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Abstract. The aim of this article is obtain a Krasnoselskĭı cone compression
theorem for multimaps in the class S-KKM.

1. Introduction

This article discusses various Krasnoselskĭı cone compression theorems for com-
pact as well as k − Φ-contractive multimaps in the S-KKM class. The class of S-
KKM maps was introduced and studied by Chang et al. [5] and further investigated
by Chang et al. [4] and Shahzad [12]. The Krasnoselskĭı cone compression theorem
is well known for Ukc maps [9] and other classes [1, 10]. We mention that S-KKM
class contains the Ukc maps. The ideas presented in this paper follow closely those
in [9].

2. Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set Y ⊆ E, 2Y

denotes the family of nonempty subsets of Y . If L is a lattice with a minimal
element 0, a mapping Φ : 2E → L is called a generalized measure of noncompactness
provided that the following conditions hold:

(a) Φ(A) = 0 if and only if Ā is compact.
(b) Φ(co(A)) = Φ(A); here co(A) denotes the closed convex hull of A.
(c) Φ(A ∪B) = max{Φ(A),Φ(B)}.

It follows that if A ⊆ B, then Φ(A) 6 Φ(B). Let C be a nonempty subset
of a Banach space X. The Kuratowski measure of noncompactness is the map
α : 2X → R+ defined by

α(A) = inf{ε > 0 : A can be covered by a finite number
of sets each of diameter less than ε}
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for A ∈ 2X . The Hausdorff measure of noncompactness is the map χ : 2X → R+

defined by

χ(A) = inf{ε > 0 : A can be covered by a finite number
of balls with radius less than ε}

for A ∈ 2X . Examples of the generalized measure of noncompactness are the
Kuratowski measure and the Hausdorff measure of noncompactness (see [11]).

Let C be a nonempty subset of a Hausdorff locally convex space E and F :
C → 2E . Then F is called Φ-condensing provided that Φ(A) = 0 for any A ⊆ C
with Φ(F (A)) > Φ(A). It is clear that a compact mapping is Φ-condensing and
also every mapping defined on a compact set is necessarily Φ-condensing. Suppose
that L is a lattice with a minimal element 0 and that for each l ∈ L and λ ∈ R,
with λ > 0, there is defined an element λl ∈ L. A mapping F : C → 2E is called a
k-Φ-contractive map (k ∈ R with k > 0) provided that Φ(F (A)) 6 kΦ(A) for each
A ⊆ C and F (C) is bounded. Obviously, if C is complete, F is k-Φ-contractive,
with 0 < k < 1, and Φ = α or χ, then F is Φ-condensing.

Let X and Y be subsets of Hausdorff topological vector spaces E1 and E2

respectively. Let F : X → K(Y ); here K(Y ) denotes the family of nonempty
compact subsets of Y . We say F is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reduced
C̆ech homology groups over the rationals are trivial. Now F is acyclic if F is upper
semicontinuous with acyclic values. The map F is said to be an O’Neill map if F
is continuous and if the values of F consist of one or m acyclic components (here
m is fixed).

Given two open neighborhoods U and V of the origins in E1 and E2 respec-
tively, a (U, V )–approximate continuous selection of F : X → K(Y ) is a continuous
function s : X → Y satisfying

s(x) ∈ (F [(x+ U) ∩X] + V ) ∩ Y, for every x ∈ X.
We say F is approximable if it is a closed map and if its restriction F |K to any
compact subset K of X admits a (U, V )–approximate continuous selection for every
open neighborhood U and V of the origins in E1 and E2 respectively.

For our next definition let X and Y be metric spaces. A continuous single
valued map p : Y → X is called a Vietoris map if the following two conditions hold:

(i) for each x ∈ X, the set p−1(x) is acyclic
(ii) p is a proper map i.e., for every compact A ⊆ X we have that p−1(A) is

compact.

Definition 2.1. A multifunction φ : X → K(Y ) is admissible (strongly) in
the sense of Gorniewicz, if φ : X → K(Y ) is upper semicontinuous, and if there
exists a metric space Z and two continuous maps p : Z → X and q : Z → Y such
that

(i) p is a Vietoris map, and
(ii) φ(x) = q(p−1(x)) for any x ∈ X.
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Remark 2.1. It should be noted [8, p. 179] that φ upper semicontinuous is
superfluous in Definition 2.1.

Suppose X and Y are Hausdorff topological spaces. Given a class X of maps,
X (X,Y ) denotes the set of maps F : X → 2Y belonging to X , and Xc the set of
finite compositions of maps in X . A class U of maps is defined by the following
properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F ∈ Uc is upper semicontinuous and compact valued; and
(iii) for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the intermediate

spaces of composites are suitably chosen for each U .

Definition 2.2. F ∈ Uκc (X,Y ) if for any compact subset K of X, there is a
G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K.

Examples of Uκc maps are the Kakutani maps, the acyclic maps, the O’Neill
maps, and the maps admissible in the sense of Gorniewicz.

Definition 2.3. Let X be a convex subset of a Hausdorff topological vector
space and Y a topological space. If S, T : X → 2Y are two set-valued maps
such that T (co(A)) ⊆ S(A) for each finite subset A of X, then we say that S
is a generalized KKM map w.r.t. T . The map T : X → 2Y is said to have the
KKM property if for any generalized KKM w.r.t. T map S, the family {S̄(x) :
x ∈ X} has the finite intersection property. We let KKM(X,Y ) = {T : X → 2Y :
T has the KKM property}.

Remark 2.2. If X is a convex space, then Uκc (X,Y ) ⊂ KKM(X,Y ) (see [5]).

Definition 2.4. Let X be a nonempty set, Y a nonempty convex subset of
a Hausdorff topological vector space and Z a topological space. If S : X → 2Y ,
T : Y → 2Z , F : X → 2Z are three set-valued maps such that T (co(S(A))) ⊆ F (A)
for each nonempty finite subset A of X, then F is called a generalized S-KKM map
w.r.t. T . If the map T : X → 2Z is such that for any generalized S-KKM w.r.t.
T map F , the family {F̄ (x) : x ∈ X} has the finite intersection property, then T
is said to have the S-KKM property. The class S-KKM(X,Y, Z) = {T : Y → 2Z :
T has the S-KKM property}.

Remark 2.3. IfX = Y and S is the identity mapping 1X , then S-KKM(X,Y, Z)
= KKM(X,Z). Also KKM(Y,Z) is a proper subset of S-KKM(X,Y, Z) for any
S : X → 2Y and so S-KKM(X,Y, Z) is a very large class of maps which includes
other important classes of multimaps (see [4, 5] for examples).

Remark 2.4. Let X be a convex space, Y a convex subset of a Hausdorff
locally convex space, and Z a normal space. Suppose s : Y → Y is surjective,
F ∈ s-KKM(Y, Y, Z) is closed, and f ∈ C(X,Y ). Then F ◦f ∈ 1X−KKM(X,X,Z)
(see [5]).
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The following result [4] will be needed in the sequel.

Lemma 2.1. Let C be a nonempty, closed, convex subset of a Hausdorff locally
convex space E Suppose s : C → C is surjective and F ∈ s-KKM(C,C,C) is a
closed Φ-condensing map. Then F has a fixed point in C.

3. Main Results

Let C be a cone in a normed space E = (E, ‖ · ‖). For ρ > 0 let

Bρ = {x ∈ C : ‖x‖ < ρ}, B̄ρ = {x ∈ C : ‖x‖ 6 ρ},
Sρ = {x ∈ C : ‖x‖ = ρ}, EBρ = {x ∈ C : ‖x‖ > ρ}.

Theorem 3.1. Let C be a closed convex cone in a normed space E = (E, ‖ · ‖)
and let r,R be constants with 0 < r < R. Suppose s : B̄R → B̄R is surjective and
F ∈ s-KKM(B̄R, B̄R, C) is a closed and compact map with

(3.1) F (Sr) ⊆ EBr and F (SR) ⊆ B̄R.
Then F has a fixed point in Br,R = {x ∈ C : r 6 ‖x‖ 6 R}.

Proof. Define g : C → B̄R as follows

g(x) =





r0(x), if x ∈ B̄r
x, if x ∈ Br,R
Rx/‖x‖, if x ∈ EBR,

where r0 : B̄r → Sr is a continuous retraction (which exists in our case, indeed if
we fix x0 ∈ Sr, then we may take

r0(x) =
r{(r − ‖x‖)x0 + x}
‖(r − ‖x‖)x0 + x‖ .

Note (r−‖x‖)x0 + x 6= 0 since C ∩ (−C) = {0}). Then g is continuous. Since F ∈
s-KKM(B̄R, B̄R, C), by Remark 2.4 G = F ◦g ∈ 1C−KKM(C,C,C). Furthermore,
G is closed and compact. Now Lemma 2.1 guarantees that G has a fixed point
x ∈ C, i.e., x ∈ G(x). If ‖x‖ < r, then

x ∈ Fr0(x) ⊆ F (Sr) ⊆ EBr.
This is a contradiction. If ‖x‖ > R, then

x ∈ F (Rx/‖x‖) ⊆ F (SR) ⊆ B̄R.
This is a contraction. Hence x ∈ Br,R and x ∈ G(x) = F (x). �

Remark 3.1. The condition in (3.1) that F (SR) ⊆ B̄R may be replaced by

(3.2) x 6∈ λFx for x ∈ SR and λ ∈ (0, 1).

To see this, let x be as in Theorem 3.1. If ‖x‖ > R, then x ∈ F (Rx/‖x‖). This
implies that y ∈ λF (y) with y = Rx/‖x‖ and λ = R/‖x‖.
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Next let E = (E, ‖.‖) be an infinite dimensional normed space. For ρ > 0 let

Bρ = {x ∈ E : ‖x‖ < ρ}, B̄ρ = {x ∈ E : ‖x‖ 6 ρ},
Sρ = {x ∈ E : ‖x‖ = ρ}, EBρ = {x ∈ E : ‖x‖ > ρ}

Theorem 3.2. Let E = (E, ‖ · ‖) be an infinite dimensional normed space and
let r,R be constants with 0 < r < R. Suppose s : B̄R → B̄R is surjective and
F ∈ s-KKM(B̄R, B̄R, C) is a closed and compact map with

(3.3) (Sr) ⊆ EBr and F (SR) ⊆ B̄R
Then F has a fixed point in Br,R = {x ∈ E : r 6 ‖x‖ 6 R}.

Proof. It is known [3] that there exists a continuous retraction r0 : B̄r → Sr.
Essentially the same reasoning as in Theorem 3.1 gives the result. �

We now establish a general version of the above result.

Theorem 3.3. Let E = (E, ‖ · ‖) be an infinite dimensional normed space and
let U1 and U2 be open convex subsets of E with 0 ∈ U1 with Ū1 ⊂ U2. Suppose
s : Ū2 → Ū2 is surjective and F ∈ s-KKM(Ū2, Ū2, E) is a closed and compact map
with

(3.4) F (∂U1) ⊆ E r U1 and F (∂U2) ⊆ Ū2.

Then F has a fixed point in Ū2 r U1.

Proof. Define g : E → ∂U2 by

g(x) =





r1(x), if x ∈ Ū1

x, if x ∈ Ū2 r U1

x/p(x) if x ∈ E r U2.

where p is the Minkowski functional on Ū2 and r1 : Ū1 → ∂U1 is a continuous
retraction (which exists [2]). Then g is continuous. Since F ∈ s-KKM(Ū2, Ū2, E),
by Remark 2.4 G = F ◦ g ∈ 1E − KKM(E,E,E). Furthermore, G is closed and
compact. Now as in Theorem 3.1 G has a fixed point x ∈ E, i.e., x ∈ G(x). If
x ∈ U1, then

x ∈ Fr1(x) ⊆ F (∂U1) ⊆ E r U1.

This is a contradiction. If x ∈ E r Ū2, then

x ∈ F (x/p(x)) ⊆ F (∂U2) ⊆ Ū2.

This is a contraction. Hence x ∈ Ū2 r U1 and x ∈ G(x) = F (x). �
It is known [3, 7] that if E is an infinite dimensional normed space, then there

exits a Lipschitzian retraction r0 : B̄r → Sr with Lipschitz constant k0 > 1. We
are now in a position to improve Theorem 3.2.

Theorem 3.4. Let E = (E, ‖ · ‖) be an infinite dimensional normed space and
let r,R be constants with 0 < r < R. Suppose s : B̄R → B̄R is surjective and
F ∈ s-KKM(B̄R, B̄R, C) is a closed k − Φ-contractive map, 0 6 k < 1/k0, with

(3.5) F (Sr) ⊆ EBr and F (SR) ⊆ B̄R.
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Then F has a fixed point in Br,R = {x ∈ E : r 6 ‖x‖ 6 R}.
Proof. Let r0 : B̄r → Sr be the retraction with Lipschitz constant k0. Define

g : C → B̄R as follows

g(x) =





r0(x), if x ∈ B̄r
x, if x ∈ Br,R
Rx/‖x‖, if x ∈ EBR.

Then g is continuous. Since F ∈ s-KKM(B̄R, B̄R, C), by Remark 2.4 G = F ◦
g ∈ 1E − KKM(E,E,E). Furthermore, g is k0 − Φ-contractive; indeed if Ω is
bounded subset of E, then Ω = Ω1 ∪Ω2 ∪Ω3, where Ω1 = Ω ∩Br, Ω2 = Ω ∩Br,R,
Ω3 = Ω ∩ {x ∈ E : ‖x‖ > R} and

Φ(g(Ω)) 6 max{Φ(g(Ω1)),Φ(g(Ω2)),Φ(g(Ω3))}
6 max{k0Φ(Ω1), k0Φ(Ω2), k0Φ(Ω3)}
6 k0Φ(Ω)

since g(Ω3) ⊆ co(Ω3∪{0})). Consequently, G is kk0−Φ-contractive and also closed.
Now Lemma 2.1 guarantees that G has a fixed point x ∈ E, i.e., x ∈ G(x). As
before, x ∈ Br,R and x ∈ G(x) = F (x). �
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