 1, 2, 1̇, 3), (1, 1, 1̇, 1, 3), (1, 1, 4, 1, 4),
(1, 1, 2, 3, 4), (1, 1, 2, 1, 5), (2, 1, 1̇, 1, 2),
(1, 1, 1̇, 1̇, 1), (1, 3, 1̇, 1, 2).

Proposition 7. A graph G = g7(m,n, k, l, p) (m 6 p) belongs to the class
E1(3) if and only if (m,n, k, l) has one of the following values:

(1, 1, 1, 1̇, 1̇), (1, 1, 1̇, 1, 3), (1, 1, 3, 1, 4),
(1, 1, 2, 1, 5), (1, 3, 1, 1̇, 1), (1, 4, 1, 9, 1),
(1, 5, 1, 5, 1), (1, 1, 6, 1̇, 1), (1, 1, 1̇, 4, 1),
(1, 1, 7, 47, 1), (1, 1, 8, 13, 1), (1, 1, 9, 9, 1),
(1, 1, 11, 7, 1), (1, 1, 12, 6, 1), (1, 1, 19, 5, 1),
(1, 2, 1, 1̇, 2), (1, 2, 1, 2, 3), (1, 1̇, 2, 1, 2),
(1, 4, 1, 1, 3), (1, 2, 1, 1, 4), (1, 1, 7, 2, 2),
(1, 1, 2, 1̇, 5), (1, 1, 2, 5, 6), (1, 3, 1, 2, 2),
(1, 1, 3, 1̇, 2), (1, 1, 4, 6, 2), (1, 1, 3, 3, 3).
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Proposition 8. A graph G = g8(m,n, k, l, p) (m 6 n) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1, 3, 1̇), (1, 1, 1, 1̇, 1), (1̇, 1̇, 1, 1, 1),
(1, 1̇, 1̇, 1, 1), (1, 1, 6, 1, 1̇), (1, 1, 7, 1,114),
(1, 1, 8, 1, 30), (1, 1, 9, 1, 19), (1, 1, 10, 1, 15),
(1, 1, 11, 1, 13), (1, 1, 12, 1, 12), (1, 2, 2, 1, 1̇),
(1, 2, 1̇, 1, 3), (1, 2, 2, 2, 1), (1, 2, 3, 1, 8),
(1, 2, 4, 1, 6), (1, 2, 5, 1, 5), (1, 2, 15, 1, 4),
(1, 3, 1, 2, 1), (1, 3, 1, 1, 12), (1, 3, 2, 1, 4),
(1, 4, 1, 1, 4), (1, 5, 1̇, 1, 2), (1, 5, 1, 1, 3),
(1, 6, 27, 1, 2), (1, 7, 6, 1, 2), (1, 8, 3, 1, 2),
(1, 10, 2, 1, 2), (1, 17, 1, 1, 2), (1, 3, 10, 1, 3),
(2, 2, 1, 1, 1̇), (2, 2, 2, 1, 5), (2, 2, 3, 1, 3),
(2, 3, 1̇, 1, 1), (2, 3, 1, 1, 5), (2, 3, 3, 1, 2),
(2, 4, 17, 1, 1), (2, 5, 10, 1, 1), (2, 6, 7, 1, 1),
(2, 8, 6, 1, 1), (2, 11, 5, 1, 1), (2, 23, 4, 1, 1),
(2, 1̇, 3, 1, 1), (2, 4, 1, 1, 3), (2, 4, 2, 1, 2),
(2, 8, 1, 1, 2), (3, 1̇, 2, 1, 1), (3, 3, 1, 1, 3),
(3, 4, 2, 1, 2), (3, 5, 3, 1, 1), (3, 6, 1, 1, 2),
(4, 14, 2, 1, 1), (5, 5, 1, 1, 2).

Proposition 9. A graph G = g9(m,n, k, l, p) (k 6 l 6 p) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1, 1, 1̇), (3, 1̇, 1, 1, 1), (4, 1, 1, 1, 1), (1, 3, 1, 1, 2).

Proposition 10. A graph G = g10(m,n, k, l) (k 6 p) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1, 1, 1̇), (1, 1̇, 1, 1, 1), (1, 1, 1, 1̇, 1),
(1, 5, 1, 1, 2), (1, 2, 1, 1, 3), (1, 3, 1, 2, 1),
(2, 5, 1, 1, 1), (3, 1, 1, 1, 1), (1, 1, 1, 2, 3).

Proposition 11. A graph G = g11(m,n, k, l, p) (m 6 n) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1̇, 1, 1, 1), (1, 1, 1, 1̇, 1), (1, 1, 1, 1, 1̇),
(1, 1, 1̇, 1, 1), (1, 1, 1, 2, 7), (1, 1, 1, 4, 2), (1, 2, 1, 2, 1).

Proposition 12. A graph G = g12(m,n, k, l, p) (l 6 p) belongs to the class
E1(3) if and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1̇, 1, 1), (1, 1, 1, 1, 2), (1, 2, 3, 1, 1), (1, 3, 1, 1, 1).

Proposition 13. A graph G = g13(m,n, k, l, p) belongs to the class E1(3) if
and only if (m,n, k, l, p) has one of the following values:

(1, 1, 1̇, 1, 1), (1, 1, 1, 1̇, 1), (1, 1, 1, 1, 1̇),
(1, 1, 1, 2, 2), (1, 1, 3, 2, 1), (2, 1, 1, 2, 1), (2, 1, 3, 1, 1).
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Proposition 14. A graph G = g14(m,n, k, l, p) belongs to the class E1(3) if
and only if

(m,n, k, l, p) = (1, 1, 1̇, 1, 1).

Proposition 15. A graph G = g15(m,n, k, l, p) belongs to the class E1(3) if
and only if

(m,n, k, l, p) = (1, 1, 1, 1, 1̇).

Proposition 16. A graph G = g16(m,n, k, l, p) (m 6 n 6 k 6 l 6 p) belongs
to the class E1(3) if and only if

(m,n, k, l, p) = (1, 1, 1, 1, 1).

Proposition 17. A graph G = g17(m,n, k, l, p, q) (m 6 q) belongs to the class
E1(3) if and only if (m,n, k, l, p, q) has one of the following values:

(1, 1, 1, 1, 3, 1), (1, 1, 1, 2, 1, 1).

Proposition 18. A graph G = g18(m,n, k, l, p, q) belongs to the class E1(3) if
and only if (m,n, k, l, p, q) has one of the following values:

(1, 1, 1, 1, 3, 1̇), (1, 1, 2, 1, 1, 1̇), (1, 1, 1, 1, 6, 1),
(1, 1, 1, 2, 2, 1), (1, 1, 1, 1, 4, 2), (1, 1, 3, 1, 1, 3).

Proposition 19. A graph G = g19(m,n, k, l, p, q) belongs to the class E1(3) if
and only if

(m,n, k, l, p, q) = (1, 1, 1, 1, 1, 1).

Proposition 20. A graph G = g20(m,n, k, l, p, q) (m 6 l) belongs to the class
E1(3) if and only if

(m,n, k, l, p, q) = (1, 1, 1, 2, 1, 1).

Proposition 21. A graph G = g21(m,n, k, l, p, q) (p 6 q) belongs to the class
E1(3) if and only if (m,n, k, l, p, q) has one of the following values:

(1, 4, 1, 1, 1, 1), (1, 1, 3, 1, 1, 1), (1, 1, 1, 2, 1, 1).

Proposition 22. A graph G = g22(m,n, k, l, p, q) belongs to the class E1(3) if
and only if

(m,n, k, l, p, q) = (1, 1, 1, 1, 1, 1).

Proposition 23. A graph G = g23(m,n, k, l, p, q) belongs to the class E1(3) if
and only if

(m,n, k, l, p, q) = (1, 1, 1, 1, 1, 1).

Proposition 24. A graph G = g24(m,n, k, l, p, q) (p 6 q) belongs to the class
E1(3) if and only if

(m,n, k, l, p, q) = (1, 1, 1, 1, 1, 4).

Propositions 1–24 and Theorem 1 completely describe the class E1(3).
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