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Abstract. We study the phenomenon of cospectrality in generalized line
graphs and in exceptional graphs. We survey old results from today’s point of
view and obtain some new results partly by the use of computer. Among other
things, we show that a connected generalized line graph L(H) has an excep-
tional cospectral mate only if its root graph H, assuming it is itself connected,
has at most 9 vertices. The paper contains a description of a table of sets
of cospectral graphs with least eigenvalue at least −2 and at most 8 vertices
together with some comments and theoretical explanations of the phenomena
suggested by the table.

1. Introduction

The spectrum of a graph is the spectrum of its adjacency matrix. Cospectral
graphs are graphs having the same spectrum. Both subjects contained in the title,
cospectral graphs and graphs with least eigenvalue −2, have been studied since
very beginnings of the development of the theory of graph spectra.

Graphs with least eigenvalue −2 can be represented by sets of vectors at angles
of 60 or 90 degrees via the corresponding Gram matrices. Maximal sets of lines
through the origin with such mutual angles are closely related to the root systems
known from the theory of Lie algebras. Using such a geometrical characterization
one can show [2] that graphs in question are either generalized line graphs (repre-
sentable in the root system Dn for some n) or exceptional graphs (representable in
the exceptional root system E8).

Both subjects of the title, cospectral graphs and the graphs with least eigen-
value −2, although present in the investigations all the time, have recently attracted
special attention. In the first case it was the power of nowdays computers which en-
abled some investigations which were not possible in the past [10], [13], while in the
second case the reason was the constructive enumeration of maximal exceptional
graphs [7].
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In this paper we consider the intersection of these two subjects and study the
phenomenon of cospectrality in generalized line graphs and in exceptional graphs.
We survey some old results from today’s point of view and obtain some new results
partly by the use of computer. Among other things, we show that a connected
generalized line graph L(H) has an exceptional cospectral mate only if its root
graph H, assuming it is itself connected, has at most 9 vertices. The paper is to a
great extent based on a table of sets of cospectral graphs with least eigenvalue at
least −2 and at most 8 vertices. It is produced to support the study of cospectrality
in graphs in question and is presented in [6] in an abbreviated form, while [5]
contains the whole material. The paper [6] as well as the present paper contain
some comments and theoretical explanations of the phenomena suggested by the
table.

The rest of the paper is organized as follows. Section 2 contains some defini-
tions. Section 3 describes a table of sets of cospectral graphs with least eigenvalue
at least −2 and at most 8 vertices. Several comments on the table are given. Some
spectral properties of graphs with least eigenvalue greater than −2 are established
in Section 4. Section 5 contains several theorems on cospectral graphs with least
eigenvalue greater than or equal to −2.

2. Some basic notions

Let G be a simple graph with n vertices. We write V (G) for the vertex set of
G, and E(G) for the edge set of G. As usual, Kn, Cn and Pn denote respectively
the complete graph, the cycle and the path on n vertices. Further, Km,n denotes
the complete bipartite graph on m + n vertices. The cocktail-party graph CP (n) is
the unique regular graph with 2n vertices of degree 2n− 2; it is obtained from K2n

by deleting n mutually non-adjacent edges. The union of (disjoint) graphs G and
H is denoted by G ∪H, while mG denotes the union of m disjoint copies of G.

The characteristic polynomial det(xI − A) of the adjacency matrix A of G is
called the characteristic polynomial of G and denoted by PG(x). The eigenvalues
of A (i.e. the zeros of det(xI − A)) and the spectrum of A (which consists of the
n eigenvalues) are also called the eigenvalues and the spectrum of G, respectively.
The eigenvalues of G are reals λ1, λ2, . . . , λn and we shall assume that λ1 > λ2 >
· · · > λn.

Graphs with the same spectrum are called isospectral or cospectral graphs.
The term “unordered) pair of isospectral nonisomorphic graphs” will be denoted
by PING. More generally, a “set of isospectral nonisomorphic graphs” is denoted by
SING. A two element SING is a PING. A graph H, cospectral but non–isomorphic
to a graph G, is called a cospectral mate of G. The SINGs whose members belong
to a set X of graphs are called X–SINGs.

If the set of graphs {G1, G2, . . . , Gk} is a SING and if G is any connected graph,
then the set {G1 ∪G,G2 ∪G, . . . , Gk ∪G} is also a SING. Each graph in the later
SING has a component isomorphic to a fixed graph (to the graph G). A SING S
is called reducible if each graph in S contains a component isomorphic to a fixed
graph. Otherwise, S is called irreducible.
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Let L (L+, L0) be the set of graphs whose least eigenvalue is greater than or
equal to −2 (greater than −2, equal to −2). A graph is called an L-graph (L+-
graph, L0-graph) if its least eigenvalue is greater than or equal to −2 (greater then
−2, equal to −2). A special new terminology for L-graphs has been introduced in
[6].

A pendant double edge is called a petal. A blossom Bn consists of n (n > 0)
petals attached at a single vertex. An empty blossom B0 has no petals and is
reduced to the trivial graph K1. A graph in which to each vertex a blossom (possibly
empty) is attached is called a graph with blossoms or a B-graph. The set of B-graphs
includes as a subset the set of (undirected) graphs without loops or multiple edges.
A graph G is a generalized line graph if G = L(H) is the line graph of a B-graph
H called the root graph of G.

The line graph L(H) of any graph H is defined as follows. The vertices of
L(H) are the edges of H and two vertices of L(H) are adjacent whenever the
corresponding edges of H have exactly one vertex of H in common.

We have L(Bn) = CP (n). A GLG is called a line graph if there exists a B-
graph H with no petals such that G = L(H) while in the opposite case G is a
proper generalized line graph.

An exceptional graph is a connected graph with least eigenvalue greater than
or equal to −2 which is not a generalized line graph. A generalized exceptional
graph is a graph with least eigenvalue greater than or equal to −2 in which at least
one component is an exceptional graph.

A petal behaves as an odd cycle (see [8]). Therefore the term supercycle has
been introduced to denote an odd cycle or a petal (2-cycle). A B-graph is called
bipartite if it does not contain a supercycle.

The following theorem appears in [6] as a reformulation of some old results in
the new terminology.

Theorem 1. Let H be a B-graph with n vertices and m edges. Then the
multiplicity of the eigenvalue −2 in L(H) is m−n if H is not bipartite and m−n+1
if H is bipartite.

For other definitions and basic results the reader is referred to books: [3] for
graph spectra in general and [9] for L-graphs.

3. A table of cospectral L-graphs

The table of cospectral graphs from [5], [6] contains irreducible L–SINGs in
which the number of vertices n is at most 8. There are exactly 201 irreducible
L-SINGs with at most 8 vertices. This number includes 178 pairs, 20 triplets and
3 quadruples of cospectral graphs.

For each SING, the table contains an identification number, followed by eigen-
values and a graph invariant called the star value (for the definition see Section 4).
Next, a row is related to each member of the SING. The row first contains the
rows of the lower triangle of an adjacency matrix of the graph. In addition, the
number of components is given followed by the numbers ci, i = 1, 2, 3 where ci is
the number of components with i vertices for i = 1, 2, 3. Further we find a graph
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classification mark: LG for line graphs, GL for proper generalized line graphs and
EX for generalized exceptional graphs. For line graphs we come across a B if the
root graph is bipartite and NB in the opposite case. In proper generalized line
graphs the number of petals is given.

The smallest PING without the limitations on the least eigenvalue, which con-
sists of graphs K1,4 and C4 ∪ K1, is also the first graph in our table. Note that
K1,4 is a proper GLG while C4 ∪K1 is a line graph.

Here we reproduce only the part of the table related to graphs on 6 vertices.
********************************************************

Cospectral graphs with 6 vertices

********************************************************

4 edges

1. 1.7321 1.0000 0.0000 0.0000 -1.0000 -1.7321 12

0 01 101 0100 00000 2 1 0 0 LG B

0 01 100 0001 00010 2 0 1 0 GL 1

5 edges

2. 2.0000 1.0000 0.0000 0.0000 -1.0000 -2.0000 48

0 01 001 0101 10000 2 0 1 0 LG B

1 10 010 1000 01000 1 0 0 0 GL 2

6 edges

3. 2.5616 1.0000 0.0000 -1.0000 -1.0000 -1.5616 12

0 01 011 0011 10000 2 0 1 0 LG NB

0 01 011 0001 00011 2 1 0 0 LG B

7 edges

4. 2.7093 1.0000 0.1939 -1.0000 -1.0000 -1.9032 3

1 10 100 1100 10100 1 0 0 0 EX

1 10 010 0010 11100 1 0 0 0 EX

The SING on x vertices with the identification number y will be denoted by
x.y. First few SINGs on 7 and 8 vertices are given in Fig. 1.

Although reducible SINGs should not be included in tables like our since they
can easily be generated from irreducible ones, reducible SINGs are not quite unin-
teresting [6].

In this context interesting is also the (irreducible) SING No. 8.2. It is a quadru-
ple consisting of two (cospectral) reducible PINGs (first and third graph can be
reduced to PING No. 6.2 while the other two reduce to the PING No. 7.2).

The smallest PING with graphs beyond L consists of graphs with 7 vertices
and 6 edges. One of them is {K1,6,K2,3 ∪K1} with least eigenvalue −2.4455. The
smallest such PING in which both graphs are connected consists of some bicyclic
graphs on 7 vertices with least eigenvalue −2.0748. These examples, of course, do
not belong to our table.
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Using the abbreviations LG, GL, EX of the above table to indicate the type of
(graphs in) a PING, we give in the next table the (identification numbers of the)
smallest SINGs which contain a PING of the given type and the smallest SINGs in
which the both graphs in the PING are connected. The later SINGs are given in
Fig. 2.

PING type smallest smallest connected

LG - LG 6.3 7.17
LG - GL 5.1 7.16
LG - EX 7.2 8.22
GL - GL 7.1 7.6
GL - EX 8.2 8.49
EX - EX 6.4 6.4

In Fig. 2 together with (generalized) line graphs the corresponding root graphs are
given. In exceptional graphs a minimal exceptional induced subgraph is indicated
by thick lines.

Note that graphs forming PING No. 7.2 are switching equivalent.
Next we note that PING No. 8.10 consists of a connected line graph and a gen-

eralized exceptional graph (having an isolated vertex) while in the PING No. 8.22
both graphs are connected one being a line graph and the other an exceptional
graph. In the later case the least eigenvalue is equal to −2, since, by Theorem 7,
this is not possible in L+-graphs.

Observations concerning the number of petals in the root graph of GLGs are
described in [6].

4. Graphs with least eigenvalue greater than −2

A new approach to the construction and study of L-graphs has been initiated
in [8]. This approach uses the star complement technique [14], [12], [15], [9]. L0-
graphs are constructed by the star complement technique starting from L+-graphs.
Therefore L+-graphs are very important. In this section we establish some spectral
properties of these graphs.

All L+-graphs are known and very well described as the following result of M.
Doob and D. Cvetković [11] shows.

Theorem 2. If G is a connected graph with least eigenvalue greater than −2
then one of the following holds:

(i) G = L(T ; 1, 0, . . . , 0) where T is a tree;
(ii) G = L(H) where H is a tree or an odd unicyclic graph;
(iii) G is one of 20 exceptional graphs on 6 vertices represented in the root

system E6;
(iv) G is one of 110 exceptional graphs on 7 vertices represented in the root

system E7;
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(v) G is one of 443 exceptional graphs on 8 vertices represented in the root
system E8.

The 573 exceptional graphs appearing in this theorem are given in Table A2 of
[9].

As usual, we define L1(H) = L(H) and Lk(H) = L(Lk−1(H)) for k = 2, 3, . . . .
We can easily find which L+-graphs are iterated line graphs Lk(H), k = 2, 3, . . . .

Proposition 1. Let H be a connected graph and let L2(H) be an L+-graph.
Then H is a path or H is an odd cycle or H consists of three nontrivial paths
meeting at a vertex.

Proof. Let H1 = L(H) which implies G = L(H1). Then H1 is a tree or an
odd unicyclic graph.

In the first case H has no vertices of degree greater then 2 and does not contain
cycles. Hence, H = Pn.

In the second case, if the odd cycle has length more than 3 then H is reduced to
this cycle, hence H = C2k+1 (k > 2). If H1 contains a triangle then either H = K3

or H consists of three nontrivial paths meeting at a vertex. ¤

The following proposition is now straightforward.

Proposition 2. Let k > 3 and let Lk(H) ∈ L+ be a connected graph. Then
H is a path or an odd cycle.

An eigenvalue of an L-graph is called principal if it is greater than −2. If
λ1, λ2, . . . , λk are principal eigenvalues of an L-graph G, then the principal poly-
nomial ΠG(λ) is the monic polynomial of degree k whose zeros are λ1 + 2, λ2 +
2, . . . , λk + 2. Obviously, we have

PG(λ− 2) = λn−kΠG(λ),

where n is the number of vertices in G.
If G is a graph with least eigenvalue greater than −2, then n = k and ΠG(0) =

PG(−2).

Theorem 3. Let G be a connected L+-graph on n vertices. We have ΠG(0) =
(−1)nd, where

1◦ d = 1 if G is exceptional on 8 vertices
(i.e., can be represented in the root system E8 but not in Dn for any n),

2◦ d = 2 if G is exceptional on 7 vertices
(i.e., can be represented in the root system E7 but not in Dn for any n),

3◦ d = 3 if G is exceptional on 6 vertices
(i.e., can be represented in the root system E6 but not in Dn for any n),

4◦ d = 4 if G can be represented in the root system Dn for some n,
5◦ d = n + 1 if G is the line graph of a tree.

The statements of this theorem can be, of course, verified on all L+-graphs in
our table of SINGs. Cases 1◦, 2◦ and 3◦ correspond to the cases (v), (iv) and (iii) of
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Theorem 2 respectively. Case 4◦ includes case (i) and line graphs of odd unicyclic
graphs from (ii). Case 5◦ covers the remaining part of (ii).

The quantity d is called the discriminant of the integral lattice generated by
the corresponding root system and the whole theorem has been taken from the
lattice theory (see, for example, [1, pp. 101–102]). If we put d = V 2, then V is, in
fact, the volume of an elementary cell of the corresponding integral lattice.
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Figure 2. (continued)

The quantity d will also be called the discriminant of the corresponding graph.
In fact for an L-graph G on n vertices we define

dG = (−1)nPG(−2)

to be the discriminant of G. We have dG = 0 if the least eigenvalue is equal to −2
and dG = (−1)nΠG(0) if G is an L+-graph.

The following lemma is obvious.

Lemma 1. The discriminant of an L-graph is equal to the product of discrim-
inants of its components.

Discriminants of various kinds of L+-graphs on up to 10 vertices are given in
the following table.

n 1 2 3 4 5 6 7 8 9 10

L(T ) 2 3 4 5 6 7 8 9 10 11
representable in Dn 4 4 4 4 4 4 4

exceptional 3 2 1
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L+-graphs are star complements for −2 in L0-graphs. L+-graphs are distin-
guished from L0-graphs by its positive discriminant and also can be well classified
by this invariant possibly in conjunction with the number of vertices if necessary.
Moreover, we have the following theorem.

Theorem 4. Let G be an L0-graph on n vertices and having k principal eigen-
values. The coefficient ak of λn−k in the polynomial PG(λ− 2) is equal to (−1)kS
where S is the sum of discriminants of star complements of G for eigenvalue −2.

Proof. Up to the sign, ak is equal to the sum of all minor of order k of
det (A + 2I) where A is the adjacency matrix of G. Such a minor is essentially the
value PG(k)(−2) for an induced subgraph G(k) of G on k vertices. For subgraphs
which are not star complements we have PG(k)(−2) = 0 and the theorem readily
follows. ¤

Theorem 4 shows that S is an important graph invariant. We shall call it the
star value of an L-graph G. Obviously, the following formulas hold

S =
(−1)n

(n− k)!
P

(n−k)
G (−2) = (−1)nΠG(0) = (λ1 + 2)(λ2 + 2) · · · (λk + 2),

where f (p)(x) denotes the p-th derivative of the function f(x).
Since the principal polynomial of a disconnected graph G is equal to the product

of principal polynomials of its components, the star value of G is the product of
star values of components of G as well.

5. Some theorems on cospectral L-graphs

Cospectral L-graphs could be line graphs, proper generalized line graphs and
(generalized) exceptional graphs in all combinations. We shall first consider cospec-
trality of generalized line graphs with generalized exceptional graphs.

For regular L-graphs the following theorem (see, for example, [9, Theorem
4.2.9]) is of great importance.

Theorem 5. The spectrum of a graph G determines whether or not it is a
regular connected line graph except for 17 cases. The exceptional cases are those in
which G has the spectrum of L(H) where H is one of the 3-connected regular graphs
on 8 vertices or H is a connected semiregular bipartite graph on 6 + 3 vertices.

It turns out that there are exactly 68 regular exceptional graphs which are
cospectral with the 17 line graphs from Theorem 4. They are easily identified from
the list of all 187 regular exceptional graphs given in Table A3 of [9]. Table A4 of
[9] presents a construction of the these 68 graphs without recourse to a computer.

We shall point out what Theorem 5 says in the case of iterated line graphs.

Proposition 3. Let G = L2(H) where G is regular and H is a connected
graph. If G has an exceptional cospectral mate then H is either K1,8 or K2,4. In
the first case exceptional mates are the three Chang graphs and in the second case
graphs Nos. 43–45 of Table A3 in [9].
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Proof. Let L(H) = H1. Then G = L(H1) and by Theorem 1 the graph H1

should be one of the 17 graphs appearing in that theorem. Only two of them are
line graphs: the complete graph K8 and the complement of the cube. In these
cases we have H = K1,8 or H = K2,4. By consulting a table of regular exceptional
graphs (Table A3 in [9]) we can readily verify the last statement. ¤

For non-regular graphs little is known. We can prove the following generaliza-
tion of Theorem 5.

Theorem 6. A connected generalized line graph G = L(H) has an exceptional
cospectral mate only if its root graph H, assuming it is itself connected and has n
vertices, satisfies one of the following conditions:

a) H is not bipartite and n is at most 8,
b) H is bipartite and n is at most 9.

Proof. By Proposition 4.1.2 of [9] exceptional graphs have p = 6, 7 or 8
principal eigenvalues. In order to have an exceptional cospectral mate, a GLG
should have also p principal eigenvalues. The multiplicity of −2 as an eigenvalue
of G is equal to m− p, where m is the number of edges of H. Then the conclusion
of Theorem 6 follows from Theorem 1. ¤

Corollary. The graph H in Theorem 6 satisfies one of the following condi-
tions:

i) H has at least one petal and the number of vertices after removing petals
is at most 7,

ii) H has no petals: it has an odd cycle and n is at most 8,
iii) H has no petals: it is bipartite and n is at most 9.

Note that a connected proper GLG can have a disconnected generalized ex-
ceptional mate as PING No. 8.10 shows for L+-graphs and SING No. 8.44 for
L0-graphs.

Theorem 6 does not cover such cases. In connected regular (generalized) line
graphs a (generalized) exceptional mate is necessary connected since (contrary to
the non-regular case) the information on connectedness of a regular graph is con-
tained in its spectrum (cf. eg. [3, Theorems 3.22 and 3.23]). This in particular
means that a connected GLG with more than 36 vertices can have a disconnected
generalized exceptional mate.

In Theorems 5 and 6 we have considered the cases when a (generalized) line
graph is cospectral with a (generalized) exceptional graph. It is possible, of course,
for two (generalized) line graphs to be cospectral. For regular line graphs which
arise from nonisomorphic root graphs Theorem 4.3.1 from [9] specifies the possibil-
ities.

In the case of L+-graphs we have a non-existence result.

Theorem 7. Let G ∈ L+ be a connected GLG. Then G does not have an
exceptional cospectral mate.
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Proof. By Theorem 3 the discriminant dG = (−1)nPG(−2) of G is equal
to 1, 2 or 3 for an exceptional L+-graph while in GLGs this quantity has other
values. ¤

However, a connected GLG can have a (disconnected) generalized exceptional
mate as PING No. 8.10 shows. This PING consists of a connected line graph having
the discriminant equal to 4 while the second graph consists of an exceptional graph
on 7 vertices and a trivial component each having the discriminant equal to 2
(cf. Lemma 1).

The argument with graph discriminants can be further exploited.
Within connected L+-graphs the discriminant and the number of vertices are

sufficient to distinguish between line graphs of trees, generalized line graphs repre-
sentable in the root system Dn for some n and exceptional graphs. In some cases
one can include also disconnected graphs as the following proposition shows.

Proposition 4. If n + 1 is a prime then any L+-graph on n vertices having
discriminant n + 1 is the line graph of a tree.

If n + 1 = 4k for some integer k, then we can construct a disconnected L+-
graph having the discriminant equal to n + 1. One of the components can be the
line graph with k − 1 vertices of a tree while the other should be an L+-graph of
discriminant 4 with n− k + 1 vertices. However, if n + 1 is not divisible by 4 such
constructions are very limited.

Although by Theorem 7 the iterated line graphs belonging to L+ cannot have
exceptional cospectral mates, they may be cospectral to some GLGs. Such examples
can be found in our table (cf.,e.g., SING No. 7.12 and SING No. 18.16).

The graphs with largest eigenvalue not exceeding 2 are identified in [16] and
their spectra determined in [4]. These graphs are L-graphs. One should note that
all PINGs consisting of these graphs have been classified in [4].
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[5] V Cvetković, M. Lepović, A table of cospectral graphs with least eigenvalue at least −2,
http://www.mi.sanu.ac.yu/projects/results1389.htm
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[8] D. Cvetković, P. Rowlinson, S.K. Simić, Graphs with least eigenvalue −2: the star comple-
ment technique, J. Algebraic Combinatorics 14 (2001), 5–16.
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