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Nouvelle série, tome 79(93) (2006), 65–72 DOI: 10.2298/PIM0693065O

MARKOVIAN BLACK AND SCHOLES
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Abstract. We generalize the classical binomial approach of the model of
Black and Scholes to a Markov binomial approach. This leads to a new formula
for the cost of an option.

1. Introduction

Consider a call option with strike price X and exercise time t. We divide the
time t into the time points t/n, 2t/n, . . . , nt/n. During each time unit the price
goes up by a factor u or down by a factor d. The value after n time units is given
by

S(t) = S(0)uSndn−Sn

where S(0) is the price at time t = 0 and where Sn denotes the number of ups during
n time periods. The cost of the option that does not give rise to an arbitrage is
given by

(1) K = r−n
0 E

(
max(S(0)uSndn−Sn − X, 0)

)
where r0 = 1 + rt/n is the nominal interest rate. In the usual Black–Scholes
approach, cf. Ross [1999, Chapter 7], Cox et al. [1979], one assumes that Sn has a
binomial distribution given by Sn ∼ BIN(n, p) and one takes

(2) u = exp
(
a
√

t/n
)
, d = exp

( − b
√

t/n
)

and

p =
1 + rt/n − d

u − d
or

p =
r∗ − d

u − d
where r∗ = exp(rt/n). The basic assumption in this binomial model is that the
ups and the downs appear independently from each other, i.e., the sum Sn is made
up of independent 0 − 1 variables. In the present paper we assume that the ups
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and the downs are governed by a Markov Chain and provide a Black and Scholes
formule for this case.

2. Markovian approach

We shall consider the case where the ups and downs are governed by a Markov
chain as follows. Let Yi = 1 if the price goes up at the i − th time unit and let
Yi = 0 otherwise. Assume that P (Y1 = 1) = p and that the transition probabilities
are given by

P =
(

p0,0 p0,1

p1,0 p1,1

)

In the paper we assume that the transition probabilities are strictly between 0 and
1. The number of ups is given by Sn =

∑n
i=1 Yi and formula (1) holds.

It is useful to note that the Markov chain has a unique stationary vector given
by (x, y) where

(3) y =
p0,1

p0,1 + p1,0
and x = 1 − y

The eigenvalues of P are given by 1 and λ = 1 − p0,1 − p1,0 = p1,1 − p0,1. Note
that |λ| < 1. Properties of Sn can be found in e.g. Omey, Santos and Van Gulck
[2006]. As a special case we also consider correlated Bernoulli trials studied by
Dimitrov and Kolev [1999], see also Edwards [1960] or Wang [1981]. In this case
the transition matrix is given by

P (p, ρ) =
(

q + ρp p(1 − ρ)
q(1 − ρ) p + ρq

)

and now we have P (Yi = 1) = p = y, for all i and λ = ρ = ρ(Yi, Yi+1) �= 0. In the
Markov chain setting we have the following result concerning moments of Sn.

Proposition 1 (Omey et al. [2006]). (i) We have

E(Sn) = ny − (y − p)
1 − λn

1 − λ

and

Var(Sn) = n
1 + λ

1 − λ
xy +

n−1∑
k=0

(
C(1)λk + C(2)λ2k + C(3)kλk

)

where C(1), C(2), C(3) are given in the remark below. As n → ∞ we have

E(Sn) ∼ ny and Var(Sn) ∼ nxy
1 + λ

1 − λ

(ii) If P = P (p, ρ) we have E(Sn) = np and

Var(Sn) =
pq

1 − ρ

(
n(1 + ρ) − 2ρ

1 − ρn

1 − ρ

)
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Remark. Using a(1) = (y − p)(y − x) and a(2) = (y − p)2 the constants are
given by

C(1) =
(
a(1)(1 − λ) − 2xyλ − 2a(2)

)
/(1 − λ)

C(2) = a(2)(1 + λ)/(1 − λ)

C(3) = 2a(1)

For large values of n we can approximate the distribution of Sn by a normal
distribution. We have the following central limit theorem.

Theorem 2 (Omey et al. [2006]). As n → ∞ we have

Sn − ny√
nθ

d⇒ Z ∼ N(0, 1),

where θ = xy(1 + λ)/(1 − λ)

3. Markovian Black and Scholes

In view of (1) we define W by the following relation:

uSndn−Sn = exp(W )

Assuming that (2) holds, we have

(4) W = (a + b)
√

t/nSn − b
√

tn

Using (4) and Proposition 1(i) we find that

(5) E(W ) =
√

nt
(
(a + b)y − b

) − (a + b)(y − p)

√
t

n

1 − λn

1 − λ

and

(6) Var(W ) ∼ (a + b)2txy
1 + λ

1 − λ

In order to obtain useful estimates in (5) and (6), we make the following assumptions
about the transition probabilities. First we introduce some extra notations. Let α
and β denote real parameters and let

(7) ru = exp(αt/n) and rd = exp(βt/n)

For the transition probabilities we assume that there are constants A,B,C,D such
that

(8) p0,1 = A + B
ru − d

u − d
and p1,1 = C + D

rd − d

u − d

Later we shall reduce the number of parameters in (8). With model (8) we want to
take into account the difference between going from a ‘down’ to an ‘up’ and from
an ‘up’ to another ‘up’.
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Proposition 3. We have

(9) p0,1 = A + B

(
b

a + b
+

√
t

n

(α − ab/2
a + b

+ o(1)
))

and

(10) p1,1 = C + D

(
b

a + b
+

√
t

n

(β − ab/2
a + b

+ o(1)
))

Proof. Let us consider p0,1. Using (2) and (7), a Taylor expansion shows that

ru − d = α
t

n
+ b

√
t

n
− b2 t

2n
+ O(1)n−3/2

and

u − d = (a + b)
(√

t

n
+ (a − b)

t

2n

)
+ O(1)n−3/2

Now observe that

(a + b)
ru − d

u − d
− b =

(a + b)(ru − d) − b(u − d)
u − d

Using the Taylor expansions, we readily obtain that

(a + b)
ru − d

u − d
− b ∼

(
α − ab

2

)√
t

n

From this and (8) we obtain (9). In a similar way also (10) follows. �

Note that as n → ∞ we have

p0,1 → A + B
b

a + b

p1,1 → C + D
b

a + b
Since 0 < pi,j < 1, these expressions show that the parameters A,B,C,D

should satisfy some restrictions. Using (3) we also obtain that y → y∗ and that
λ → γ where

y∗ =
A(a + b) + Bb

(A + 1 − C)(a + b) + b(B − D)
and

γ = C − A +
b(D − B)

a + b
Note that

y∗ =
A + B b

a+b

1 − γ

In view of (5) we choose A,B,C,D in such a way that

y∗ =
b

a + b

If, for example A = 0 and B = D = 1−C, then we obtain that y∗ = b/(a+ b) and
in this case we have γ = C.
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Now we can proceed in studying W , cf. (5), (6).

Theorem 4. (i) As n → ∞, we have W
d⇒ W ∗, where W ∗ = µ + σZ, with

Z ∼ N(0, 1) as in Theorem 2 and with

µ = t
1

1 − γ

(
B

(
α − ab

2

)
+ bD

(β − ab/2
a + b

)
− bB

(α − ab/2
a + b

))

and
σ2 = tab

1 + γ

1 − γ

(ii) As n → ∞, we have

P
(
S(0) exp(W ) > X

) → P
(
Z >

log(X/S(0)) − µ

σ

)

Proof. (i) Since by Theorem 2, Sn is asymptotically normal, also W is. We
have to determine E(W ) and Var(W ) as n → ∞. First consider E(W ) and observe
that

(a + b)y − b =
I

II
where I = (a + b)p0,1 − b(p0,1 + p1,0) and II = p1,0 + p0,1. Using II = 1 − λ we
have

II → 1 − γ

As to I we have I = ap0,1 − b + bp1,1. Using (9) and (10) we readily obtain that

I = K(1)

√
t

n

(
1 + o(1)

)
where

K(1) = B
(
α − ab

2

)
+ bD

(β − ab/2
a + b

)
− bB

(α − ab/2
a + b

)
We conclude that

(a + b)y − b =

√
t

n

( K(1)
1 − γ

+ o(1)
)

Using this result, we find that

E(W ) → t
K(1)
1 − γ

For the variance we find that y → y∗ and x → 1 − y∗. It follows that

Var(W ) → tab
1 + γ

1 − γ

This proves the result.
(ii) This follows from (i) �

Remark. With the choice A = 0 and B = D = 1 − C, we find the following
simpler expressions: we have γ = C and

µ = t

((
α − ab

2

)
+ b

(β − α

a + b

))
and σ2 = tab

1 + γ

1 − γ
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Taking also α = β = r, we can simplify more and find that

µ = t
(
r − ab

2

)
and σ2 = tab

1 + γ

1 − γ

If we take a = b = σp where σp represents the volatility of the underlying
security, then we find

µ = t
(
r − σ2

p

2

)
and σ2 = tσ2

p

1 + γ

1 − γ

The case where γ = 0 corresponds to the usual Black and Scholes model. Here
we have the extra parameter γ. Using p0,1 → (1 − γ)/2 and p1,1 → (1 + γ)/2 we
see that γ is closely connected with the probability of arriving at an ‘up’ starting
from a ‘down’ or an ‘up’. The parameter γ heavily influences σ2 (and hence also
K, see below). Taking γ = −0.5, γ = 0 and γ = 0.5 we see that σ2 varies from
σ2 = 1

3 tσ2
p to σ2 = tσ2

p and σ2 = 3tσ2
p respectively.

Returning to the option cost the following result follows from (1) and Theo-
rem 4.

Theorem 5. As n → ∞, we have

K = exp(−rt)E
(
max(S(0) exp W ∗ − X, 0)

)
where W ∗

∼ N(µ, σ2)

Using standard formulas for the normal distribution, we find that

K = S(0) exp(−rt + µ + σ2/2)Φ(w) − exp(−rt)XΦ(w − σ)
where

w =
σ2 + µ − log(X/S(0))

σ
and where Φ(w) is the standard normal distribution function.

Remarks. 1) If the parameters are chosen in such a way that rt = µ + σ2/2,
we find that

K = S(0)Φ(w) − exp(−rt)XΦ(w − σ)
which is similar to the classical Black and Scholes formula.

2) As a special case we consider the case where P = P (p, ρ). Now we assume
that

p = A + B
r∗ − d

u − d
where r∗ = exp(αt/n). Using p0,1 = p(1 − ρ) and p1,1 = ρ + (1 − ρ)p and the
previous analysis can be used. In this case we have α = β and

y∗ = A + B
b

a + b

We have to assume that y∗ = b/(a + b). Using the notations as in the proof of
Theorem 4, we find that K(1) = B(1 − ρ)(α − ab/2). Now we find that µ =
tB(α − ab/2) and that σ2 = tab(1 + ρ)/(1 − ρ). A convenient choice seems to be
A = 0 and B = 1.
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Corollary 6. If P = P (p, ρ) and p = (r∗ −u)/(u− d), then Theorem 4 holds
with µ = t(α − ab/2) and σ2 as before.

4. Final remarks

1) A correlated binomial distribution has been introduced and studied by Mad-
sen [1993], Altham [1978], Kupper and Haseman [1978], Mingoti [2003]. Examples
and applications can be found e.g., in quality control, Lai et al. [1998]. See also
Edwards [1960], Wang [1981].

2) Many stochastic processes are based on a counting process {N(t), t � 0},
where N(t) denotes the number of times a certain event occurs in the time interval
(0, t]. In many processes one models N(t) with a Poisson, binomial or negative
binomial distributions. In Minkova [1999, 2001], Dimitrov and Kolev [1999], the
authors study inflated processes by introducing an additional parameter ρ. We
introduce this process by using another approach as follows. For fixed n let Sn ∼
BIN(n, p) and for fixed ρ let W (ρ) denote a geometric distribution. The generating
function of Sn is given by (1 − p + pz)n and the generating function of W (ρ) is
given by K(z) = (1 − ρ)z/(1 − ρz). We define a new random variable N by
defining its generating functions: E(zN ) = (1− p + pK(z))n. The r.v. N is said to
have an inflated-binomial distribution with parameters p, n and ρ; notation N ∼
IBIN(n, p, ρ). In the context of stochastic processes, Minkova [2001] studied N(t)
where N(t) ∼ IBIN(n, t/α, ρ). It could be of interest to use this type of inflated-
binomial in the context of the formula of Black and Scholes.
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