
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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Abstract. We investigate curvature properties of pseudosymmetry type of
hypersurfaces in semi-Riemannian spaces of constant curvature having the
minimal polynomial for the second fundamental tensor of third degree. Among
other things we show that the curvature tensor of such hypersurfaces satisfies
some condition, which is a generalization of the Roter type equation.

1. Introduction

A semi-Riemannian manifold (M, g), n = dimM � 3, is said to be an Einstein
manifold if its Ricci tensor S is proportional to the metric tensor g, i.e., S = κ

ng on
M . A semi-Riemannian manifold (M, g), n � 3, is called a quasi-Einstein manifold
if at every x ∈M we have

(1.1) S = αg + εw ⊗ w, ε = ±1,

where w ∈ T ∗
xM and α ∈ R. Quasi-Einstein hypersurfaces were studied among

others in [9] and [12], see also references therein. We refer to [3] for a review of
results on quasi-Einstein manifolds. A semi-Riemannian manifold (M, g), n � 3,
is Ricci-pseudosymmetric if R · S = 0 on M . Einstein manifolds form a natural
subclass of the class of quasi-Einstein manifolds, as well as of the class of Ricci-
semisymmetric manifolds. We also recall that semisymmetric manifolds, R ·R = 0
on M [22], form a subclass of the class of the Ricci-semisymmetric manifolds.
For precise definitions of the symbols used we refer to Sections 2 and 3 of this
paper and Sections 2 and 3 of [10] (see also [2] and [16]). We mention that the
problem of the equivalence of the conditions of semisymmetry (R · R = 0) and
Ricci-semisymmetry (R · S = 0) on hypersurfaces in Euclidean spaces, named the
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problem of P. J. Ryan, lead to considerations of quasi-Einstein hypersurfaces (see
e.g., [1], [8]). An extension of the class of semisymmetric manifolds form also
pseudosymmetric manifolds (see e.g., [3, Sections 3 and 4]). A semi-Riemannian
manifold (M, g), n � 3, is said to be pseudosymmetric if, at every point of M , the
tensors R ·R and Q(g,R) are linearly dependent. This is equivalent to

(1.2) R ·R = LRQ(g,R)

on UR = {x ∈ M | R − κ
(n−1)nG �= 0 at x}, where LR is some function on

UR. Further, a semi-Riemannian manifold (M, g), n � 3, is said to be Ricci-
pseudosymmetric [3] if, at every point of M , the tensors R · S and Q(g, S) are
linearly dependent. This is equivalent to

(1.3) R · S = LSQ(g, S)

on US = {x ∈ M | S − κ
ng �= 0 at x}, where LS is some function on US . The

class of Ricci-pseudosymmetric manifolds is an extension of the class of Ricci-
semisymmetric manifolds, as well as of the class of pseudosymmetric manifolds
[3].

Let H be the second fundamental tensor of a hypersurface M immersed isomet-
rically in a semi-Riemannian space of constant curvature Nn+1

s (c), with signature
(s, n + 1 − s), n � 4, where c = κ̃

n(n+1) and κ̃ denotes the scalar curvature of the
ambient space. Let UH ⊂ M be the set of all points at which the tensor H2 is
not a linear combination of H and the metric tensor g of M . In this paper we will
investigate hypersurfaces M satisfying on UH ⊂M

(1.4) H3 = tr(H)H2 + ψH + ρg,

where ψ and ρ are some functions on UH . Examples of hypersurfaces satisfying (1.4)
with ρ = 0 are presented [10] (see also [14]). It is known that such hypersurfaces
are Ricci-pseudosymmetric (see e.g., [5]). Recently examples of hypersurfaces of
dimension n � 5, satisfying (1.4), with nonzero function ρ, were found in [21]. We
refer to [17] for results related to hypersurfaces in spaces of constant curvature for
which the tensor H2 is a linear combination of H and g.

Let M be a hypersurface in Nn+1
s (c), n � 4. We have

(1.5) R · S =
κ̃

n(n+ 1)
Q(g, S)

at x ∈ UH ⊂ M if and only if H3 = tr(H)H2 + αH, α ∈ R, at this point [5,
Theorem 3.1].

Let U1 ⊂ UH ⊂ M the set of all points at which R · S �= κ̃
n(n+1)Q(g, S). We

note that if (1.4) holds at x ∈ UH , then x ∈ U1 ⊂ UH if and only if ρ �= 0 at this
point. We also mention that (1.4) implies (see e.g., Proposition 3.2(i))

R · S =
κ̃

n(n+ 1)
Q(g, S) + ρQ(g,H).

In [20, Theorem 5.1] it is proved that (1.4) is equivalent on U1 to

(1.6) C ·R =
n− 3
n− 2

Q(S,R) + α1Q(g,R) + α2Q(S,G),
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α1 =
1

n− 2

( κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
, α2 = − (n− 3)κ̃

(n− 2)n(n+ 1)
.

(1.6) is a condition of pseudosymmetry type. We refer to [3] for a survey of results
related to manifolds, and in particular to hypersurfaces satisfying pseudosymmetry
type conditions. Hypersurfaces M in Nn+1

s (c), n � 4, having the tensor R · C
expressed by a linear combination of the tensors Q(S,R), Q(g,R) and Q(S,G),
were investigated in [16] (see also [10]). Among other things in [16] it was shown
that such hypersurfaces M satisfy (1.5) on UH ⊂M and in a consequence, they are
Ricci-pseudosymmetric. In [14, Proposition 2.1] it is proved that every hypersurface
M in N5

s (c) satisfying (1.4) is pseudosymmetric. Precisely, on UH ⊂M we have

R ·R =
κ̃

n(n+ 1)
Q(g,R)

and rankH = 2. The last relation implies H3 = tr(H)H2 + ψH, for some function
ψ on UH (see [6, Lemma 2.1]).

We mention that hypersurfaces M in Nn+1
s (c), n � 4, satisfying (1.4) and

some curvature conditions, named Ricci-type equations, were recently investigated
in [19].

We recall that the curvature tensor R of a Roter type manifold (M, g), n � 4,
is expressed on UC ∩ US ⊂ M by a linear combination of the tensors S ∧ S, g ∧ S
and g ∧ g, i.e., (2.5) holds on this set. Our investigations lead to a new condition
for the curvature tensor R. We prove (see Theorem 3.2) that the tensor R of a
hypersurface M in Nn+1

s (c), n � 4, satisfying (1.4) is expressed on U1 ⊂ UH ⊂ M
by a linear combination of the tensors S2 ∧S2, S ∧S2, g∧S2 S ∧S, g∧S and g∧ g
(see 3.13). Clearly, (2.5) is a special case of (3.13). In Section 3 we also prove (see
Theorem 3.1) that on U1 ⊂ UH ⊂M of a hypersurface M in Nn+1

s (c), n � 4, (1.4)
is equivalent to (3.6).

In the last section we investigate hypersurfaces M in Nn+1
s (c), n � 4, satisfy-

ing (1.4), which are locally warped products. Among other things we prove (see
Theorems 4.2 and 4.3) that under some additional assumptions we have ρ = 0. We
also present curvature properties of such hypersurfaces (see Theorem 4.3).

The author would like express her thanks to Professor Ryszard Deszcz for his
help during the preparation of this paper.

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected paracompact
manifolds of class C∞. Let (M, g) be an n-dimensional, n � 3, semi-Riemannian
manifold and let ∇ be its Levi–Civita connection and X(M) the Lie algebra of
vector fields on M . We define on M the endomorphisms X ∧A Y and R(X,Y ) of
X(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

respectively, where A is a symmetric (0, 2)-tensor on M and X,Y,Z ∈ X(M). The
Ricci tensor S, the Ricci operator S and the scalar curvature κ of (M, g) are defined
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by
S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS,

respectively. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1
n− 2

(
X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y

)
Z.

Let B(X,Y ) be a skew-symmetric endomorphism of X(M) and let B be a (0, 4)-
tensor associated with B(X,Y ) by

(2.1) B(X1,X2,X3,X4) = g(B(X1,X2)X3,X4),

where X1,X2, . . . ∈ X(M). The tensor B is said to be a generalized curvature
tensor if

B(X1,X2,X3,X4) +B(X2,X3,X1,X4) +B(X3,X1,X2,X4) = 0,

B(X1,X2,X3,X4) = B(X3,X4,X1,X2).

We define the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R and the
Weyl conformal curvature tensor C by

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3,X4),

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4),

respectively. These tensors are generalized curvature tensors.
Let B(X,Y ) be a skew-symmetric endomorphism of X(M) and let B be the ten-

sor defined by (2.1). We extend the endomorphism B(X,Y ) to derivation B(X,Y )·
of the algebra of tensor fields on M , assuming that it commutes with contractions
and B(X,Y ) ·f = 0, for any smooth function f on M . Now for a (0, k)-tensor field
T , k � 1, we define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1,X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).

In addition, if A is a symmetric (0, 2)-tensor, then we define the (0, k + 2)-tensor
Q(A, T ) by

Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1,X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B ·B and Q(A,B). Setting in the above
formulas B = R or B = C, T = R or T = C or T = S, A = g or A = S, we get
the tensors R · R, R · C, C · R, R · S, Q(g,R), Q(S,R), Q(g, C) and Q(g, S). For
symmetric (0, 2)-tensors E and F we define their Kulkarni–Nomizu product E ∧ F
by

(E ∧ F )(X1,X2,X3,X4) = E(X1,X4)F (X2,X3) + E(X2,X3)F (X1,X4)

− E(X1,X3)F (X2,X4) − E(X2,X4)F (X1,X3).
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Clearly, the tensors R, C, G and E ∧ F are generalized curvature tensors. For a
symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = 1

2E ∧ E. We have
g = G = 1

2g ∧ g and

(2.2) C = R− 1
n− 2

g ∧ S +
κ

(n− 2)(n− 1)
G.

We also have (see e.g., [9, Section 3])

(2.3) Q(E,E ∧ F ) = −Q(F,E).

Now (2.2) and (2.3) yield

(2.4) Q(g, C) = Q(g,R) +
1

n− 2
Q(S,G).

On any semi-Riemannian manifold (M, g), n � 3, we have UC ∩ US ⊂ UR ⊂M .
Let (M, g), n � 4, be a semi-Riemannian manifold such that its curvature

tensor R satisfies on UC ∩ US ⊂M the equation

(2.5) R =
φ

2
S ∧ S + µg ∧ S + ηG,

where φ, µ and η are some functions on this set. According to [6], (2.5) is called
the Roter type equation. A manifold (M, g), n � 4, satisfying (2.5) on UC ∩US ⊂M
will be called a Roter type manifold. Evidently, we consider manifolds (M, g) with
nonempty set UC ∩ US ⊂M . The decomposition of R on UC ∩ US in terms S ∧ S,
g∧S and G is unique [12, Lemma 3.2]. If (2.5) holds on an open set U ⊂ UC ∩US ,
then we say that the Roter type equation holds on U . Roter type manifolds were
defined in [6], although investigations on these manifolds were initiated earlier in
[11]. If (M, g) is a Roter type manifold, then (1.2) holds on UC ∩ US , with the
function LR defined by LR = (n− 2)

(
µ
φ (µ− 1

n−2 ) − η
)

[11, Theorem 4.2]. If (1.1)
and (2.5) hold at a point of a semi-Riemannian manifold of dimension � 4, then
its Weyl tensor C vanishes at this point.

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k � 2, we define their
Kulkarni–Nomizu product E ∧ T by [7]

(E ∧ T )(X1,X2,X3,X4;Y3, . . . , Yk)

= E(X1,X4)T (X2,X3, Y3, . . . , Yk) + E(X2,X3)T (X1,X4, Y3, . . . , Yk)

− E(X1,X3)T (X2,X4, Y3, . . . , Yk) − E(X2,X4)T (X1,X3, Y3, . . . , Yk).

Using the above definitions we can prove

Lemma 2.1. [7], [8] Let E1, E2 and F be symmetric (0, 2)-tensors at a point
x of a semi-Riemannian manifold (M, g), n � 3. Then at x we have

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧ E2).

If E = E1 = E2, then

(2.6) E ∧Q(E,F ) = −Q(F,E).
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Proposition 2.1. [18, eq. (13)] On any semi-Riemannian manifold (M, g),
n � 4, the tensor C ·R satisfies the identity

(2.7)

(n− 2)(C ·R)hijklm = (n− 2)(R ·R)hijklm +Q
( κ

n− 1
g − S,R

)
hijklm

− ghlSm
rRrijk + ghmSl

rRrijk + gilSm
rRrhjk − gimSl

rRrhjk

− gjlSm
rRrkhi + gjmSl

rRrkhi + gklSm
rRrjhi − gkmSl

rRrjhi.

3. Hypersurfaces in spaces of constant curvature

Let M , n � 3, be a connected hypersurface isometrically immersed in a semi-
Riemannian manifold (N, gN ). We denote by g the metric tensor induced on M
from gN . Further, we denote by ∇ and ∇N the Levi–Civita connections corre-
sponding to the metric tensors g and gN , respectively. Let ξ be a local unit normal
vector field on M in N and let ε = gN (ξ, ξ) = ±1. The Gauss formula and the
Weingarten formula of (M, g) in (N, gN ) are given by ∇N

XY = ∇XY + εH(X,Y )ξ
and ∇N

Xξ = −AX, respectively, where X,Y are vector fields tangent to M , H
is the second fundamental tensor of (M, g) in (N, gN ), A is the shape operator,
Hk(X,Y ) = g(AkX,Y ), k � 1, H1 = H and A1 = A. We denote by R and RN

the Riemann–Christoffel curvature tensors of (M, g) and (N, gN ), respectively.
Let xr = xr(yk) be the local parametric expression of (M, g) in (N, gN ),

where yk and xr are local coordinates of M and N , respectively, and h, i, j, k ∈
{1, 2, . . . , n} and p, r, t, u ∈ {1, 2, . . . , n + 1}. The Gauss equation of (M, g) in
(N, gN ) has the form

(3.1) Rhijk = RN
prtuBh

pBi
rBj

tBk
u + ε(HhkHij −HhjHik), Bk

r =
∂xr

∂yk
,

where RN
prtu, Rhijk and Hhk are the local components of the tensors RN , R and H,

respectively.
Let now M be a hypersurface in Nn+1

s (c), n � 4. The Gauss equation (3.1)
reads

(3.2) Rhijk = εHhijk +
κ̃

n(n+ 1)
Ghijk.

Contracting (3.2) with gij and gkh, respectively, we obtain

Shk = ε(tr(H)Hhk −H2
hk) +

(n− 1)κ̃
n(n+ 1)

ghk,(3.3)

κ = ε((tr(H))2 − tr(H2)) +
(n− 1)κ̃
n+ 1

,

respectively, where tr(H) = ghkHhk, tr(H2) = ghkH2
hk and Shk are the local com-

ponents of the Ricci tensor S of M . On every hypersurface M in Nn+1
s (c), n � 4,

we have [15]

R ·R−Q(S,R) = − (n− 2)κ̃
n(n+ 1)

Q(g, C),
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which by making use of (2.4) and (2.6) turns into

(3.4) R ·R = Q(S,R) − (n− 2)κ̃
n(n+ 1)

Q(g,R) − κ̃

n(n+ 1)
Q(S,G).

It is known that UH ⊂ UC ∩ US ⊂M (see e.g., [10, Section 2]).

Proposition 3.1. Let M be a hypersurface in Nn+1
s (c), n � 4. Then (1.4) is

equivalent on U1 ⊂ UH ⊂M to

(εψ − (n− 1)κ̃
n(n+ 1)

)Q(g,R)hijklm +
κ̃

n(n+ 1)
Q(S,G)hijklm

= −ghlSm
rRrijk + ghmSl

rRrijk + gilSm
rRrhjk − gimSl

rRrhjk(3.5)

− gjlSm
rRrkhi + gjmSl

rRrkhi + gklSm
rRrjhi − gkmSl

rRrjhi.

Proof. As it was mentioned in Section 1, (1.4) is equivalent on U1 to (1.6).
Now (1.6), by making use of (2.7) and (3.4), is equivalent on U1 to (3.5), which
completes the proof. �

Proposition 3.2. Let M be a hypersurface in Nn+1
s (c), n � 4, and let (1.4)

be satisfied on UH ⊂M . Then
(i) On UH we have

Sh
rRrijk =

( (n− 1)κ̃
n(n+ 1)

− εψ
)(
Rhijk − κ̃

n(n+ 1)
Ghijk

)
(3.6)

+
κ̃

n(n+ 1)
(gijShk − gikShj) − ρ(ghkHij − ghjHik),

(R · S)hijk =
κ̃

n(n+ 1)
Q(g, S)hijk + ρQ(g,H)hijk,(3.7)

SrsRrijs =
( (n− 1)κ̃
n(n+ 1)

− εψ
)(
Sij − (n− 1)κ̃

n(n+ 1)
gij

)
(3.8)

+
κ̃

n(n+ 1)
(κgij − Sij) − (n− 1)ρHij ,

S2
hk =

(2(n− 1)κ̃
n(n+ 1)

− εψ
)
Shk + ρHhk(3.9)

−
(( (n− 1)κ̃

n(n+ 1)
− εψ

) (n− 1)κ̃
n(n+ 1)

+ ρ tr(H)
)
ghk,

S3
hk =

(3(n− 1)κ̃
n(n+ 1)

− 2εψ
)
S2

hk

(3.10)

−
(( (n− 1)κ̃

n(n+ 1)
− εψ

)(3(n− 1)κ̃
n(n+ 1)

− 2εψ
)

+ ρ tr(H)
)
Shk

+
(( (n− 1)κ̃

n(n+ 1)
− εψ

)(( (n− 1)κ̃
n(n+ 1)

− εψ
) (n− 1)κ̃
n(n+ 1)

+ ρ tr(H)
)
− ερ2

)
ghk.



102 SAWICZ

(ii) If on UH we have

Sh
rRrijk =

( (n− 1)κ̃
n(n+ 1)

− εψ
)(
Rhijk − κ̃

n(n+ 1)
Ghijk

)
(3.11)

+
κ̃

n(n+ 1)
(gijShk − gikShj) + ghkAij − ghjAik,

where Aij are the local components of an arbitrary symmetric (0, 2)-tensor A on
UH , then (3.5) holds on this set.

Proof. (i) The relations (1.4), (3.2) and (3.3) yield (3.6). From (3.6), by
symmetrization in h, i we find (3.7). Contracting (3.6) with ghk we obtain (3.8).
Similarly, (3.6) implies (3.9). Further, transvecting (3.9) with ghiSij = Sh

j , we get

S3
jk =

(2(n− 1)κ̃
n(n+ 1)

− εψ
)
S2

jk + ρSh
jHhk(3.12)

−
(( (n− 1)κ̃

n(n+ 1)
− εψ

) (n− 1)κ̃
n(n+ 1)

+ ρ tr(H)
)
Sjk.

On the other hand, transvecting (3.2) with ghiHij = Hh
j and using (1.4), we obtain

Hh
jShk =

( (n− 1)κ̃
n(n+ 1)

− εψ
)
Hhk − ερgjk.

This, by multiplication by ρ and an application of (3.9), yieldsUnbalanced paren-
theses!

ρHh
jShk =

( (n− 1)κ̃
n(n+ 1)

− εψ
)(

?

(
S2

jk −
(2(n− 1)κ̃
n(n+ 1)

− εψ
)
Sjk

+
(( (n− 1)κ̃

n(n+ 1)
− εψ

) (n− 1)κ̃
n(n+ 1)

+ ρ tr(H)
)
gjk

)
− ερ2gjk.

Substituting this into (3.12) we obtain (3.10).

(ii) Using (3.11) we can check that the tensor

−
(
εψ − (n− 1)κ̃

n(n+ 1)

)
Q(g,R)hijklm − κ̃

n(n+ 1)
Q(S,G)hijklm

− ghlSm
rRrijk + ghmSl

rRrijk + gilSm
rRrhjk − gimSl

rRrhjk

− gjlSm
rRrkhi + gjmSl

rRrkhi + gklSm
rRrjhi − gkmSl

rRrjhi

vanishes on UH , which completes the proof. �

The last two propositions imply

Theorem 3.1. Let M be a hypersurface in Nn+1
s (c), n � 4. Then (1.4) and

(3.6) are equivalent on U1 ⊂ UH ⊂M .

Proof. (1.4), in view of Proposition 3.2, implies (3.6). Let now (3.6) be
fulfilled on U1. Clearly, (3.6) is a special form of (3.11). Thus in view of Proposition
3.2(ii), (3.11) implies (3.5). Now Proposition 3.1 completes the proof. �
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Theorem 3.2. If M is a hypersurface in Nn+1
s (c), n � 4, satisfying (1.4) on

U1 ⊂ UH ⊂M , then on this set we have

ρ2R =
ε

2

(
S2 −

(2(n− 1)κ̃
n(n+ 1)

− εψ
)
S +

(( (n− 1)κ̃
n(n+ 1)

− εψ
) (n− 1)κ̃
n(n+ 1)

+ ρ tr(H)
)
g
)

∧
(
S2−

(2(n−1)κ̃
n(n+ 1)

− εψ
)
S+

(( (n−1)κ̃
n(n+1)

− εψ
) (n−1)κ̃
n(n+1)

+ ρ tr(H)
)
g
)
+

ρ2κ̃

n(n+1)
G.

Proof. Our assertion is an immediate consequence of (3.2) and (3.9). �

Remark 3.1. (i) In view of the last theorem we can state that the curvature
tensor R of some semi-Riemannian manifolds (M, g), n � 4, is expressed by a
certain subset of UC ∩ US ⊂ M by a linear combination of the tensors: S2 ∧ S2,
S ∧ S2, g ∧ S2, S ∧ S, g ∧ S and g ∧ g, i.e., on this set we have

(3.13) R =
φ1

2
S2 ∧ S2 + φ2S ∧ S2 + φ3g ∧ S2 +

φ4

2
S ∧ S + φ5g ∧ S + φ6G,

where φ1, . . . , φ6 are some functions on this set. Evidently, (2.5) is a special case
of (3.13). Manifolds satisfying (3.13) will be investigated in subsequent papers.
(ii) If M is a hypersurface in a semi-Euclidean space E

n+1
s , n � 4, then the set

U1 ⊂ UH ⊂M consists of all points of M at which R · S �= 0.

Corollary 3.1. If M is a hypersurface in E
n+1
s , n � 4, satisfying (1.4) on

U1 ⊂ UH ⊂M , then on this set we have

(3.14) ρ2R =
ε

2
(
S2 + εψS + ρ tr(H)g

) ∧ (
S2 + εψS + ρ tr(H)g

)
.

4. Warped product hypersurfaces

Hypersurfaces M in Nn+1
s (c), n � 4, which are locally warped products, and in

addition, satisfying some curvature conditions on UH ⊂M were investigated in [7]
and [8], see e.g., Theorem 4.2 of [7]. It is easy to see that without loss of generality
the assumptions of that theorem: n � 5 and n− p = dim Ñ � 4, respectively, can
be replaced by the assumption n � 4 and n − p = dim Ñ � 3, respectively. Thus
we have

Theorem 4.1. [7, Theorem 4.2(i)] Let M be a hypersurface in a semi-Euclidean
space E

n+1
s , n � 4, and let g be the metric induced on M from the metric tensor of

E
n+1
s . Let U ⊂ UH ⊂M be an open submanifold of M such that (U, g) = M ×F Ñ ,

where (M, g), p = dimM � 1 and (Ñ , g̃), n − p = dim Ñ � 3, are some semi-
Riemannian manifolds and F is the warping function. Let x be a point of U at
which the tensors R · R and Z(R̃) are nonzero and let V ⊂ U be a coordinate
neighbourhood of x such that the tensors R ·R and Z(R̃) are nonzero at every point
of V .
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The following relations are fulfilled on V

(a) Rabcd = 0, (b) Tad = 0, (c)
∆1F

4F
= c0 = const,

(d) κ =
1
F

(κ2 − (n− p)(n− p− 1)c0),

where κ2 is the scalar curvature of (Ñ , g̃).

In the following we use notations from [7]. We have

Theorem 4.2. Let M be a hypersurface in a semi-Euclidean space E
n+1
s , n�4,

satisfying (1.4) on UH ⊂ M . Moreover, let V ⊂ UH be the set defined in Theo-
rem 4.1. If the assumptions of Theorem 4.1 are satisfied, then on V we have

(4.1) ρ = 0.

Proof. Let Hij be the local components of the second fundamental tensor H
of M . Thus (1.4) reads

(4.2) H3
ij = tr(H)H2

ij + ψHij + ρgij .

On V we have (see the proof of Theorem 4.2 of [7]) Hbc = 0, where b, c ∈
{1, 2, . . . , p}. Therefore (4.2) reduces to 0 = ρgbc = ρgbc, whence it follows (4.1),
completing the proof. �

Further, we have

Theorem 4.3. Let M be a hypersurface in Nn+1
s (c), n � 4, c �= 0 and let

g be the metric induced on M from the metric tensor of the ambient space. Let
U ⊂ UH ⊂ M be an open submanifold of M such that (U, g) = M ×F Ñ , where
(M, g), p = dimM � 1 and (Ñ , g̃), n−p = dim Ñ � 4, are some semi-Riemannian
manifolds and F is the warping function. Let x be a point of U at which the tensors
R ·R and Z(R̃) are nonzero and let V ⊂ U be a coordinate neighbourhood of x such
that the tensors R ·R and Z(R̃) are nonzero at every point of V .

(i) The following relations are fulfilled on V

(a) Had = 0,

(b) Tad = − 2κ̃F
n(n+ 1)

gad, tr(T ) = − 2pκ̃F
n(n+ 1)

,

(c)
∆1F

4F
= c0 − Fκ̃

n(n+ 1)
, c0 = const .,

(d) κ = κ1 +
κ2

F
+

1
F

( (n− p)(n+ p− 1)κ̃
n(n+ 1)

− (n− p)(n− p− 1)c0
)
,(4.3)

where κ1 and κ2 are the scalar curvatures of (M, g) and (Ñ , g̃), respectively. In
addition, if p � 2, then

(a) Rabcd =
κ1

p(p− 1)
Gabcd, (b)

κ1

p(p− 1)
=

κ̃

n(n+ 1)
.
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(ii) The local components of the curvature tensor R and the Ricci tensor S
of (U, g) and the second fundamental tensor H of U in M which may not vanish
identically on V are the following

(a) Rαβγδ = εF (H̃αδH̃βγ − H̃αγH̃βδ) +
κ̃

n(n+ 1)
Gαβγδ,(4.4)

(b) H̃αδ = H̃αδ(xp+1, . . . , xn),

Sαβ = S̃αβ +
( (n− 1)κ̃F
n(n+ 1)

− (n− p− 1)c0
)
g̃αβ ,(4.5)

(a) Hαδ =
√
FH̃αδ, (b) ∇̃αH̃βδ = ∇̃βH̃αδ.(4.6)

(iii) We have on V

(4.7) (R̃ · R̃)αβγδεµ −Q(S̃, R̃)αβγδεµ = −(n− p− 2)c0Q(g̃, C̃)αβγδεµ.

(iv) If (1.4) is satisfied on V , then on this set we have ρ = 0 and

(4.8) S̃α
µR̃µβγδ = ((n−p−1)c0−εψF )(Rαβγδ −c0Gαβγδ)+c0(g̃βγ S̃αδ − g̃βδS̃αγ).

Proof. By making use of (8), (9), (10) and (13) of [7] we obtain on V the
following relations

Rabcd = Rabcd = ε(HadHbc −HacHbd) +
κ̃

n(n+ 1)
Gabcd,(4.9)

−1
2
Tadg̃αβ = Raαβd = ε(HadHαβ −HaβHαd) +

κ̃

n(n+ 1)
gadgαβ ,(4.10)

FR̃αβγδ − ∆1F

4
G̃αβγδ = Rαβγδ

= ε(HαδHβγ −HαγHβδ) +
κ̃

n(n+ 1)
Gαβγδ,

(4.11)

0 = Raαβγ = ε(HaγHαβ −HaβHαγ),(4.12)

(a) Sad = Sad − n− p

2F
Tab,

(b) Sαδ = S̃αδ −
( tr(T )

2
+ (n− p− 1)

∆1F

4F

)
g̃αδ.

(4.13)

We note that if all components of the form Hαδ vanish at y ∈ V , then from (4.11) it
follows that the tensor Z(R̃) vanishes at this point, a contradiction. Thus at every
point of V at least one of the local components Hαδ must be nonzero. Therefore
from (4.12) we can deduce that Haγ = 0 at every point of V . Now (4.10) turns into

(4.14) −1
2
Tadg̃αβ = εHadHαβ +

κ̃F

n(n+ 1)
gadg̃αβ ,

whence

−1
2
Tad =

ε

n− p
g̃γδHγδHad +

κ̃F

n(n+ 1)
gad.
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Substituting this into (4.14) we obtain

Had

(
Hαβ − 1

n− p
g̃γδHγδ g̃αβ

)
= 0.

If at y ∈ V all components of the form Hαβ are proportional to g̃αβ , then by (4.11)
at this point we have Z(R̃) = 0, a contradiction. Thus all components of H of the
form Had must vanish at every point of V , i.e., (4.3)(a) holds on V . Thus (4.14)
reduces to (4.3)(b). Clearly, if p � 2, then (4.9) implies (4.4).

Since H is a Codazzi tensor, we have ∇aHβγ = ∇βHaγ and ∇αHβγ = ∇βHαγ .
From these relations, by making use of (7) of [7], we obtain (4.4)(b) and (4.6).
Further, (4.11) and (4.6)(a) yield (4.3)(c). Now using (4.3)(b), (4.3)(c), (4.13) and
the identity κ = gadSad + 1

F g̃
αδSαδ we obtain (4.3)(d). (4.7) is a consequence of

(19) and (34) of [4], (4.6)(a) and (4.6)(b) and the identity

Q(g, C)αβγδεµ = F 2
(
Q(g̃, R̃)αβγδεµ +

1
n− 2

Q(S̃, G̃)αβγδεµ

)
.

In the same manner as in the proof of Theorem 4.2 we can show that ρ = 0 on
V . Further, in view of Proposition 3.2, (1.4) implies (3.6). Since ρ vanishes on V ,
(3.6) yields

gεµSαεRµβγδ =
( (n− 1)κ̃
n(n+ 1)

− εψ
)(
Rαβγδ − κ̃

n(n+ 1)
Gαβγδ

)
+

κ̃

n(n+ 1)
(gβγSαδ − gβδSαγ).

Applying in this (9) of [7], (4.3)(b), (4.3)(c) and (4.5), we can check that (4.8)
holds on V . Our theorem is thus proved. �
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hypersurfaces of semi-Euclidean spaces I, Acta Math. Scientia, 22B (2002), 346–358.

[3] M. Belkhelfa, R. Deszcz, M. G�logowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, On
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[22] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X, Y ) ·R = 0. I. The local
version, J. Differential Geom. 17 (1982), 531–582.

Institute of Econometrics and Computer Science (Received 12 01 2006)
Technical University of Czestochowa
Armii Krajowej 19B
42-200 Czestochowa
Poland
ksawicz@zim.pcz.czest.pl


