COMMON SPECTRAL PROPERTIES OF LINEAR OPERATORS A AND B SUCH THAT $ABA = A^2$ AND $BAB = B^2$

Christoph Schmoeger

Communicated by Stevan Pilipović

ABSTRACT. Let A and B be bounded linear operators on a Banach space such that $ABA = A^2$ and $BAB = B^2$. Then A and B have some spectral properties in common. This situation is studied in the present paper.

1. Terminology and motivation

Throughout this paper X denotes a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. For $A \in \mathcal{L}(X)$, let N(A) denote the null space of A, and let A(X) denote the range of A. We use

$$\sigma(A), \sigma_p(A), \sigma_{ap}(A), \sigma_r(A), \sigma_c(A) \text{ and } \rho(A)$$

to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator $A \in \mathcal{L}(X)$ is *semi-Fredholm* if A(X) is closed and either $\alpha(A) := \dim N(A)$ or $\beta(A) := \operatorname{codim} A(X)$ is finite. $A \in \mathcal{L}(X)$ is *Fredolm* if A is semi-Fredholm, $\alpha(A) < \infty$ and $\beta(A) < \infty$. The *Fredholm spectrum* $\sigma_F(A)$ of A is given by

 $\sigma_F(A) = \{ \lambda \in \mathbb{C} : \lambda I - A \text{ is not Fredholm} \}.$

The dual space of X is denoted by X^* and the adjoint of $A \in \mathcal{L}(X)$ by A^* . The following theorem motivates our investigation:

THEOREM 1.1. Let $P, Q \in \mathcal{L}(X)$ such that $P^2 = P$ and $Q^2 = Q$. If A = PQand B = QP, then

(1) $ABA = A^2$ and $BAB = B^2$; (2) $\sigma(A) \smallsetminus \{0\} = \sigma(B) \smallsetminus \{0\}$; (3) $\sigma(A) \searrow \{0\} = \sigma(B) \searrow \{0\}$;

(3) $\sigma_p(A) \smallsetminus \{0\} = \sigma_p(B) \smallsetminus \{0\};$ (4) $\sigma_{ap}(A) \smallsetminus \{0\} = \sigma_{ap}(B) \smallsetminus \{0\};$

2000 Mathematics Subject Classification: Primary 47A10. Key words and phrases: operator equation, spectrum.

¹⁰⁹

SCHMOEGER

(5) $\sigma_r(A) \smallsetminus \{0\} = \sigma_r(B) \smallsetminus \{0\};$ (6) $\sigma_c(A) \smallsetminus \{0\} = \sigma_c(B) \smallsetminus \{0\};$ (7) $\sigma_F(A) \smallsetminus \{0\} = \sigma_F(B) \smallsetminus \{0\}.$

PROOF. (1) $ABA = PQQPPQ = PQPQ = A^2$, $BAB = QPPQQP = QPQP = B^2$. (2) follows from [2, Proposition 5.3], (3), (4), (5) and (6) are shown in [1, Theorem 3] and (7) follows from [1, Theorem 6].

The main result of this paper reads as follows:

THEOREM 1.2. Let $A, B \in \mathcal{L}(X)$ such that $ABA = A^2$ and $BAB = B^2$. Then (1) $\sigma_p(A) \smallsetminus \{0\} = \sigma_p(AB) \smallsetminus \{0\} = \sigma_p(BA) \smallsetminus \{0\} = \sigma_p(B) \smallsetminus \{0\};$ (2) $\sigma_{ap}(A) \smallsetminus \{0\} = \sigma_{ap}(AB) \smallsetminus \{0\} = \sigma_{ap}(BA) \smallsetminus \{0\} = \sigma_{ap}(B) \smallsetminus \{0\};$ (3) $\sigma_r(A) \smallsetminus \{0\} = \sigma_r(AB) \smallsetminus \{0\} = \sigma_r(BA) \smallsetminus \{0\} = \sigma_r(B) \smallsetminus \{0\};$ (4) $\sigma_c(A) \smallsetminus \{0\} = \sigma_c(AB) \smallsetminus \{0\} = \sigma_c(BA) \smallsetminus \{0\} = \sigma_c(B) \smallsetminus \{0\};$ (5) $\sigma(A) = \sigma(B) = \sigma(AB) = \sigma(BA);$ (6) $\sigma_F(A) = \sigma_F(B) = \sigma_F(AB) = \sigma_F(BA).$

A proof of Theorem 1.2 will be given in Section 2 of this paper.

For results concerning the operator equations $ABA = A^2$ and $BAB = B^2$ see [4], [6] and [7].

2. Proofs

Throughout we assume that $A, B \in \mathcal{L}(X)$ and that $ABA = A^2$ and $BAB = B^2$. It it easy to see that if $0 \in \rho(A)$ or $0 \in \rho(B)$, then A = B = I. So we always assume that $0 \in \sigma(A)$ and $0 \in \sigma(B)$.

PROPOSITION 2.1. $\sigma_p(A) \smallsetminus \{0\} = \sigma_p(AB) \smallsetminus \{0\} = \sigma_p(BA) \smallsetminus \{0\} = \sigma_p(B) \smallsetminus \{0\}.$

PROOF. It suffices to show that $\sigma_p(A) \smallsetminus \{0\} \subseteq \sigma_p(AB) \smallsetminus \{0\} \subseteq \sigma_p(B) \smallsetminus \{0\}$. To this end let $\lambda \in \sigma_p(A) \smallsetminus \{0\}$. Hence there is $x \in X \smallsetminus \{0\}$ such that $Ax = \lambda x$. Then $BAx = \lambda Bx$ and $A^2x = \lambda^2 x$, thus $\lambda ABx = ABAx = A^2x = \lambda^2 x$; this gives

hence $\lambda \in \sigma_p(AB) \setminus \{0\}$ and $B(Bx) = B^2x = BABx = \lambda Bx$. Because of (2.1), $Bx \neq 0$, therefore $0 \in \sigma_p(B) \setminus \{0\}$.

COROLLARY 2.2. If $\lambda \neq 0$, then

$$N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),$$

$$N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I))$$

and

$$\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(BA - \lambda I) = \alpha(B - \lambda I).$$

PROOF. The proof of Proposition 2.1 shows that $N(A - \lambda I) \subseteq N(AB - \lambda I)$. Let $x \in N(AB - \lambda I)$, thus $ABx = \lambda x$, hence $\lambda Ax = A^2Bx = ABABx = (AB)^2x = \lambda^2 x$. This gives $x \in N(A - \lambda I)$. Hence we have $N(A - \lambda I) = N(AB - \lambda I)$. Similar arguments show that $N(B - \lambda I) = N(BA - \lambda I)$. From [1, Proposition 2] we see that $N(AB - \lambda I) = A(N(BA - \lambda I))$, thus $N(AB - \lambda I) = A(N(B - \lambda I))$.

110

It is easy to see that $N(A) \cap N(B - \lambda I) = \{0\}$, hence the restriction of A to $N(B - \lambda I)$ is injective, thus

$$\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(A(N(B - \lambda I))) = \alpha(B - \lambda I).$$

PROPOSITION 2.3. We have

$$\sigma_{ap}(A) \smallsetminus \{0\} = \sigma_{ap}(AB) \smallsetminus \{0\} = \sigma_{ap}(BA) \smallsetminus \{0\} = \sigma_{ap}(B) \smallsetminus \{0\}.$$

PROOF. It suffices to show that $\sigma_{ap}(A) \setminus \{0\} \subseteq \sigma_{ap}(AB) \setminus \{0\} \subseteq \sigma_{ap}(B) \setminus \{0\}$. To this end let $\lambda \in \sigma_{ap}(A) \setminus \{0\}$. Then there is a sequence (x_n) in X with $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $(\lambda I - A)x_n \to 0$ $(n \to \infty)$. Let $z_n = (\lambda I - A)x_n$; hence $Ax_n = \lambda x_n - z_n$ and $z_n \to 0$. Then

$$A^{2}x_{n} = \lambda Ax_{n} - Az_{n} = \lambda(\lambda x_{n} - z_{n}) - Az_{n} = \lambda^{2}x_{n} - \lambda z_{n} - Az_{n}$$

and

$$BAx_n = \lambda Bx_n - Bz_n,$$

thus

$$A^2x_n = ABAx_n = \lambda ABx_n - ABz_n,$$

therefore

(2.2)
$$\lambda^2 x_n - \lambda AB x_n = (\lambda I + A - AB) z_n$$

this gives $(AB - \lambda I)x_n \to 0$, hence $\lambda \in \sigma_{ap}(AB) \smallsetminus \{0\}$. From(2.2) we get

$$\lambda^2 B x_n - \lambda B^2 x_n = w_n$$

where $w_n = (\lambda B + AB - B^2)z_n \to 0 \ (n \to \infty)$. Hence

(2.3)
$$(\lambda I - B)Bx_n = \lambda^{-1}w_n.$$

Because of (2.2) there is $m \in \mathbb{N}$ such that

 $Bx_n \neq 0$ for $n \ge m$ and $(||Bx_n||^{-1})_{n \ge m}$ is bounded.

For $n \ge m$ let $y_n = ||Bx_n||^{-1}Bx_n$. Then $||y_n|| = 1$ and, by (2.3)

$$(\lambda I - B)y_n = (\lambda \|Bx_n\|)^{-1}w_n \quad (n \ge m).$$

Therefore $(\lambda I - B)y_n \to 0 \ (n \to \infty)$, and so $\lambda \in \sigma_{ap}(B) \setminus \{0\}$.

REMARK. The proof of Proposition 2.3 also follows from Proposition 2.1 if we apply Berberian–Quigley functor (see e.g. [5, Theorem 1-5.11]).

PROPOSITION 2.4. $\sigma_r(A) \smallsetminus \{0\} = \sigma_r(AB) \smallsetminus \{0\}.$

PROOF. Let $\lambda \in \sigma_r(A) \setminus \{0\}$. Hence $\lambda \notin \sigma_p(A)$ and $\overline{(\lambda I - A)(X)} \neq X$. Thus $N(\lambda I^* - A^*) \neq \{0\}$. By Proposition 2.1, $N(\lambda I^* - (AB)^*) = N(\lambda I^* - B^*A^*) \neq \{0\}$, hence $\overline{(\lambda I - AB)(X)} \neq X$. Since $\lambda \notin \sigma_p(AB)$ (Proposition 2.1), we have $\lambda \in \sigma_r(AB) \setminus \{0\}$.

Now let $\lambda \in \sigma_r(AB) \smallsetminus \{0\}$, hence $\lambda \notin \sigma_p(AB)$ and $(\lambda I - AB)(X) \neq X$. It follows that $N(\lambda I^* - (AB)^*) = N(\lambda I^* - B^*A^*) \neq \{0\}$. From Proposition 2.1 we get $N(\lambda I^* - A^*) \neq \{0\}$, thus $(\lambda I - A)(X) \neq X$. Since $\lambda \notin \sigma_p(A)$ (Proposition 2.1), $\lambda \in \sigma_r(A)$.

COROLLARY 2.5. $\sigma_r(A) \smallsetminus \{0\} = \sigma_r(B) \smallsetminus \{0\}.$

PROOF. By [1, Theorem 3], $\sigma_r(AB) \smallsetminus \{0\} = \sigma_r(BA) \smallsetminus \{0\}$. Now use Proposition 2.4.

Let $T \in \mathcal{L}(X)$. The number

$$\gamma(T) = \inf\left\{\frac{\|TX\|}{d(x, N(T))} : x \in X, x \notin N(T)\right\}$$

is called the *minimal modulus* of T; d(x,T) denotes the distance of x from N(T). It is well known that T(X) is closed if and only if $\gamma(T) > 0$ (see [3, Satz 55.2]).

PROPOSITION 2.6. $\sigma(A) = \sigma(AB)$.

PROOF. Let $\lambda \in \sigma(A) \setminus \{0\}$ and assume to the contrary that $\lambda \in \rho(AB)$. Then $\alpha(\lambda I - AB) = 0$ and $\lambda \notin \sigma_{ap}(AB)$. By Proposition 2.1 and Proposition 2.3, $\alpha(\lambda I - A) = 0$ and $\lambda \notin \sigma_{ap}(A)$. Therefore

$$\gamma(\lambda I - A) = \inf\{\|(\lambda I - A)x\| : x \in X, \|x\| = 1\} > 0$$

hence $(\lambda I - A)(X)$ is closed. Thus we have shown that $\lambda I - A$ is semi-Fredholm. Since $\lambda \in \rho((AB)^*) = \rho(B^*A^*)$, it follows from [2, Proposition 5.3] that $\lambda \in \rho(A^*B^*)$. Since $A^*B^*A^* = (A^*)^2$ and $B^*A^*B^* = (B^*)^2$, the same arguments as above show that $\alpha(\lambda I^* - A^*) = 0$ and that $\lambda I^* - A^*$ is semi-Fredholm. By [3, Satz 82.1] it follows now that $\beta(\lambda I - A) = \alpha(\lambda I^* - A^*) = 0$, thus $0 \in \rho(A)$, a contradiction. Hence $\sigma(A) \smallsetminus \{0\} \subseteq \sigma(AB) \smallsetminus \{0\}$.

Now let $\lambda \in \sigma(AB) \setminus \{0\}$ and assume that $\lambda \in \rho(A)$. Then $\alpha(\lambda I - A) = 0$ and $\lambda \notin \sigma_{ap}(A)$. Proposition 2.1 and Proposition 2.3 show that $\alpha(\lambda I - AB) = 0$ and $\lambda \notin \sigma_{ap}(AB)$. As in the first part of the proof we conclude that $\gamma(\lambda I - AB) > 0$. Thus $\lambda I - AB$ is semi-Fredholm. Since $\lambda \in \rho(A^*)$, the same arguments as above give $\alpha(\lambda I^* - (AB)^*) = 0$ and $\lambda I^* - (AB)^*$ is semi-Fredholm. From $\beta(\lambda I - AB) = \alpha(\lambda I^* - (AB)^*) = 0$ we get the contradiction $\lambda \in \rho(AB)$.

So far we have $\sigma(A) \setminus \{0\} = \sigma(AB) \setminus \{0\}$. It remains to show that $0 \in \sigma(AB)$. Assume to the contrary that there is $C \in \mathcal{L}(X)$ with ABC = I = CAB. Then $N(B) = \{0\}$ and $B^2C = B$, therefore BC = I, hence A = I, a contradiction. \Box

COROLLARY 2.7. $\sigma(A) = \sigma(B)$.

PROOF. Since $\sigma(AB) \smallsetminus \{0\} = \sigma(BA) \smallsetminus \{0\}$ [2, Proposition 5.3], Proposition 2.6 shows that $\sigma(A) \smallsetminus \{0\} = \sigma(B) \smallsetminus \{0\}$. Because of $0 \in \sigma(A) \cap \sigma(B)$, we have $\sigma(A) = \sigma(B)$.

PROPOSITION 2.8. $\sigma_c(A) \smallsetminus \{0\} = \sigma_c(AB) \smallsetminus \{0\}.$

PROOF. By Proposition 2.1, Proposition 2.4 and Proposition 2.6

$$\sigma_c(A) \smallsetminus \{0\} = \sigma(A) \smallsetminus [\sigma_p(A) \cup \sigma_r(A) \cup \{0\}]$$

= $\sigma(AB) \smallsetminus [\sigma_p(AB) \cup \sigma_r(AB) \cup \{0\}] = \sigma_c(AB) \smallsetminus \{0\}.$

COROLLARY 2.9. $\sigma_c(A) \smallsetminus \{0\} = \sigma_c(B) \smallsetminus \{0\}.$

PROOF. Use Proposition 2.8 and [1, Theorem 3].

In what follows \mathcal{A} denotes a complex unital Banach algebra. For $a \in \mathcal{A}$ we write $\sigma(a)$ for the spectrum of a and λ_a for the bounded linear operator on \mathcal{A} given by $\lambda_a(x) = ax$ ($x \in \mathcal{A}$).

PROPOSITION 2.10. Let $a, b \in \mathcal{A}$.

(1)
$$\sigma(a) = \sigma(\lambda_a);$$

(2) $\lambda_{ab} = \lambda_a \lambda_b;$
(3) if $aba = a^2$ and $bab = b^2$, then $\lambda_a \lambda_b \lambda_a = \lambda_a^2$, $\lambda_b \lambda_a \lambda_b = \lambda_b^2$, and $\sigma(a) = \sigma(b) = \sigma(ab) = \sigma(ba).$

PROOF. (1) [2, Proposition 3.19].

(2) Clear.

(3) follows from (1), (2), Proposition 2.6 and Corollary 2.7.

Let $\mathcal{K}(X)$ denote the ideal of all compact operators in $\mathcal{L}(X)$ and let $\widehat{\mathcal{L}}$ denote the quotient algebra $\mathcal{L}(X)/(X)$. By \widehat{T} we denote the coset $T + \mathcal{K}(X) \in \widehat{\mathcal{L}}$ $(T \in \mathcal{L}(X))$. Observe that $\widehat{\mathcal{L}}$ is a Banach algebra with unit \widehat{I} . Satz 81.2 in [3] shows that for $T \in \mathcal{L}(X)$ we have

T is Fredholm
$$\iff 0 \notin \sigma(T)$$
.

Hence

(2.4)
$$\sigma_F(T) = \sigma(\widehat{T})$$

Since $\widehat{A}\widehat{B}\widehat{A} = \widehat{A}^2$ and $\widehat{B}\widehat{A}\widehat{B} = \widehat{B}^2$, an immediate consequence of Proposition 2.10 and (2.4) is

COROLLARY 2.11. $\sigma_F(A) = \sigma_F(B) = \sigma_F(AB) = \sigma_F(BA).$

The proof of Theorem 1.2 is now complete.

If $T \in \mathcal{L}(X)$ is Fredholm then the *index* $\operatorname{ind}(T)$ of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$.

COROLLARY 2.12. Let $\lambda \notin \sigma_F(A)$.

(1) If $\lambda \neq 0$, then $\operatorname{ind}(\lambda I - A) = \operatorname{ind}(\lambda I - AB) = \operatorname{ind}(\lambda I - BA) = \operatorname{ind}(\lambda I - B)$. (2) If $\lambda = 0$, then $\operatorname{ind}(A) = \operatorname{ind}(B) = \operatorname{ind}(AB) = \operatorname{ind}(BA) = 0$.

PROOF. (1) Because of [1, Theorem 6] it suffices to show that $ind(\lambda I - A) = ind(\lambda I - BA)$. By Corollary 2.2 and [3, Satz 82.1] we have

$$\operatorname{ind}(\lambda I - A) = \alpha(\lambda I - A) - \alpha(\lambda I^* - A^*)$$
$$= \alpha(\lambda I - AB) - \alpha(\lambda I^* - A^*B^*)$$
$$= \alpha(\lambda I - AB) - \alpha(\lambda I^* - (BA)^*)$$
$$= \alpha(\lambda I - AB) - \beta(\lambda I - BA)$$
$$= \alpha(\lambda I - BA) - \beta(\lambda I - BA) = \operatorname{ind} I - BA).$$

(2) We have $\widehat{A} = \widehat{B} = \widehat{AB} = \widehat{BA} = \widehat{I}$, thus, by [3, Satz 82.5] we get

$$\operatorname{ind}(A) = \operatorname{ind}(B) = \operatorname{ind}(AB) = \operatorname{ind}(BA) = \operatorname{ind}(I) = 0.$$

SCHMOEGER

An operator $T \in \mathcal{L}(X)$ is called a *Riesz operator* if $\sigma_F(T) = \{0\}$. From Corollary 2.11 we have:

COROLLARY 2.13. The following assertions are equivalent:

- (1) A is a Riesz operator;
- (2) B is a Riesz operator;
- (3) AB is a Riesz operator;
- (4) BA is a Riesz operator.

References

- B.A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), 1055–1061.
- [2] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
- [3] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
- [4] V. Rakočević, A note on a theorem of I. Vidav, Publ. Inst. Math. (Beograd) 68(82) (2000), 105–107.
- [5] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960.
- [6] Ch. Schmoeger, On the operator equations $ABA = A^2$ and $BAB = B^2$, Publ. Inst. Math. (Beograd) 78(92) (2005), 127–133.
- [7] I. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4(18) (1964), 157–163.

(Received 15 03 2006)

(Revised 06 09 2006)

Institut für Analysis Universität Karlsruhe (TH) Englerstraße 2 76128 Karlsruhe Germany christoph.schmoeger@math.uni-karlsruhe.de