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Abstract. Let k be a field, and let α and β be two algebraic numbers over
k of degree d and `, respectively. We find necessary and sufficient conditions
under which deg(αβ) = d` and deg(α + β) = d`. Since these conditions are
quite difficult to check, we also state a simple sufficient condition for such
equalities to occur.

Let k be a field, and let ka be an algebraic closure of k. Suppose that α ∈ ka

is of degree d over k. If β ∈ ka has degree ` over k then [k(α, β) : k] 6 d`, so
any γ ∈ k(α, β) has degree at most d` over k. In particular, αβ and α + β both
have degree at most d` over k. Furthermore, for a ‘generic’ β of degree ` we have
equality, namely, αβ and α+β are both of degree d`. For some problems concerning
linear forms in conjugate algebraic numbers and the Mahler measure of an algebraic
number (over Q) we have α ∈ ka satisfying certain conditions (see, e.g., [1], [3])
and need to enlarge the set of such numbers by either multiplying or by adding a
‘generic’ β (of degree `) in the sense that αβ (or α + β) has ‘generic’ degree d`.
How one can be sure that a particular β have the required properties?

In this note we state some simple sufficient, necessary and necessary and
sufficient conditions on β in order that αβ (or α+β) is of maximal possible degree.
We begin with the following necessary and sufficient condition.

Theorem 1. Suppose that α ∈ ka is of degree d over k and β ∈ ka is of degree
` over k. Then αβ is of degree d` over k if and only if β is of degree ` over k(α)
and α ∈ k(αβ). Similarly, α+ β is of degree d` over k if and only if β is of degree
` over k(α) and α ∈ k(α+ β).

Proof. The proof follows easily from the following standard diagram:
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k E = k(α) ∩ k(β) k(β)
∖ ∖

k(α) k(α, β)

Indeed, since

[k(αβ) : k] 6 [k(α, β) : k] = [k(α, β) : k(α)][k(α) : k] = [k(α, β) : k(α)]d 6 d`,
we have [k(αβ) : k] = d` if and only if k(α, β) = k(αβ) and [k(α, β) : k(α)] = `.
Of course, k(α, β) = k(αβ) implies that α ∈ k(αβ). But then also β ∈ k(αβ)
and so α ∈ k(αβ) implies that k(α, β) = k(αβ) too. Consequently, the conditions
k(α, β) = k(αβ) and α ∈ k(αβ) are equivalent. On the other hand, [k(α, β) :
k(α)] = ` = [k(β) : k] if and only if the minimal polynomial of β over k is irreducible
over the field k(α), that is β has degree ` over k(α). This proves the theorem for
αβ. The proof of the theorem for the sum α+ β is precisely the same. �

Set E = k(α) ∩ k(β) (see the diagram). The degree of β over E is equal to
the degree of β over k(α) (see, for instance, [2]). So if E is a proper extension of k
then the degree of β over k(α) is smaller than `. Consequently, Theorem 1 implies
that E = k(α) ∩ k(β) = k is a necessary condition for deg(αβ) = d` (and for
deg(α+ β) = d`) to occur.

Unfortunately, the condition α ∈ k(αβ) of Theorem 1 is quite difficult to check.
This raises the question on whether there is a simple method of finding many differ-
ent β satisfying deg(αβ) = d deg β. The next theorem gives a sufficient condition
for this equality to occur.

Theorem 2. Suppose that α is an algebraic number of degree d over a field k
of characteristic zero, and let K be a normal closure of k(α) over k. If L = k(β)
is a normal extension of k of degree ` and L ∩K = k then deg(α+ β) = d`. If, in
addition, β is torsion-free then deg(αβ) = d`.

Recall that (as in [3]) β is called torsion-free if β′/β is not a root of unity
for any β′ 6= β, where β′ and β are conjugate over k. The condition on β to
be torsion-free is necessary in the multiplicative part of Theorem 2. Indeed, the
example k = Q, α =

√
2, β =

√
3 with d = ` = 2 and Q(

√
2) ∩ Q(

√
3) = Q shows

that αβ =
√

6 is of degree 2 over Q, although Q(
√

2)/Q and Q(
√

3)/Q are normal
extensions and d` = 4. Of course, if β is not torsion-free, we can add to it an
element k0 ∈ k and consider β0 = β + k0 instead. Since L = k(β) = k(β0) for any
k0 ∈ k, it is sufficient to take k0 for which β0 = β + k0 is torsion-free. (Below, we
will show that such k0 exists: see Theorem 3.) In the above example we can take
k0 = 1. Then β0 = 1 +

√
3 and αβ0 =

√
6 +
√

2 is of degree 4 over Q.

Proof of Theorem 2. The conditions of the theorem imply that LK is a
Galois extension of k (see [4] for all standard facts about Galois extensions which
are used here). Therefore α′ + β′ is conjugate to α + β for arbitrary pair α′, β′,
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where α′ and α are conjugate over k and β′ is conjugate to β over k. Hence
deg(α + β) 6 d` with inequality being strict if and only if α + β = α′ + β′ with
certain α′ 6= α and β′ 6= β. Assume that α+ β = α′ + β′. Then L ∩K = k implies
that γ := α−α′ = β′− β ∈ k, because α′ ∈ K, β′ ∈ L. Let σ be an automorphism
of K taking α to α′. Suppose that σ is of order t > 1, so that σt(α) = α. Then
by adding t equalities γ = σj(α)− σj+1(α) corresponding to j = 0, 1, . . . , t− 1 we
obtain that tγ = 0. Since char k = 0, this can only occur if γ = 0, giving α′ = α
and β′ = β, a contradiction.

Similarly, deg(αβ) 6 d`, where deg(αβ) < d` if and only if αβ = α′β′ with
certain α′ 6= α and β′ 6= β. Now, a similar argument shows that γ := β′/β = α/α′

can lie in k, but only if γ is a root of unity (see also [5]). More precisely, if σ : β → β′

is of order t then
(β′
β

)t
= γt =

σ(β)
β

σ2(β)
σ(β)

. . .
β

σt−1(β)
= 1

so β is not torsion-free, a contradiction. This proves Theorem 2. �

We will conclude by showing the following.

Theorem 3. For each β ∈ ka, where k is a field of characteristic zero, there
is a k0 ∈ k such that β + k0 is torsion-free.

Proof. Suppose that there is a β ∈ ka such that β + k0 is not torsion-free for
each k0 ∈ Z, where Z is a prime subfield of k. Then, for some fixed β′ (which is
conjugate to β over k and β′ 6= β), ω := (β′ + k0)/(β + k0) is a root of unity for
infinitely many k0 ∈ Z. By Corollary 1.3 of [2], the degree of ω over k is bounded,
so there is an absolute constant n0 ∈ N, n0 > 1, and infinitely many k0 ∈ Z for
which (β′+k0)n0 = (β+k0)n0 . Subtracting the left-hand side of this equality from
its right-hand side and dividing by β − β′ we obtain that

ξ0 + ξ1k0 + · · ·+ ξn0−1k
n0−1
0 = 0,

where the coefficients ξj =
(
n0
j

)
(βn0−j − β′n0−j)/(β − β′) ∈ k(β, β′), j = 0, 1, . . . ,

n0 − 1, do not depend on k0. Now, by taking any n0 distinct elements k0 (among
infinitely many) in order that a respective determinant would be non-zero, we
deduce that ξ0 = ξ1 = · · · = ξn0−1 = 0. However, ξn0−1 = n0 6= 0, a contradiction.
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