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Abstract. We obtain a formula of decomposition for

Φ(A) = A

∫
Rn

S(f(x))ϕ(x) dx +

∫
Rn

ϕ(x) dx

using the method of stationary phase. Here (S(t))t∈R is once integrated,
exponentially bounded group of operators in a Banach space X, with generator
A, which satisfies the condition:

For every x ∈ X there exists δ = δ(x) > 0 such that
S(t)x

t1/2+δ → 0 as t → 0.

The function ϕ(x) is infinitely differentiable, defined on Rn, with values
in X, with a compact support supp ϕ, the function f(x) is infinitely differen-
tiable, defined on Rn, with values in R, and f(x) on supp ϕ has exactly one
nondegenerate stationary point x0.

1. Introduction

In [8] Fedoryuk gives a formula for calculation of the integral
∫

Rnϕ(x)e[iλS(x)]dx.
Here λ is a sufficient large real parameter, ϕ(x) and S(x) are infinitely differentiable
functions defined on Rn, with values in R. The function ϕ(x) has a compact support
supp ϕ, x0 is a critical (stationary) nondegenerate point of the function S(x). By
definition, x0 is a critical (stationary) point of the function S(x) if ∂S(x0)/∂x = 0;
a critical point x0 is nondegenerate if det(∂2S(x0)/∂x2) �= 0.

Let C∞(Rn) and C∞
0 (Rn) denote, successively, a space of infinitely differen-

tiable functions defined on Rn with values in R, and a space of infinitely differen-
tiable functions with compact support, defined on Rn with values in R.

Theorem 1.1. (see [8] or [16]) Let ϕ(x) ∈ C∞
0 (Rn) and S(x) ∈ C∞(Rn), and

let S on suppϕ has exactly one nondegenerate critical point x0. Then, for every
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real number λ such that |λ| � 1, and for every integer N � 1, it holds

(1) I(λ) =
∫

Rn

ϕ(x)e[iλS(x)]dx = λ−n/2e[iλS(x0)]
N−1∑
j=0

aj (ϕ, S)λ−j +RN (λ).

Here aj(ϕ, S) = (Pjϕ)(x0), where Pj is a linear differential operator of order
2j, with coefficients in C∞. For residue RN (λ) it holds

(2) |RN (λ)| � CNλ
−n

2 −N ‖ϕ‖Cβ(Rn) , where β = β(N) <∞.

The formula (1) gives an asymptotic decomposition of the integral I(λ) as
λ→ ±∞. The method giving decomposition (1) is called the method of stationary
phase. Maslov and Fedoryuk in [16] extend this method for calculation of the
integral Φ(A) =

∫
Rn

e[iAS(x)]ϕ(x)dx.

Here ϕ(x) ∈ C∞
0 (X) (a space of infinitely differentiable functions defined on

Rn, with values in a Banach space X, with compact support), S(x) ∈ C∞(Rn)
on suppϕ has exactly one nondegenerate critical point x0, a linear and closed
operator A in a Banach space X is infinitesimal generator of strongly continuous
group

(
e(itA)

)
t∈R

, of bounded operators in X. It is known that there exist positive
real constants M and ω such that

∥∥e(itA)
∥∥ � Meω|t|, t ∈ R.

By the conditions given above Maslov and Fedoryuk prove:

Theorem 1.2. [16] For every complex number λ with Reλ > ω, and every
integer N � 1, it holds

(3) Φ(A) = e[iAS(x0)](A+iλI)−p/2(A−iλI)−n/2
∑

0�k+l�N

(A+iλI)−k(A−iλI)−lakl +gN .

Here, coefficients akl ∈ X, residue gN ∈ D(AN+[n
2 ]+1), p is number of positive,

n is number of negative eigenvalues of matrix S′′
xx(x0).

In this paper we extend the method of stationary phase to once integrated
group of operators in a Banach space.

2. Preliminaries from the Theory of
Integrated Semigroups and Groups

Integrated groups in Banach spaces have been introduced to study abstract
Cauchy problems, for example the Schrödinger problem in Lp(Rn) with p � 1,
see [12]. n times integrated semigroups were introduced by Arendt [1] and Hieber
and Kellermann [13] with n ∈ N , and later Hieber defined α times integrated
semigroups with α � 0 [11]. Differential operators in Euclidean operators are
examples of integrated groups, see for example [12].

In [20] it is proved that α times integrated groups define algebra homomor-
phism and smooth distribution groups of fractional order are equivalent to α times
integrated groups.
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Definition 2.1. [11] Given α � 0, a family of strongly continuous linear
and bounded operators (S(t))t�0 on a Banach space X is said to be an α times
integrated semigroup if it satisfies S(0) = 0 and for all x ∈ X and t, s � 0 the
following equality holds:

(4) S(t)S(s)x =
1

Γ(α)

[ t+s∫
s

(t+ s− r)α−1S(r)x dr −
t∫

0

(t+ s− r)α−1S(r)x dr

]
.

An α times integrated semigroup (S(t))t�0 is called nondegenerate if S(t)x = 0
for all t � 0 implies that x = 0. We consider only nondegenerate semigroup.

The generator (A,D(A)) of (S(t))t�0 is defined as follows: D(A) is the set of
all x ∈ X such that there exists y ∈ X satisfying

(5) S(t)x− tα

Γ(α+ 1)
x =

t∫
0

S(s)y ds, t � 0

and Ax := y. It is straightforward to check that (A,D(A)) is a closed operator.
The function t �→ S(t)x, [0,∞) → X is differentiable for t � 0 if and only if
S(t)x ∈ D(A) and in this case

(6)
d

dt
S(t)x = AS(t)x+

tα−1

Γ(α)
x.

In general, the growth of ‖S(t)‖, if t → ∞, is bigger than exponential, see
for example [13, Example 1.2]. If ‖S(t)‖ � Meωt with M,ω � 0, the condition

(4) is equivalent (by Laplace transform) to R(λ) := λα
∞∫
0

e−λtS(t) dt; Reλ > ω is a

pseudoresolvent operator, i.e., R(λ)−R(µ) = (µ−λ)R(λ)R(µ) for any Reλ,Reµ >
ω, see [11]. In this case λ belongs to the resolvent set ρ(A) and R(λ) = R(λ,A) :=
(λ−A)−1 with Reλ > ω.

Definition 2.2. [20] An α times integrated group (S(t))t∈R is a strongly con-
tinuous family of linear and bounded operators on a Banach space X such that
(S+(t) := S(t))t�0 and (S−(t) := −S(−t))t�0 are α times integrated semigroups,
and if t < 0 < r, then

(7) S(t)S(r) =
1

Γ(α)

[ r∫
t+r

(s− t− r)α−1S(s) ds+

0∫
t

(t+ r − s)α−1S(s) ds

]

holds when t+ r � 0, and

(8) S(t)S(r) =
1

Γ(α)

[ t+r∫
t

(t+ r − s)α−1S(s) ds+

r∫
0

(s− t− r)α−1S(s) ds

]

holds when t+ r � 0. The generator of (S(t))t∈R is the generator of (S+(t))t�0.
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In the case of (S(t))t∈R is exponentially bounded, this definition is equivalent
to saying that (A,D(A)) and (−A,D(A)) are generators of α times integrated
semigroups (see [18]).

3. The Method of Stationary Phase for Once Integrated Group

Let X is a Banach space. If (S(t))t∈R is α times integrated group on X for
α = 1, with generator (A,D(A)), we will say that (S(t))t∈R is once integrated
group on X, with generator A.

In this section we will obtain a result for once integrated, exponentially bounded
group of operators (S(t))t∈R in a Banach space X that satisfies the condition:

(*) For every x ∈ X there exists δ = δ(x) > 0 such that
S(t)x
t1/2+δ

→ 0 as t→ 0.

Such a family of operators (S(t))t∈R exists. For example, if operators A and (−A)
are generators of once integrated local Lipschitz continuously semigroups S1 and S2,
then (S(t))t∈R, defined by: S(t) = S1(t) for t � 0, and S(t) = −S2(−t) for t � 0,
is once integrated exponentially bounded group with generator A, which satisfies
the condition (*). Also, many other integrated groups satisfy that condition.

For the proof of main result in this section we need and give, without proof,
the known Morse’s lemma. Also, we prove several new lemmas, that we will use.

Lemma 3.1. (Morse [16]) Let the function f(x) be defined on Rn, with real
values, and infinitely differentiable in a neighborhood of the point x0, where x0 is
nondegenerate critical point of the function f(x). Then, there exist neighborhoods
U and V of the points x = x0 and y = 0, and a diffeomorphism g : V → U in the
class C∞, such that

(9) (f ◦ g)(y) = f(x0) +
1
2

n∑
j=1

µjy
2
j

Here, µj are eigenvalues of the matrix f ′′xx(x0), and det g′(0) = 1.

Lemma 3.2. Let (S(t))t�0 be once integrated, exponentially bounded semigroup
on a Banach space X, with generator A, which satisfies the condition (*). Let M
and ω are positive real constants for which ‖S(t)‖ � Meωt for every t � 0. Then,
for every complex number ε, such that Re ε > ω, the operator

[R(ε,A)]1/2 :=
2√
π

∞∫
0

(
e−εt

2
√
t

)′
S(t) dt

is a bounded operator from X into X, and, for every x ∈ X it holds

(10)
[
R(ε,A)1/2

]2
x = R(ε,A)x.
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Proof. Using the condition (*) it is easily to see that the operator [R(ε,A)]1/2

is bounded. Let ε > ω is an arbitrary number, and x ∈ X. Then,

[
R(ε,A)1/2

]2
x =

[
2√
π

∞∫
0

(
e−εt

2
√
t

)′
S(t) dt

]2

x

=
4√
π

∞∫
0

(
e−εt

2
√
t

)′
S(t) dt

∞∫
0

(
e−εs

2
√
s

)′
S(s)x ds

=
4
π

∞∫
0

(
e−εt

2
√
t

)′
dt

∞∫
0

(
e−εs

2
√
s

)′
S(s)S(t)x ds.

Since S(t)S(s)x =
s∫
0

[S(t + u) − S(u)]x du, the integration by parts in interior
integral gives

[
R(ε,A)1/2

]2
x =

4
π

e−εs

2
√
s
S(s)

∣∣∣∞
s=0

∞∫
0

(
e−εt

2
√
t

)′
S(t)x dt

− 4
π

∞∫
0

(
e−εt

2
√
t

)′
dt

∞∫
0

e−εs

2
√
s
[S(t+ s) − S(s)]x ds.

Because of the condition (*), the first expression equals zero.

Since A is a closed operator, and S(t+s)−S(s) = A
t+s∫
s

S(u) du+ tI, we obtain

[
R(ε,A)1/2

]2
x =

−4
π

∞∫
0

(
e−εt

2
√
t

)′
dt

∞∫
0

e−εs

2
√
s

[
A

t+s∫
s

S(u)x du+ tx

]
ds = I1 + I2,

where

I1 =
−4
π

∞∫
0

t

(
e−εt

2
√
t

)′
dt

∞∫
0

e−εs

2
√
s
x ds,

I2 =
−4
π
A

∞∫
0

(
e−εt

2
√
t

)′
dt

∞∫
0

e−εs

2
√
s
ds

t+s∫
s

S(u)x du.

Further,

I1 =
−4
π

(
t
e−εt

2
√
t

) ∣∣∣∣
∞

t=0

∞∫
0

e−εs

2
√
s
x ds+

4
π

∞∫
0

e−εt

2
√
t
dt

∞∫
0

e−εs

2
√
s
x ds.
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Since the first expression equals zero, we have

I1 =
4
π

( ∞∫
0

e−εu2
du

)2

x
u
√

ε=l
=

4
π

( ∞∫
0

e−l2 dl√
ε

)2

x(11)

=
4
πε

(√
π

2

)2

x =
1
ε
x.

Consider now the integral I2. We interchange the order of integration and
obtain

I2 =
−4
π
A

∞∫
0

e−εs

2
√
s
ds

∞∫
0

(
e−εt

2
√
t

)′
dt

t+s∫
s

S(u)x du.

Put v =
e−εt

2
√
t
, u =

t+s∫
s

S(u)x du. The integration by parts implies

∞∫
0

(
e−εt

2
√
t

)′
dt

t+s∫
s

S(u)x du =

[
e−εt

2
√
t

t+s∫
s

S(u)x du

]∞
t=0

−
∞∫
0

e−εt

2
√
t
S(t+ s)x dt.

The first summand at the right-hand side is equal to 0,∥∥∥∥∥e
−εt

2
√
t

t+s∫
s

S(u) du

∥∥∥∥∥ � M
e−εt

2
√
t
(t+ s− s)eω(t+s) =

M

2
eωs

√
te(ω−ε)t,

and
√
t e(ω−ε)t|∞t=0 = 0. Hence,

∞∫
0

(
e−εt

2
√
t

)′
dt

t+s∫
s

S(u)x du = −
∞∫
0

e−εt

2
√
t
S(t+ s)x dt,

so that

I2 =
4
π
A

∞∫
0

e−εs

2
√
s
ds

∞∫
0

e−εt

2
√
t
S(t+ s)x dt.

The substitution t+ s = u gives

I2 =
4
π
A

∞∫
0

e−εs

2
√
s
ds

∞∫
s

e−ε(u−s)

2
√
u− s

S(u)x du.

We interchange the order of integration and obtain

I2 =
1
π
A

∞∫
0

e−εuS(u)x du

u∫
0

ds√
s
√
u− s

.

The substitution s = uv shows that
u∫

0

ds√
s
√
u− s

=

1∫
0

u dv√
uv

√
u− uv

=

1∫
0

v−1/2(1 − v)−1/2dv = B
(1

2
,
1
2

)
= π,
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where B(α, β) denotes beta-function. Therefore,

(12) I2 = A

∞∫
0

e−εuS(u)x du = A
R(ε,A)

ε
x = R(ε,A)x− 1

ε
x

Finally, (11) and (12) imply

[
R(ε,A)1/2

]2
x =

[
2√
π

∞∫
0

(
e−εt

2
√
t

)′
S(t) dt

]2

x = I1 + I2 = R(ε,A)x. �

Lemma 3.3. Let the family of operators (S(t))t�0 satisfy the conditions of the
previous lemma and let j � 0 be any integer. Then, for every complex number ε
such that Re ε > ω, we have

(13)

∞∫
0

[
e−εt

(√
t
)j−1

]′
S(t) dt = Γ

(j + 1
2

)
[R(ε,A)](j+1)/2

.

Remark 3.1. The condition (*) is necessary only for j = 0. Then we obtain
the assertion of Lemma 3.2.

Proof. Let us take any x ∈ X and put

I =

∞∫
0

[
e−εt

(√
t
)j−1

]′
S(t)x dt.

By analogy with the proof of the previous lemma we obtain

I2 = −
∞∫
0

[
e−εt

(√
t
)j−1

]′
dt

∞∫
0

e−εs
(√
s
)j−1[S(t+ s) − S(s)]x ds

= −
∞∫
0

[
e−εt

(√
t
)j−1

]′
dt

∞∫
0

e−εs
(√
s
)j−1

[
A

t+s∫
s

S(u)x du+ tx

]
ds = I1 + I2,

where

I1 = −
∞∫
0

t
[
e−εt

(√
t
)j−1

]′
dt

∞∫
0

e−εs
(√
s
)j−1

x ds,

I2 = −A
∞∫
0

[
e−εt

(√
t
)j−1

]′
dt

∞∫
0

e−εs
(√
s
)j−1

ds

t+s∫
s

S(u)x du.
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Further,

I1 = (−t)e−εt
(√
t
)j−1

∣∣∣∞
t=0

∞∫
0

e−εs
(√
s
)j−1

x ds

+

∞∫
0

e−εt
(√
t
)j−1

dt

∞∫
0

e−εs
(√
s
)j−1

x ds.

The first expression equals zero, so that we obtain

I1 =

[ ∞∫
0

e−εt
(√
t
)j−1

dt

]2

x
εt=u=

[ ∞∫
0

e−u
(u
ε

)(j−1)/2 du

ε

]2

x(14)

=
[

1
ε(j+1)/2

Γ
(
j + 1

2

)]2
x = Γ2

(
j + 1

2

)
1

εj+1
x.

Consider now I2. We interchange the order of integration and obtain

I2 = −A
∞∫
0

e−εs
(√
s
)j−1

ds

∞∫
0

[
e−εt

(√
t
)j−1

]′ t+s∫
s

S(u)x du dt.

The integration by parts implies that the interior integral equals

−
∞∫
0

e−εt
(√
t
)j−1

S(t+ s)x dt,

so that

I2 = A

∞∫
0

e−εs
(√
s
)j−1

ds

∞∫
0

e−εt
(√
t
)j−1

S(t+ s)x dt.

The substitution t+ s = u gives

I2 = A

∞∫
0

e−εs
(√
s
)j−1

ds

∞∫
s

e−ε(u−s)
(√
u− s

)j−1
S(u)x du.

We interchange the order of integration and obtain

I2 = A

∞∫
0

e−εuS(u)x du

u∫
0

(√
s
√
u− s

)j−1
ds.

The substitution s = uv gives
u∫

0

(√
s(u− s)

)j−1

ds =

1∫
0

(√
uv(u− uv)

)j−1

u dv = uj

1∫
0

v(j−1)/2(1 − v)(j−1)/2dv

= ujB
(j + 1

2
,
j + 1

2

)
= ujΓ2

(j + 1
2

) 1
j!
.
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Here B and Γ denote beta and gamma function. Therefore,

I2 =
1
j!

Γ2
(j + 1

2

)
A

∞∫
0

uje−εuS(u)x du.

Since ∞∫
0

(−u)je−εuS(u)x du =
(
R(ε,A)

ε

)(j)

x,

we have

(15) I2 =
(−1)j

j!
Γ2

(
j + 1

2

)
A

(
R(ε,A)

ε

)(j)

x

By induction one can easily prove that for every integer j ∈ N0,

(16) A

(
R(ε,A)

ε

)(j)

x = (−1)jj!
(
R(ε,A)j+1 − I

εj+1

)
x

The relations (15) and (16) imply

(17) I2 = Γ2

(
j + 1

2

)(
R(ε,A)j+1 − I

εj+1

)
x

Finally, using (14) and (17) we obtain

I2 = I1 + I2 = Γ2

(
j + 1

2

)
R(ε,A)j+1x. �

Lemma 3.4. Let (S(t))t�0 be once integrated, exponentially bounded semigroup
on a Banach space X, with generator A, which satisfies the condition (*). Let M
and ω are positive real constants for which ‖S(t)‖ � Meωt for every t � 0. Let ε
be a complex number with Reε > ω, δ > 0, j ≥ −1 integer, and x ∈ X. Then,
for every integer N � 1 the next decomposition holds

(18)

δ∫
0

(
e−εt2tj

)′
S(t2)x dt = Γ

(
j + 2

2

)
R(ε,A)(j+2)/2x+ δje−εδ2

S(δ2)x

+ e−εδ2
N∑

k=1

ckAR(ε,A)kS(δ2)x+ xN ,

where ck are constants, and residue xN ∈ D(AN+1).

Proof. Denote

(19) I =

δ∫
0

(
e−εt2tj

)′
S(t2) dt =

∞∫
0

(
e−εt2tj

)′
S(t2) dt−

∞∫
δ

(
e−εt2tj

)′
S(t2) dt.

From previous lemma (the relation (13)) we see that for every j � 0,
∞∫
0

[
e−εt

(√
t
)j−1

]′
S(t) dt = Γ

(
j + 1

2

)
[R(ε,A)](j+1)/2

.
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The substitution
√
t = u gives

∞∫
0

[
e−εt

(√
t
)j−1

]′
S(t) dt =

∞∫
0

[
e−εu2

uj−1
]′

u

du

dt
S(u2) d(u2)

=

∞∫
0

[
e−εu2

uj−1
]′
S(u2) du = Γ

(
j + 1

2

)
[R(ε,A)](j+1)/2

.

Hence, for every integer j � −1 and every x ∈ X it holds

(20)

∞∫
0

[
e−εt2tj

]′
S(t2)x dt = Γ

(
j + 2

2

)
[R(ε,A)](j+2)/2

x

Consider now J =
∞∫
δ

[
e−εt2tj

]′
S(t2) dt. Since S(t) = tI +A

t∫
0

S(u) du, we have

J = J1 + J2, where

J1 =

∞∫
δ

(
e−εt2tj

)′
t2Idt and J2 =

∞∫
δ

(
e−εt2tj

)′
A

t2∫
0

S(u) du dt.

The integration by parts gives

J1 = tj+2e−εt2
∣∣∣∞
t=δ

− 2

∞∫
δ

tj+1e−εt2dt = −δj+2e−εδ2 − 2

∞∫
δ

tj+1e−εt2dt.

Since the operator A is closed, we have

J2 = e−εt2tjA

t2∫
0

S(u) du
∣∣∣∣
∞

t=δ

−A

∞∫
δ

e−εt2tjS(t2) 2t dt

= −e−εδ2
δj
[
S(δ2) − δ2I

]− 2A

∞∫
δ

tj+1e−εt2S(t2) dt.

Hence,

J =

∞∫
δ

[
e−εt2tj

]′
S(t2) dt(21)

= −δje−εδ2
S(δ2) − 2I

∞∫
δ

tj+1e−εt2dt− 2A

∞∫
δ

tj+1e−εt2S(t2) dt
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The relations (19) (20) and (21) give

I =

δ∫
0

(
e−εt2tj

)′
S(t2) dt = Γ

(
j + 2

2

)
[R(ε,A)](j+2)/2 + δje−εδ2

S(δ2)(22)

+ 2I

∞∫
δ

tj+1e−εt2dt+ 2A

∞∫
δ

tj+1e−εt2S(t2) dt

Consider now Ī =
∞∫
δ

2tj+1e−εt2S(t2) dt. For the integral Ī we will use the

integration by parts by putting U = tj , dV = 2t e−εt2S(t2) dt. Then,

V =

t2∫
0

e−εuS(u) du = R(ε,A)(εI −A)

t2∫
0

e−εuS(u) du.

Consider now the expression (εI −A)
t2∫
0

e−εuS(u) du. We have

(εI −A)

t2∫
0

e−εuS(u) du = ε

t2∫
0

e−εuS(u) du−A

t2∫
0

e−εuS(u) du

putting S(u)du = dV̄ and e−εu = Ū

= ε

t2∫
0

e−εuS(u) du−A

[
e−εu

u∫
0

S(s) ds
∣∣∣t2
u=0

+ ε

t2∫
0

e−εu

u∫
0

S(s) ds du

]

= ε

t2∫
0

e−εuS(u) du− e−εt2A

t2∫
0

S(s) ds− ε

t2∫
0

e−εuA

u∫
0

S(s) ds du

= ε

t2∫
0

e−εuS(u) du− e−εt2
[
S(t2) − t2I

]− ε

t2∫
0

e−εu [S(u) − uI] du

= ε

t2∫
0

u e−εudu+ e−εt2
[
t2I − S(t2)

]
.

Because of

ε

t2∫
0

u e−εudu =
1 − e−εt2

ε
− t2e−εt2 ,
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we have

(εI −A)

t2∫
0

e−εuS(u) du =
1 − e−εt2

ε
I − e−εt2S(t2).

Since R(ε,A)/ε is independent of t, we can put

V = R(ε,A)
(−e−εt2

ε
I − e−εt2S(t2)

)
.

Now, we have

Ī =

∞∫
δ

2tj+1e−εt2S(t2) dt = tjR(ε,A)
(−e−εt2

ε
I − e−εt2S(t2)

)∣∣∣∞
t=δ

+R(ε,A)

∞∫
δ

(
e−εt2

ε
I + e−εt2S(t2)

)
(tj)′dt.

Hence,

(23) Ī = δje−εδ2
R(ε,A)S(δ2)

+ 2R(ε,A)

∞∫
δ

tj+1e−εt2dt+ jR(ε,A)

∞∫
δ

e−εt2tj−1S(t2) dt

Now (22) and (23) give

I =

δ∫
0

(
e−εt2tj

)′
S(t2) dt = Γ

(
j + 2

2

)
[R(ε,A)](j+2)/2 + δje−εδ2

S(δ2)

+ 2I

∞∫
δ

tj+1e−εt2dt+ δje−εδ2
AR(ε,A)S(δ2) + 2AR(ε,A)

∞∫
δ

tj+1e−εt2dt

+ jAR(ε,A)

∞∫
δ

e−εt2tj−1S(t2) dt,

i.e.,

(24) I =

δ∫
0

(
e−εt2tj

)′
S(t2) dt = Γ

(
j + 2

2

)
[R(ε,A)](j+2)/2 + δje−εδ2

S(δ2)

+ δje−εδ2
AR(ε,A)S(δ2)+2εR(ε,A)

∞∫
δ

tj+1e−εt2dt+ jAR(ε,A)

∞∫
δ

e−εt2tj−1S(t2) dt

Now, for the last integral in (24) we use the same procedure as for the integral Ī.
If we continue to repeat this procedure, we conclude that for every N � 1, every
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j ≥ −1, and every x ∈ X,

δ∫
0

(
e−εt2tj

)′
S(t2)x dt = Γ

(
j + 2

2

)
R(ε,A)(j+2)/2x+ δje−εδ2

S(δ2)x

+ e−εδ2
N∑

k=1

ckAR(ε,A)kS(δ2)x+ xN ,

where ck are constants, and residue xN ∈ D(AN+1). �

Lemma 3.5. Let (S(t))t∈R be once integrated, exponentially bounded group on
a Banach space X, with generator A, which satisfies the condition (*). Let M
and ω are positive real constants for which ‖S(t)‖ � Meω|t| for every t ∈ R. Let
ϕ(x) ∈ C∞

0 (X). Then, for every complex number ε, with Re ε > ω, and every
integer L � 0 it holds

(25)

∞∫
−∞

S(x2)
[
ϕ(x)
2x

]′
dx = R(ε,A)1/2

L∑
k=0

bkR(ε,A)k + aL,

for bk ∈ X, aL ∈ D(AL+1).

Proof. Denote J =
∞∫
0

S(x2)
[

ϕ(x)
2x

]′
dx. Since S(t) = tI+A

t∫
0

S(u) du, we have

J =
ϕ(x)
2x

S(x2)
∣∣∣∞
0

−
∞∫
0

ϕ(x) dx−A

∞∫
0

S(x2)ϕ(x) dx.

First of all we assume that the function ϕ(x) has a null of order m � 1 at the point
x = 0. Hence, ϕ(x)

2x S(x2)
∣∣∞
0

= 0, so that

(26) J = −
∞∫
0

ϕ(x)dx−A

∞∫
0

S(x2)ϕ(x)dx.

Let now ϕ(x) ∈ C∞
0 (X) be an arbitrary function. Choose any δ > 0 and introduce

the function χ(x) ∈ C∞
0 (R) with χ(x) ≡ 1 for every real x for which |x| � δ.

For any fixed ε with Re ε > ω, define the function ϕε(x) ∈ C∞
0 (X) by ϕε(x) :=

eεx2
ϕ(x) (x ∈ R). If the function ϕε(x) has the Maclaurin’s series ϕε(x) =∑N

j=0 ϕjx
j + ψN (x) (ϕj ∈ X, N a positive integer), then the function ψN (x) at

the point x = 0 has a null of order N + 1.
From the fact that ϕε(x) and the functions xj are infinitely differentiable, the

same holds for the residue ψN (x). Hence, ψN ∈ C∞(X). Consider the integral

J̄ = −
∞∫
0

ϕ(x)χ(x) dx−A

∞∫
0

S(x2)ϕ(x)χ(x) dx.
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Decompose J as

(27) J = J̄ + (J − J̄).

By (26) we have

J − J̄ =

∞∫
0

ϕ(x) [χ(x) − 1] dx+A

∞∫
0

S(x2)ϕ(x) [χ(x) − 1] dx(28)

=

∞∫
δ

ϕ(x) [χ(x) − 1] dx+A

∞∫
δ

S(x2)ϕ(x) [χ(x) − 1] dx

Consider
∞∫
δ

S(x2)ϕ(x) [χ(x) − 1] dx. If we take dv = 2xe−εx2
S(x2)dx, then,

from the proof of the previous lemma we see that

v = R(ε,A)
(−e−εx2

ε
I − e−εx2

S(x2)
)
.

Therefore, we obtain
∞∫

δ

S(x2)ϕ(x) [χ(x) − 1] dx =

∞∫
δ

2xe−εx2
S(x2)

ϕε(x) [χ(x) − 1]
2x

dx

=
ϕ(x) [χε(x) − 1]

2x
R(ε,A)

(−e−εx2

ε
I − e−εx2

S(x2)
)∣∣∣∣

∞

δ

+R(ε,A)

∞∫
δ

(
e−εx2

ε
I + e−εx2

S(x2)
)(

ϕε(x) [χ(x) − 1]
2x

)′
dx.

Hence
∞∫
δ

S(x2)ϕ(x) [χ(x) − 1] dx ∈ D(A).

Integrating by parts again we conclude that A
∞∫
δ

S(x2)ϕ(x) [χ(x) − 1] dx ∈
D(AN+1) for every integer N � 1. Hence, for every fixed N � 1 we have

(29) J − J̄ =

∞∫
δ

ϕ(x) [χ(x) − 1] dx+ gN

(
gN ∈ D(AN+1)

)
.

Consider now

(30) A

∞∫
0

S(x2)ϕ(x)χ(x) dx

= A

δ∫
0

S(x2)e−εx2
ϕε(x) dx+A

∞∫
δ

S(x2)e−εx2
ϕε(x)χ(x) dx = I1 + I2,
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where

I1 = A

δ∫
0

S(x2)e−εx2
ϕε(x) dx, I2 = A

∞∫
δ

S(x2)e−εx2
ϕε(x)χ(x) dx.

Then

(31) I1 =
N∑

j=0

ϕjA

δ∫
0

S(x2)e−εx2
xjdx+A

δ∫
0

S(x2)e−εx2
ψN (x) dx.

For every j we have

(32)

δ∫
0

(
e−εx2

xj
)′
S(x2) dx

= e−εx2
xjS(x2)

∣∣∣δ
0
− 2

δ∫
0

xj+1e−εx2
dx− 2A

δ∫
0

xj+1e−εx2
S(x2) dx.

From the Lemma 3.4 we see that for integers j � −1 and M � 1 it holds

δ∫
0

(
e−εx2

xj
)′
S(x2) dx = Γ

(j + 2
2

)
R(ε,A)(j+2)/2 + δje−εδ2

S(δ2)(33)

+ e−εδ2
M∑

k=1

ckAR(ε,A)kS(δ2) + xM

where ck are constants, and residue xM ∈ D(AM+1).
From (32) and (33) for j � −1 we have

A

δ∫
0

xj+1e−εx2
S(x2) dx

=
1
2
δje−εδ2

S(δ2) −
δ∫

0

xj+1e−εx2
dx− 1

2
Γ
(j + 2

2

)
R(ε,A)(j+2)/2

− 1
2
δje−εδ2

S(δ2) − 1
2
e−εδ2

M∑
k=1

ckAR(ε,A)kS(δ2) − 1
2
xM .

If we put j instead of j + 1 in the last relation, then we obtain for j � 0,

A

δ∫
0

xje−εx2
S(x2) dx = −

δ∫
0

xje−εx2
dx− 1

2
Γ
(
j + 1

2

)
R(ε,A)(j+1)/2(34)

− 1
2
e−εδ2

M∑
k=1

ckAR(ε,A)kS(δ2) − 1
2
xM .
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The relations (31) and (34) give now

(35) I1 =
N∑

j=0

(
−1

2
ϕj

)[
Γ
(j + 1

2

)
R(ε,A)(j+1)/2 + 2

δ∫
0

xje−εx2
dx

+ e−εδ2
M∑

k=1

ckAR(ε,A)kS(δ2) + xM

]
+A

δ∫
0

S(x2)e−εx2
ψN (x) dx

(36) I2 =
N∑

j=0

ϕjA

∞∫
δ

S(x2)e−εx2
xjχ(x) dx+A

∞∫
δ

S(x2)e−εx2
ψN (x)χ(x) dx

The sum of the last integrals in (35) and (36) equals

hN = A

∞∫
0

S(x2)e−εx2
ψN (x)χ(x) dx and hN ∈ D(AN+1) for every N.

Integration by parts gives
∞∫

δ

S(x2)e−εx2
xjχ(x) dx =

∞∫
δ

2xe−εx2
S(x2)

1
2
xj−1χ(x) dx

=
1
2
xj−1χ(x)R(ε,A)

(−e−εx2

ε
I − e−εx2

S(x2)
)∣∣∣∣

∞

δ

+R(ε,A)

∞∫
δ

(
e−εx2

ε
I + e−εx2

S(x2)
)(1

2
xj−1χ(x)

)′
dx.

Since χ(δ) = 1, we have

∞∫
δ

S(x2)e−εx2
xjχ(x) dx =

1
2
δj−1R(ε,A)

(
e−εδ2

ε
I + e−εδ2

S(δ2)
)

+R(ε,A)

∞∫
δ

(
e−εx2

ε
I + e−εx2

S(x2)
)(1

2
xj−1χ(x)

)′
dx.

If we repeat the integration by parts further, we conclude that the integrals

A

∞∫
δ

S(x2)e−εx2
xjχ(x) dx (by I2)

annul with the expression

(
−1

2

)[
e−εδ2

M∑
k=1

ckAR(ε,A)kS(δ2) + xM

]
(by I1 in (35)).
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Hence,

I1 + I2 = A

∞∫
0

S(x2)ϕ(x)χ(x) dx

=
N∑

j=0

(
−1

2

)
ϕj

[
Γ
(j + 1

2

)
R(ε,A)(j+1)/2 + 2

δ∫
0

xje−εx2
dx

]
+ hN .

From the last relation and

J̄ = −
∞∫
0

ϕ(x)χ(x) dx−A

∞∫
0

S(x2)ϕ(x)χ(x) dx

we obtain that

J̄ = −
∞∫
0

ϕ(x)χ(x) dx− hN +
1
2

N∑
j=0

ϕj

[
Γ
(j + 1

2

)
R(ε,A)(j+1)/2 + 2

δ∫
0

xje−εx2
dx

]
.

Using (27) and (29) we have

J =

∞∫
0

S(x2)
[
ϕ(x)
2x

]′
dx =

∞∫
δ

ϕ(x) [χ(x) − 1] dx−
∞∫
0

ϕ(x)χ(x) dx+ gN − hN

+
1
2

N∑
j=0

ϕj

[
Γ
(j + 1

2

)
R(ε,A)(j+1)/2 + 2

δ∫
0

xje−εx2
dx

]
,

where gN and hN belong to D(AN+1).

Analogously calculating the integral J∗ =
0∫

−∞
S(x2)

[
ϕ(x)
2x

]′
dx we obtain

J∗ =

0∫
−∞

S(x2)
[
ϕ(x)
2x

]′
dx = −

∞∫
δ

ϕ(x) [χ(x) − 1] dx+

∞∫
0

ϕ(x)χ(x) dx+ ḡN − h̄N

+
1
2

N∑
j=0

ϕj

[
Γ
(j + 1

2

)
(−1)jR(ε,A)(j+1)/2 − 2

δ∫
0

xje−εx2
dx

]
,

where ḡN and h̄N belong to D(AN+1).
Finally, for L � 0 the following decomposition holds

∞∫
−∞

S(x2)
[
ϕ(x)
2x

]′
dx=J+ J∗= 2

1
2
R(ε,A)1/2

L∑
k=0

ϕ2k+1Γ
(

2k + 2
2

)
R(ε,A)k + aL.

Hence, it holds (25) for bk = k!ϕ2k+1 ∈ X, aL ∈ D(AL+1). �

Analogously one can prove
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Lemma 3.6. Let (S(t))t∈R be once integrated, exponentially bounded group on
a Banach space X, with generator A, which satisfies the condition (*). Let M
and ω are positive real constants for which ‖S(t)‖ � Meω|t| for every t ∈ R. Let
ϕ(x) ∈ C∞

0 (X). Then, for every complex number ε, with Re ε < −ω, and every
integer L � 0, we have

(37)

∞∫
−∞

S(−x2)
[
ϕ(x)
2x

]′
dx = R(−ε,A)1/2

L∑
k=0

ckR(−ε,A)k + dL,

for ck ∈ X, dL ∈ D(AL+1).

Theorem 3.1. Let (S(t))t∈R be once integrated, exponentially bounded group
on a Banach space X, with generator A, which satisfies the condition (*). Let M
and ω are positive real constants for which ‖S(t)‖ � Meω|t| for every t ∈ R. Let
ϕ(x) ∈ C∞

0 (X), f(x) ∈ C∞(Rn), and f(x) on suppϕ has exactly one nondegener-
ate stationary point x0. Then, for every complex number ε, with |Re ε| > ω, the
following decomposition holds

Φ(A) = A

∫
Rn

S(f(x))ϕ(x) dx+
∫

Rn

ϕ(x) dx(38)

= [AS(f(x0)) + I]
n∏

r=1

[
R(±ε,A)1/2

Lr∑
kr=0

bkr
R(±ε,A)kr + aLr

]
,

where bkr
∈ X, aLr

∈ D(ALr + 1), Lr ∈ N ∪ {0} for r = 1, 2, . . . , n.

Proof. We will use mathematical induction, Morse’s lemma, and next two
formulas proved in Lemmas 3.5 and 3.6.

For every complex number ε with Re ε > ω, and every integer L � 0 one has

(39) A

∞∫
−∞

S(x2)ϕ(x) dx+

∞∫
−∞

ϕ(x) dx = R(ε,A)1/2
L∑

k=0

bkR(ε,A)k + aL

for bk ∈ X, aL ∈ D(AL+1).
For every complex number ε with Re ε < −ω, and every integer L � 0,

(40) A

∞∫
−∞

S(−x2)ϕ(x) dx+

∞∫
−∞

ϕ(x) dx = R(−ε,A)1/2
L∑

k=0

ckR(−ε,A)k + dL

for ck ∈ X, dL ∈ D(AL+1).
By Morse’s lemma, in some neighborhood of x0, there exists a smooth mapping

x = g(y) such that f(x) = f(g(y)) = f(x0)+ 1
2

n∑
i=1

µiy
2
i , where µi are the eigenvalues

of the matrix f ′′xx(x0) and det g′(0) = 1. Denote ai := 1
2µi (i = 1, 2, . . . , n).

(i) Check the assertion of the theorem first of all for n = 1. By Morse’s lemma,
in some neighborhood of the point x0, there exists a smooth mapping x = g(y1)
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such that f(x) = f(x0) + a1y
2
1 . Then ϕ(x) dx = (ϕ ◦ g)(y1)g′(y1) dy1 = ϕ̄(y1) dy1,

where ϕ̄(y1) = (ϕ ◦ g)(y1)g′(y1). Therefore,

Φ(A) = A

∫
R1

S(f(x))ϕ(x) dx+
∫
R1

ϕ(x) dx(41)

= A

∫
R1

S(f(x0) + a1y
2
1)ϕ̄(y1) dy1 +

∫
R1

ϕ̄(y1) dy.

Definition 2.2 implies that for once integrated group (S(t))t∈R it holds

S(t)S(s) =

s∫
0

[S(t+ u) − S(u)] du (t, s ∈ R).

If we work from the left with the operator A, then we obtain

AS(t)S(s) = S(t+ s) − S(t) − S(s).

Hence,

(42) S(t+ s) = AS(t)S(s) + S(t) + S(s) (t, s ∈ R)

From (41) and (42) we get

Φ(A) = A

∫
R1

[
AS(f(x0))S(a1y

2
1) + S(f(x0)) + S(a1y

2
1)
]
ϕ̄(y1) dy1 +

∫
R1

ϕ̄(y1) dy1

= [AS(f(x0)) + I]

[
A

∫
R1

S(a1y
2
1)ϕ̄(y1) dy1 +

∫
R1

ϕ̄(y1) dy1

]
.

We use now the relation (39) or (40), depending on the sign of a1, and we obtain

Φ(A) = [AS(f(x0)) + I]
[
R(±ε,A)1/2

L∑
k=0

bkR(±ε,A)k + aL

]
.

Hence, the relation (38) holds for n = 1.

(ii) Assume that (38) holds for Φ(A) on Rn−1.

(iii) Prove that the decomposition (38) holds on Rn, too. Let

y = (y1, y2, . . . , yn) = (ȳ, yn), where ȳ = (y1, y2, . . . , yn−1).

Using Morse’s lemma, we get

Φ(A) = A

∫
Rn

S(f(x))ϕ(x) dx+
∫

Rn

ϕ(x) dx

= A

∫
Rn

S(u(ȳ) + any
2
n)ϕ̄(ȳ, yn) dy +

∫
Rn

ϕ̄(ȳ, yn) dy,
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where u(ȳ) = f(x0)+a1y
2
1 + · · ·+an−1y

2
n−1. Now using the formula (42) we obtain

Φ(A) = A

∫
Rn

[
AS(u(ȳ))S(any

2
n) + S(u(ȳ)) + S(any

2
n)
]
ϕ̄(ȳ, yn) dȳ dyn

+
∫

Rn

ϕ̄(ȳ, yn) dȳ dyn.

Using the assumption (ii) we conclude that (38) holds on Rn. �

References

[1] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59(3)
(1987), 327–352.

[2] W. Arendt, C. J.K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and
Cauchy problems, Monographs in Math. 96, Birkhauser, Basel 2001.

[3] M. Balabane, H.A. Emamirad, Smooth distribution groups and Schroedinger equation in
Lp(Rn), J. Math. Anal. Appl. 70 (1979), 61–71.

[4] M. Balabane, H.A. Emamirad, Lp Estimates for Schrodinger evolution equations, Trans.
Amer. Math. Soc. 292 (1985), 357–373.

[5] M. Balabane, H.A. Emamirad, M. Jazar, Spectral distributions and generalization of Stone’s
theorem, Acta Appl. Math. 31 (1993), 275–295.

[6] A. E. Bernardini, The stationary phase condition applicability to the study of tunnel effect,
Mod. Phys. Lett. B 19(18) (2005), 883–888.

[7] M.V. Fedoryuk, Asymptotics integrals and series, Moscow (1987) (In Russian).
[8] ���� ������	
����� ������	�
	�� ��� � �����������
�	�����	�� ���
���
�
 ���

� ������
 ������
[9] J. E. Gale, P. J. Miana, One parameter Groups of Regular Quasimultiplier, University of

Zaragoza, 2004, preprint.
[10] V. Guillemin and Shlomo Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence,

1977.
[11] M. Hieber, Laplace transforms and α-times integrated semigroups, Forum Math. 3 (1991),

595–612.
[12] M. Hieber, Integrated semigroups and differential operators on Lp spaces, Math. Ann. 291

(1991), 1–16.
[13] M. Hieber, H. Kellermann, Integrated semigroups, J. Funct. Anal. 84 (1989), 160–180.
[14] F. de Kok, On the method of Stationary Phase for Multiple Integrals, SIAM J. Math. Anal.

2 (1971), 76–104.
[15] J. L. Lions, Semi-groupes distributions, Portugal Math. 19 (1960), 141–164.
[16] ���� ������
 ���� ������	
 ���������������� �
������	�� ��� �
��	�	�� ���	�

����� ����	���
 ���	�
 ���	��
 �����
[17] V. P. Maslov, M.V. Fedoryuk, Semi-classical approximation in quantum mechanics, Reidel,

1981, (Translated from Russian).
[18] O. El-Mennaoui, Trace des semi-groupes holomorphes singuliers a l’origine et comportement

asymptotique, These, Besancon, 1992.

[19] P. J. Miana, α−Times Integrated Semigroups and Fractional Derivation, Forum Math. 14
(2002), 23–46.

[20] P. J. Miana, Integrated groups and smooth distribution groups, University of Zaragoza (2004),
preprint.
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Prirodno-matematički fakultet (Received 21 11 2005)
75000 Tuzla (Revised 15 05 2006)
Bosnia and Herzegovina
ramiz.vugdalic@untz.ba

Prirodno-matematički fakultet
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