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KNESER’S THEOREM FOR WEAK SOLUTIONS
OF AN INTEGRAL EQUATION

WITH WEAKLY SINGULAR KERNEL

Aldona Dutkiewicz and Stanis law Szufla

Abstract. We prove that the set of all weak solutions of the Volterra integral
equation (1) is nonempty, compact and connected.

Assume that D = [0, a] is a compact interval in R, E is a sequentially weakly
complete Banach space, B = {x ∈ E : ‖x‖ 6 b}. We prove the existence of a weak
solution of the integral equation

(1) x(t) =
∫ t

0

K(t, s)f(s, x(s)) ds,

where
1◦ f : D ×B 7→ E is a weakly-weakly continuous function such that
‖f(t, x)‖ 6M for (t, x) ∈ D ×B;

2◦ K(t, s) =
H(t, s)
(t− s)r , 0 < r < 1, where H is a real continuous function.

Moreover, we study the topological structure of the set of all weak solutions of (1).
In what follows we shall need the following result of W. Mydlarczyk given in [6].

Theorem 1. Let α > 0 and let g : R+ 7→ R+ be a nondecreasing function such
that g(0) = 0, g(t) > 0 for t > 0. Then the equation

u(t) =
∫ t

0

(t− s)α−1g(u(s)) ds (t > 0)

has a nontrivial continuous solution if and only if
∫ δ

0

1
s

[
s

g(s)

]1/α

ds <∞ (δ > 0).

Let c = max
t,s∈D

|H(t, s)|. Choose a positive number d such that d 6 a and

M · c · d
1−r

1− r < b. Denote by L = M · c · d
1−r

1− r . Hence L < b.
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Let J = [0, d]. Denote by Cw(J,E) the space of weakly continuous functions
J 7→ E endowed with the topology of weak uniform convergence. Moreover, denote
by β the measure of weak noncompactness introduced by De Blasi [2].

Let us recall that for any nonvoid, bounded subset A of a Banach space E,
β(A) = inf{ε > 0 : there exists a weakly compact set K such that A ⊂ K + εB},
where B is the norm unit ball. Recall that β has the following properties:

1◦ A ⊂ B ⇒ β(A) 6 β(B);
2◦ β(Āw) = β(A), where Āw denotes the weak closure of A;
3◦ β(A) = 0 ⇔ Āw is weakly compact;
4◦ β(A ∪B) = max(β(A), β(B));
5◦ β(convA) = β(A);
6◦ β(A+B) 6 β(A) + β(B);
7◦ β(λA) = |λ|β(A), (λ ∈ R);
8◦ β

(⋃
|λ|6h λA

)
= hβ(A).

Let V be a subset of Cw(J,E). Put V (t) = {u(t) : u ∈ V } and V (T ) = {u(t) :
u ∈ V, t ∈ T}. Let us recall the well known Ambrosetti type

Lemma 1. If the set V is strongly equicontinuous and uniformly bounded, then
(a) the function t 7→ β(V (t)) is continuous on J ;
(b) for each compact subset T of J one has β(V (T )) = sup{β(V (t)) : t ∈ T}.
Let B̃ denote the set of all weakly continuous functions J 7→ B. We shall

consider B̃ as a topological subspace of Cw(J,E). Put

F (x)(t) =
∫ t

0

K(t, s)f(s, x(s)) ds, (x ∈ B̃, t ∈ J).

Arguing similarly as in [4, p. 132–133] we can prove that the set F (B̃) is strongly
equicontinuous. On the other hand, from the following Krasnoselskĭı type

Lemma 2. For any ϕ ∈ E∗, ε > 0 and z ∈ B̃ there exists a weak neighbourhood
U of 0 in E such that | ϕ(f(t, z(t)) − f(t, w(t))) |6 ε for t ∈ J and w ∈ B̃ such
that w(s)− z(s) ∈ U for all s ∈ J . [8]

It follows that F is a continuous mapping from B̃ into Cw(J,E).
For given ε > 0 denote by Sε the set of all z ∈ B̃ such that ‖z(t)−F (z)(t)‖ < ε

for all t ∈ J .

Lemma 3. For each ε, 0 < ε < b−L, the set Sε is nonempty and connected in
Cw(J,E).

Proof. For any positive integer n we define Fn(x)(t) = F (x)(rn(t)) (x ∈ B̃,
t ∈ J), where

rn(t) =

{
0, if 0 6 t 6 d/n
t− d/n, if d/n 6 t 6 d.

Put

(2) sup
t∈J, x∈B̃

‖F (x)(t)− F (x)(rn(t))‖ = wn.
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Because the set F (B̃) is equicontinuous, we have wn 7→ 0 as n 7→ ∞. Moreover,
there exists a unique zn ∈ B̃ such that zn = Fn(zn). It is clear from (2) that
zn ∈ Sε for sufficiently large n. Fix u0, u1 ∈ Sε. Put

η = max
(

sup
t∈J
‖u0(t)− F (u0)(t)‖, sup

t∈J
‖u1(t)− F (u1)(t)‖

)

and δ = ε− η. Fix a positive integer n such that 2wn < δ. Let

aλ = λ(u1 − Fn(u1)) + (1− λ)(u0 − Fn(u0)) for 0 6 λ 6 1.

It follows from (2) that

‖ui(t)− Fn(ui)(t)‖ 6 ‖ui(t)− F (ui)(t)‖+ ‖F (ui)(t)− Fn(ui)(t)‖ 6 η + wn

(i = 0, 1).

Hence

(3) ‖aλ(t)‖ 6 η + wn for t ∈ J and 0 6 λ 6 1.

Arguing similarly as in [8, p. 122] we can prove that for each λ ∈ [0, 1] there exists
a unique uλ such that uλ = aλ + Fn(uλ) and uλ depends continuosly on λ. Since

∫ t

0

ds

(t− s)r =
t1−r

1− r ,

we have

‖F (x)(t)‖ =
∥∥∥∥
∫ t

0

K(t, s)f(s, x(s)) ds
∥∥∥∥ 6 c ·M ·

d1−r

1− r = L for x ∈ B̃, t ∈ J.

From this and inequalities (2)–(3) we obtain

‖uλ(t)‖ 6 ‖aλ(t)‖+ ‖F (uλ)(rn(t))‖ 6 η + wn + L < η + δ + L = ε+ L < b

and

‖uλ(t)− F (uλ)(t)‖ = ‖aλ(t) + Fn(uλ)(t)− F (uλ)(t)‖
6 ‖aλ(t)‖+ ‖Fn(uλ)(t)− F (uλ)(t)‖
6 η + 2wn < η + δ = ε (t ∈ J, 0 6 λ 6 1),

so that uλ ∈ Sε. From this we conclude that for any u0, u1 ∈ Sε there exists
a continuous curve in Sε connecting u0 and u1, which proves that Sε is arcwise
connected. �

The main result of the paper is the following

Theorem 2. Let g : R+ 7→ R+ be a continuous nondecreasing function such
that g(0) = 0, g(t) > 0 for t > 0 and

(4)
∫ δ

0

1
s

[
s

g(s)

]1/(1−r)
ds =∞ (δ > 0).

If 1◦ and 2◦ hold and

(5) β(f(J ×X)) 6 g(β(X)) for X ⊂ B,
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then the set S of all weak solutions of (1) defined on J is nonempty, compact and
connected in Cw(J,E).

Proof. 1. First we shall show that the set S is nonempty. By Lemma 3 there
exists a sequence (un) such that un ∈ B̃ and

(6) lim
n→∞

sup
t∈J
‖un(t)− F (un)(t)‖ = 0.

Let V = {un : n ∈ N}. Since

V ⊂ {un − F (un) : n ∈ N}+ F (V )

V (t) ⊂ {un(t)− F (un)(t) : n ∈ N}+ F (V )(t),

F (V )(t) ⊂ V (t)− {un(t)− F (un)(t) : n ∈ N},

it follows from (6) that the set V is strongly equicontinuous and

(7) β(V (t)) = β(F (V )(t)) for t ∈ J.

Hence, by Lemma 1, the function t 7→ v(t) = β(V (t)) is continuous on J .
Fix t ∈ J and ε > 0, and choose η > 0 such that
∥∥∥∥
∫ t

t−η

H(t, s)
(t− s)r f(s, x(s)) ds

∥∥∥∥ 6
∫ t

t−η

|H(t, s)|
(t− s)r M ds < ε for all x ∈ B̃.

From the continuity of the function
H(t, s)
(t− s)r g(v(s)) on [0, t−η] it follows that there

exists δ > 0 such that

(8)
∣∣∣∣
H(t, τ)
(t− τ)r

g(v(q))− H(t, s)
(t− s)r g(v(s))

∣∣∣∣ < ε

if |τ − s| < δ, |q − s| < δ, q, s, τ ∈ [0, t − η]. Divide the interval [0, t − η] into n
parts 0 = t0 < t1 < . . . < tn = t− η so that ∆ti = ti− ti−1 < δ (i = 1, . . . , n). PutOK?
Ti = [ti−1, ti]. By Lemma 1 for each i there exists si ∈ Ti such that β(V (Ti)) = v(si)
(i = 1, . . . , n). Put

∫

T

H(t, s)
(t− s)r f(s, V (s)) ds =

{∫

T

H(t, s)
(t− s)r f(s, x(s)) ds : x ∈ V

}
.

Because
∫ t−η

0

H(t, s)
(t− s)r f(s, V (s)) ds ⊂

n∑

i=1

∫ ti

ti−1

H(t, s)
(t− s)r f(s, V (s)) ds

⊂
n∑

i=1

∆ticonv
{
H(t, s)
(t− s)r f(s, x(s)) : s ∈ Ti, x ∈ V

}
,
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we get

β

(∫ t−η

0

H(t, s)
(t− s)r f(s, V (s)) ds

)

6
n∑

i=1

∆tiβ
(

conv
{
H(t, s)
(t− s)r f(s, x(s)) : s ∈ Ti, x ∈ V

})

=
n∑

i=1

∆tiβ
({

H(t, s)
(t− s)r f(s, x(s)) : s ∈ Ti, x ∈ V

})

=
n∑

i=1

∆ti max
s∈Ti

|H(t, s)|
(t− s)r β(f(J × V (Ti))

6
n∑

i=1

∆ti
|H(t, τi)|
(t− τi)r g(β(V (Ti))) 6

n∑

i=1

∆ti
|H(t, τi)|
(t− τi)r g(v(si)).

Here τi ∈ Ti is a number such that
|H(t, τi)|
(t− τi)r = max

s∈Ti
|H(t, s)|
(t− s)r . Furthermore, from

inequality (8) we infer that

(9)
n∑

i=1

∆ti
|H(t, τi)|
(t− τi)r g(v(si)) 6

∫ t−η

0

|H(t, s)|
(t− s)r g(v(s)) ds+ ε(t− η).

Since

F (V )(t) ⊂
∫ t−η

0

H(t, s)
(t− s)r f(s, V (s)) ds+

∫ t

t−η

H(t, s)
(t− s)r f(s, V (s)) ds

and

β

({∫ t

t−η

H(t, s)
(t− s)r f(s, x(s)) ds : x ∈ V

})
6 2ε,

from inequalities (8) and (9) it follows that

β(F (V )(t)) 6
∫ t−η

0

|H(t, s)|
(t− s)r g(v(s)) ds+ ε(t− η) + 2ε

6
∫ t

0

|H(t, s)|
(t− s)r g(v(s))ds+ εt+ 2ε.

As the last inequality is satisfied for every ε > 0, we get

β(F (V )(t)) 6
∫ t

0

|H(t, s)|
(t− s)r g(v(s)) ds.

Therefore, by (7),

β(V (t)) 6
∫ t

0

|H(t, s)|
(t− s)r g(v(s)) ds

i.e.,

v(t) 6
∫ t

0

|H(t, s)|
(t− s)r g(v(s)) ds for t ∈ J.
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Applying Theorem 1 with α = 1 − r and theorem on integral inequalities [3,
Lemma 1] from this we deduce that v(t) = 0 for t ∈ J . Therefore, by Lemma 1

β(V (J)) = sup{β(V (t)) : t ∈ J} = 0

i.e., V is relatively compact in Cw(J,E). Hence we can find a subsequence (unk) of
(un) which converges in Cw(J,E) to a limit u. As F is continuous, from this and
(6) we conclude that u = F (u). This proves that the set S is nonempty.

2. Further, since F is continuous, S is closed in Cw(J,E). As S = F (S), we
have β(S(t)) = β(F (S)(t)) for t ∈ J . Arguing similarly as in 1, we can show that
S is compact in Cw(J,E).

Now we shall prove that S is connected. Suppose that S is not connected in
Cw(J,E). As S is compact, there are nonempty compact sets S1, S2 such that
S = S1 ∪ S2 and S1 ∩ S2 = ∅, and there are two disjoint open sets U1, U2 such
that S1 ⊂ U1, S2 ⊂ U2. Let U = U1 ∪ U2. We choose n0 such that 1/n0 < b − L.
Suppose that for each n > n0 there exists un ∈ S1/n r U . Put V = {un : n ∈ N}.
Because lim

n→∞
sup
t∈J
‖un(t)−F (un)(t)‖ = 0, by repeating the argument from 1 we can

prove that there exists u0 ∈ V such that u0 = F (u0), i.e., u0 ∈ S. Furthermore,
V ⊂ Cw(J,E) r U , as U is open, so that u0 ∈ S r U , a contradiction. Therefore
there exists k ∈ N such that S1/k ⊂ U . Since U1∩S1/k 6= ∅ 6= U2∩S1/k, this shows
that S1/k is not connected, which contradicts Lemma 3. Hence S is connected. �

The authors express their appreciation to the referee for his suggestions to
amend an earlier version of the paper.
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