MARKOVIAN BLACK AND SCHOLES

E. Omey and S. Van Gulck

Communicated by Slobodanka Janković

Abstract

We generalize the classical binomial approach of the model of Black and Scholes to a Markov binomial approach. This leads to a new formula for the cost of an option.

1. Introduction

Consider a call option with strike price X and exercise time t. We divide the time t into the time points $t / n, 2 t / n, \ldots, n t / n$. During each time unit the price goes up by a factor u or down by a factor d. The value after n time units is given by

$$
S(t)=S(0) u^{S_{n}} d^{n-S_{n}}
$$

where $S(0)$ is the price at time $t=0$ and where S_{n} denotes the number of ups during n time periods. The cost of the option that does not give rise to an arbitrage is given by

$$
\begin{equation*}
K=r_{0}^{-n} E\left(\max \left(S(0) u^{S_{n}} d^{n-S_{n}}-X, 0\right)\right) \tag{1}
\end{equation*}
$$

where $r_{0}=1+r t / n$ is the nominal interest rate. In the usual Black-Scholes approach, cf. Ross [1999, Chapter 7], Cox et al. [1979], one assumes that S_{n} has a binomial distribution given by $S_{n} \sim B I N(n, p)$ and one takes

$$
\begin{equation*}
u=\exp (a \sqrt{t / n}), \quad d=\exp (-b \sqrt{t / n}) \tag{2}
\end{equation*}
$$

and
or

$$
p=\frac{1+r t / n-d}{u-d}
$$

$$
p=\frac{r^{*}-d}{u-d}
$$

where $r^{*}=\exp (r t / n)$. The basic assumption in this binomial model is that the ups and the downs appear independently from each other, i.e., the sum S_{n} is made up of independent $0-1$ variables. In the present paper we assume that the ups

[^0]and the downs are governed by a Markov Chain and provide a Black and Scholes formule for this case.

2. Markovian approach

We shall consider the case where the ups and downs are governed by a Markov chain as follows. Let $Y_{i}=1$ if the price goes up at the $i-t h$ time unit and let $Y_{i}=0$ otherwise. Assume that $P\left(Y_{1}=1\right)=p$ and that the transition probabilities are given by

$$
P=\left(\begin{array}{ll}
p_{0,0} & p_{0,1} \\
p_{1,0} & p_{1,1}
\end{array}\right)
$$

In the paper we assume that the transition probabilities are strictly between 0 and 1. The number of ups is given by $S_{n}=\sum_{i=1}^{n} Y_{i}$ and formula (1) holds.

It is useful to note that the Markov chain has a unique stationary vector given by (x, y) where

$$
\begin{equation*}
y=\frac{p_{0,1}}{p_{0,1}+p_{1,0}} \quad \text { and } \quad x=1-y \tag{3}
\end{equation*}
$$

The eigenvalues of P are given by 1 and $\lambda=1-p_{0,1}-p_{1,0}=p_{1,1}-p_{0,1}$. Note that $|\lambda|<1$. Properties of S_{n} can be found in e.g. Omey, Santos and Van Gulck [2006]. As a special case we also consider correlated Bernoulli trials studied by Dimitrov and Kolev [1999], see also Edwards [1960] or Wang [1981]. In this case the transition matrix is given by

$$
P(p, \rho)=\left(\begin{array}{cc}
q+\rho p & p(1-\rho) \\
q(1-\rho) & p+\rho q
\end{array}\right)
$$

and now we have $P\left(Y_{i}=1\right)=p=y$, for all i and $\lambda=\rho=\rho\left(Y_{i}, Y_{i+1}\right) \neq 0$. In the Markov chain setting we have the following result concerning moments of S_{n}.

Proposition 1 (Omey et al. [2006]). (i) We have

$$
E\left(S_{n}\right)=n y-(y-p) \frac{1-\lambda^{n}}{1-\lambda}
$$

and

$$
\operatorname{Var}\left(S_{n}\right)=n \frac{1+\lambda}{1-\lambda} x y+\sum_{k=0}^{n-1}\left(C(1) \lambda^{k}+C(2) \lambda^{2 k}+C(3) k \lambda^{k}\right)
$$

where $C(1), C(2), C(3)$ are given in the remark below. As $n \rightarrow \infty$ we have

$$
E\left(S_{n}\right) \sim n y \text { and } \operatorname{Var}\left(S_{n}\right) \sim n x y \frac{1+\lambda}{1-\lambda}
$$

(ii) If $P=P(p, \rho)$ we have $E\left(S_{n}\right)=n p$ and

$$
\operatorname{Var}\left(S_{n}\right)=\frac{p q}{1-\rho}\left(n(1+\rho)-2 \rho \frac{1-\rho^{n}}{1-\rho}\right)
$$

Remark. Using $a(1)=(y-p)(y-x)$ and $a(2)=(y-p)^{2}$ the constants are given by

$$
\begin{aligned}
& C(1)=(a(1)(1-\lambda)-2 x y \lambda-2 a(2)) /(1-\lambda) \\
& C(2)=a(2)(1+\lambda) /(1-\lambda) \\
& C(3)=2 a(1)
\end{aligned}
$$

For large values of n we can approximate the distribution of S_{n} by a normal distribution. We have the following central limit theorem.

Theorem 2 (Omey et al. [2006]). As $n \rightarrow \infty$ we have

$$
\frac{S_{n}-n y}{\sqrt{n \theta}} \stackrel{d}{\Rightarrow} Z \sim N(0,1)
$$

where $\theta=x y(1+\lambda) /(1-\lambda)$

3. Markovian Black and Scholes

In view of (1) we define W by the following relation:

$$
u^{S_{n}} d^{n-S_{n}}=\exp (W)
$$

Assuming that (2) holds, we have

$$
\begin{equation*}
W=(a+b) \sqrt{t / n} S_{n}-b \sqrt{t n} \tag{4}
\end{equation*}
$$

Using (4) and Proposition 1(i) we find that

$$
\begin{equation*}
E(W)=\sqrt{n t}((a+b) y-b)-(a+b)(y-p) \sqrt{\frac{t}{n}} \frac{1-\lambda^{n}}{1-\lambda} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(W) \sim(a+b)^{2} t x y \frac{1+\lambda}{1-\lambda} \tag{6}
\end{equation*}
$$

In order to obtain useful estimates in (5) and (6), we make the following assumptions about the transition probabilities. First we introduce some extra notations. Let α and β denote real parameters and let

$$
\begin{equation*}
r_{u}=\exp (\alpha t / n) \quad \text { and } \quad r_{d}=\exp (\beta t / n) \tag{7}
\end{equation*}
$$

For the transition probabilities we assume that there are constants A, B, C, D such that

$$
\begin{equation*}
p_{0,1}=A+B \frac{r_{u}-d}{u-d} \quad \text { and } \quad p_{1,1}=C+D \frac{r_{d}-d}{u-d} \tag{8}
\end{equation*}
$$

Later we shall reduce the number of parameters in (8). With model (8) we want to take into account the difference between going from a 'down' to an 'up' and from an 'up' to another 'up'.

Proposition 3. We have

$$
\begin{equation*}
p_{0,1}=A+B\left(\frac{b}{a+b}+\sqrt{\frac{t}{n}}\left(\frac{\alpha-a b / 2}{a+b}+o(1)\right)\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1,1}=C+D\left(\frac{b}{a+b}+\sqrt{\frac{t}{n}}\left(\frac{\beta-a b / 2}{a+b}+o(1)\right)\right) \tag{10}
\end{equation*}
$$

Proof. Let us consider $p_{0,1}$. Using (2) and (7), a Taylor expansion shows that

$$
r_{u}-d=\alpha \frac{t}{n}+b \sqrt{\frac{t}{n}}-b^{2} \frac{t}{2 n}+O(1) n^{-3 / 2}
$$

and

$$
u-d=(a+b)\left(\sqrt{\frac{t}{n}}+(a-b) \frac{t}{2 n}\right)+O(1) n^{-3 / 2}
$$

Now observe that

$$
(a+b) \frac{r_{u}-d}{u-d}-b=\frac{(a+b)\left(r_{u}-d\right)-b(u-d)}{u-d}
$$

Using the Taylor expansions, we readily obtain that

$$
(a+b) \frac{r_{u}-d}{u-d}-b \sim\left(\alpha-\frac{a b}{2}\right) \sqrt{\frac{t}{n}}
$$

From this and (8) we obtain (9). In a similar way also (10) follows.
Note that as $n \rightarrow \infty$ we have

$$
\begin{aligned}
& p_{0,1} \rightarrow A+B \frac{b}{a+b} \\
& p_{1,1} \rightarrow C+D \frac{b}{a+b}
\end{aligned}
$$

Since $0<p_{i, j}<1$, these expressions show that the parameters A, B, C, D should satisfy some restrictions. Using (3) we also obtain that $y \rightarrow y^{*}$ and that $\lambda \rightarrow \gamma$ where

$$
y^{*}=\frac{A(a+b)+B b}{(A+1-C)(a+b)+b(B-D)}
$$

and

$$
\gamma=C-A+\frac{b(D-B)}{a+b}
$$

Note that

$$
y^{*}=\frac{A+B \frac{b}{a+b}}{1-\gamma}
$$

In view of (5) we choose A, B, C, D in such a way that

$$
y^{*}=\frac{b}{a+b}
$$

If, for example $A=0$ and $B=D=1-C$, then we obtain that $y^{*}=b /(a+b)$ and in this case we have $\gamma=C$.

Now we can proceed in studying W, cf. (5), (6).
THEOREM 4. (i) As $n \rightarrow \infty$, we have $W \stackrel{d}{\Rightarrow} W^{*}$, where $W^{*}=\mu+\sigma Z$, with $Z \sim N(0,1)$ as in Theorem 2 and with

$$
\mu=t \frac{1}{1-\gamma}\left(B\left(\alpha-\frac{a b}{2}\right)+b D\left(\frac{\beta-a b / 2}{a+b}\right)-b B\left(\frac{\alpha-a b / 2}{a+b}\right)\right)
$$

and

$$
\sigma^{2}=\operatorname{tab} \frac{1+\gamma}{1-\gamma}
$$

(ii) As $n \rightarrow \infty$, we have

$$
P(S(0) \exp (W)>X) \rightarrow P\left(Z>\frac{\log (X / S(0))-\mu}{\sigma}\right)
$$

Proof. (i) Since by Theorem $2, S_{n}$ is asymptotically normal, also W is. We have to determine $E(W)$ and $\operatorname{Var}(W)$ as $n \rightarrow \infty$. First consider $E(W)$ and observe that

$$
(a+b) y-b=\frac{I}{I I}
$$

where $I=(a+b) p_{0,1}-b\left(p_{0,1}+p_{1,0}\right)$ and $I I=p_{1,0}+p_{0,1}$. Using $I I=1-\lambda$ we have

$$
I I \rightarrow 1-\gamma
$$

As to I we have $I=a p_{0,1}-b+b p_{1,1}$. Using (9) and (10) we readily obtain that

$$
I=K(1) \sqrt{\frac{t}{n}}(1+o(1))
$$

where

$$
K(1)=B\left(\alpha-\frac{a b}{2}\right)+b D\left(\frac{\beta-a b / 2}{a+b}\right)-b B\left(\frac{\alpha-a b / 2}{a+b}\right)
$$

We conclude that

$$
(a+b) y-b=\sqrt{\frac{t}{n}}\left(\frac{K(1)}{1-\gamma}+o(1)\right)
$$

Using this result, we find that

$$
E(W) \rightarrow t \frac{K(1)}{1-\gamma}
$$

For the variance we find that $y \rightarrow y^{*}$ and $x \rightarrow 1-y^{*}$. It follows that

$$
\operatorname{Var}(W) \rightarrow \operatorname{tab} \frac{1+\gamma}{1-\gamma}
$$

This proves the result.
(ii) This follows from (i)

Remark. With the choice $A=0$ and $B=D=1-C$, we find the following simpler expressions: we have $\gamma=C$ and

$$
\mu=t\left(\left(\alpha-\frac{a b}{2}\right)+b\left(\frac{\beta-\alpha}{a+b}\right)\right) \quad \text { and } \quad \sigma^{2}=t a b \frac{1+\gamma}{1-\gamma}
$$

Taking also $\alpha=\beta=r$, we can simplify more and find that

$$
\mu=t\left(r-\frac{a b}{2}\right) \quad \text { and } \quad \sigma^{2}=t a b \frac{1+\gamma}{1-\gamma}
$$

If we take $a=b=\sigma_{p}$ where σ_{p} represents the volatility of the underlying security, then we find

$$
\mu=t\left(r-\frac{\sigma_{p}^{2}}{2}\right) \quad \text { and } \quad \sigma^{2}=t \sigma_{p}^{2} \frac{1+\gamma}{1-\gamma}
$$

The case where $\gamma=0$ corresponds to the usual Black and Scholes model. Here we have the extra parameter γ. Using $p_{0,1} \rightarrow(1-\gamma) / 2$ and $p_{1,1} \rightarrow(1+\gamma) / 2$ we see that γ is closely connected with the probability of arriving at an 'up' starting from a 'down' or an 'up'. The parameter γ heavily influences σ^{2} (and hence also K, see below). Taking $\gamma=-0.5, \gamma=0$ and $\gamma=0.5$ we see that σ^{2} varies from $\sigma^{2}=\frac{1}{3} t \sigma_{p}^{2}$ to $\sigma^{2}=t \sigma_{p}^{2}$ and $\sigma^{2}=3 t \sigma_{p}^{2}$ respectively.

Returning to the option cost the following result follows from (1) and Theorem 4.

Theorem 5. As $n \rightarrow \infty$, we have

$$
K=\exp (-r t) E\left(\max \left(S(0) \exp W^{*}-X, 0\right)\right)
$$

where $W^{*} \sim N\left(\mu, \sigma^{2}\right)$
Using standard formulas for the normal distribution, we find that

$$
K=S(0) \exp \left(-r t+\mu+\sigma^{2} / 2\right) \Phi(w)-\exp (-r t) X \Phi(w-\sigma)
$$

where

$$
w=\frac{\sigma^{2}+\mu-\log (X / S(0))}{\sigma}
$$

and where $\Phi(w)$ is the standard normal distribution function.
Remarks. 1) If the parameters are chosen in such a way that $r t=\mu+\sigma^{2} / 2$, we find that

$$
K=S(0) \Phi(w)-\exp (-r t) X \Phi(w-\sigma)
$$

which is similar to the classical Black and Scholes formula.
2) As a special case we consider the case where $P=P(p, \rho)$. Now we assume that

$$
p=A+B \frac{r_{*}-d}{u-d}
$$

where $r_{*}=\exp (\alpha t / n)$. Using $p_{0,1}=p(1-\rho)$ and $p_{1,1}=\rho+(1-\rho) p$ and the previous analysis can be used. In this case we have $\alpha=\beta$ and

$$
y^{*}=A+B \frac{b}{a+b}
$$

We have to assume that $y^{*}=b /(a+b)$. Using the notations as in the proof of Theorem 4, we find that $K(1)=B(1-\rho)(\alpha-a b / 2)$. Now we find that $\mu=$ $t B(\alpha-a b / 2)$ and that $\sigma^{2}=\operatorname{tab}(1+\rho) /(1-\rho)$. A convenient choice seems to be $A=0$ and $B=1$.

Corollary 6. If $P=P(p, \rho)$ and $p=\left(r_{*}-u\right) /(u-d)$, then Theorem 4 holds with $\mu=t(\alpha-a b / 2)$ and σ^{2} as before.

4. Final remarks

1) A correlated binomial distribution has been introduced and studied by Madsen [1993], Altham [1978], Kupper and Haseman [1978], Mingoti [2003]. Examples and applications can be found e.g., in quality control, Lai et al. [1998]. See also Edwards [1960], Wang [1981].
2) Many stochastic processes are based on a counting process $\{N(t), t \geqslant 0\}$, where $N(t)$ denotes the number of times a certain event occurs in the time interval $(0, t]$. In many processes one models $N(t)$ with a Poisson, binomial or negative binomial distributions. In Minkova [1999, 2001], Dimitrov and Kolev [1999], the authors study inflated processes by introducing an additional parameter ρ. We introduce this process by using another approach as follows. For fixed n let $S_{n} \sim$ $B I N(n, p)$ and for fixed ρ let $W(\rho)$ denote a geometric distribution. The generating function of S_{n} is given by $(1-p+p z)^{n}$ and the generating function of $W(\rho)$ is given by $K(z)=(1-\rho) z /(1-\rho z)$. We define a new random variable N by defining its generating functions: $E\left(z^{N}\right)=(1-p+p K(z))^{n}$. The r.v. N is said to have an inflated-binomial distribution with parameters p, n and ρ; notation $N \sim$ $\operatorname{IBIN}(n, p, \rho)$. In the context of stochastic processes, Minkova [2001] studied $N(t)$ where $N(t) \sim I B I N(n, t / \alpha, \rho)$. It could be of interest to use this type of inflatedbinomial in the context of the formula of Black and Scholes.

Acknowledgement

The authors take pleasure in thanking an anonymous referee whose comments made it possible to simplify the proofs of our results.

References

[1] P. Altham (1978), Two generalizations of the binomial distribution, Applied Statistics 27, 162-167.
[2] J. Cox, S. A. Ross and M. Rubinstein (1979), Option Pricing: a simplified approach, J. Financial Economics 7, 229-264.
[3] B. Dimitrov and N. Kolev (1999), Extended in time correlated Bernoulli trials in modeling waiting times under periodic environmental conditions, Technical paper, Universidade de Sao Paulo, Brasil.
[4] A. W.F. Edwards (1960), The meaning of binomial distribution, Nature, London 186, 1074.
[5] L. L. Kupper and J. K. Haseman (1978), The use of the correlated binomial model for the analysis of certain toxicological experiments, Biometrics 34, 69-76.
[6] C.D. Lai, K. Govindaraju and M. Xie (1998), Effects of correlation on fraction nonconforming statistical process control procedures, J. Appl. Statistics 25(4), 535-543.
[7] R. W. Madsen (1993), Generalized binomial distributions, Comm. Statistics: Theory and Methods, 22(11), 3065-3086.
[8] S. A. Mingoti (2003), A note on sample size required in sequential tests for the generalized binomial distribution, J. Appl. Statistics 30(8), 873-879.
[9] L. D. Minkova (1999), The Polya-Aeppli process and ruin problems, Technical paper 9926, Universidade de Sao Paulo, Brasil.
[10] L. D. Minkova (2001), Inflated-parameter modifications of the pure birth process, C. R. Acad. Bulgare Sci. 54 (11), 17-22.
[11] E. Omey, J. Santos, and S. Van Gulck (2006), A Markov Binomial Distribution, J. Math. Sci., to appear
[12] S. M. Ross (1999), An Introduction to Mathematical Finance, Options and Other Topics, Cambridge University Press, Cambridge.
[13] Y.H. Wang (1981), On the limit of the Markov binomial distribution, J. Appl. Prob. 18, 937-942.

EHSAL, Stormstraat 2
(Received 2312 2005)
1000 Brussels

Belgium

edward.omey@ehsal.be
stefan.vangulck@ehsal.be

[^0]: 2000 Mathematics Subject Classification: Primary 60J20; Secondary 62P05, 91B28.

