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SUCH THAT ABA = A2 AND BAB = B2
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Abstract. Let A and B be bounded linear operators on a Banach space such
that ABA = A2 and BAB = B2. Then A and B have some spectral properties
in common. This situation is studied in the present paper.

1. Terminology and motivation

Throughout this paper X denotes a complex Banach space and L(X) the Ba-
nach algebra of all bounded linear operators on X. For A ∈ L(X), let N(A) denote
the null space of A, and let A(X) denote the range of A. We use

σ(A), σp(A), σap(A), σr(A), σc(A) and ρ(A)

to denote spectrum, the point spectrum, the approximate point spectrum, the
residual spectrum, the continuous spectrum and the resolvent set of A, respectively.
An operator A ∈ L(X) is semi-Fredholm if A(X) is closed and either α(A) :=
dim N(A) or β(A) := codim A(X) is finite. A ∈ L(X) is Fredolm if A is semi-
Fredholm, α(A) < ∞ and β(A) < ∞. The Fredholm spectrum σF (A) of A is given
by

σF (A) = {λ ∈ C : λI − A is not Fredholm}.
The dual space of X is denoted by X∗ and the adjoint of A ∈ L(X) by A∗.

The following theorem motivates our investigation:

Theorem 1.1. Let P,Q ∈ L(X) such that P 2 = P and Q2 = Q. If A = PQ
and B = QP , then

(1) ABA = A2 and BAB = B2;
(2) σ(A) � {0} = σ(B) � {0};
(3) σp(A) � {0} = σp(B) � {0};
(4) σap(A) � {0} = σap(B) � {0};
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(5) σr(A) � {0} = σr(B) � {0};
(6) σc(A) � {0} = σc(B) � {0};
(7) σF (A) � {0} = σF (B) � {0}.

Proof. (1) ABA = PQQPPQ = PQPQ = A2, BAB = QPPQQP =
QPQP = B2. (2) follows from [2, Proposition 5.3], (3), (4), (5) and (6) are
shown in [1, Theorem 3] and (7) follows from [1, Theorem 6]. �

The main result of this paper reads as follows:

Theorem 1.2. Let A,B ∈ L(X) such that ABA = A2 and BAB = B2. Then
(1) σp(A) � {0} = σp(AB) � {0} = σp(BA) � {0} = σp(B) � {0};
(2) σap(A) � {0} = σap(AB) � {0} = σap(BA) � {0} = σap(B) � {0};
(3) σr(A) � {0} = σr(AB) � {0} = σr(BA) � {0} = σr(B) � {0};
(4) σc(A) � {0} = σc(AB) � {0} = σc(BA) � {0} = σc(B) � {0};
(5) σ(A) = σ(B) = σ(AB) = σ(BA);
(6) σF (A) = σF (B) = σF (AB) = σF (BA).

A proof of Theorem 1.2 will be given in Section 2 of this paper.
For results concerning the operator equations ABA = A2 and BAB = B2 see

[4], [6] and [7].

2. Proofs

Throughout we assume that A,B ∈ L(X) and that ABA = A2 and BAB = B2.
It it easy to see that if 0 ∈ ρ(A) or 0 ∈ ρ(B), then A = B = I. So we always assume
that 0 ∈ σ(A) and 0 ∈ σ(B).

Proposition 2.1. σp(A)�{0} = σp(AB)�{0} = σp(BA)�{0} = σp(B)�{0}.
Proof. It suffices to show that σp(A) � {0} ⊆ σp(AB) � {0} ⊆ σp(B) � {0}.

To this end let λ ∈ σp(A) � {0}. Hence there is x ∈ X � {0} such that Ax = λx.
Then BAx = λBx and A2x = λ2x, thus λABx = ABAx = A2x = λ2x; this gives

(2.1) ABx = λx,

hence λ ∈ σp(AB) � {0} and B(Bx) = B2x = BABx = λBx. Because of (2.1),
Bx �= 0, therefore 0 ∈ σp(B) � {0}. �

Corollary 2.2. If λ �= 0, then

N(A − λI) = N(AB − λI) = A(N(B − λI)),

N(B − λI) = N(BA − λI) = B(N(A − λI))

and
α(A − λI) = α(AB − λI) = α(BA − λI) = α(B − λI).

Proof. The proof of Proposition 2.1 shows that N(A − λI) ⊆ N(AB − λI).
Let x ∈ N(AB−λI), thus ABx = λx, hence λAx = A2Bx = ABABx = (AB)2x =
λ2x. This gives x ∈ N(A−λI). Hence we have N(A−λI) = N(AB−λI). Similar
arguments show that N(B − λI) = N(BA − λI). From [1, Proposition 2] we see
that N(AB − λI) = A(N(BA − λI)), thus N(AB − λI) = A(N(B − λI)).
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It is easy to see that N(A) ∩ N(B − λI) = {0}, hence the restriction of A to
N(B − λI) is injective, thus

α(A − λI) = α(AB − λI) = α(A(N(B − λI))) = α(B − λI). �

Proposition 2.3. We have

σap(A) � {0} = σap(AB) � {0} = σap(BA) � {0} = σap(B) � {0}.
Proof. It suffices to show that σap(A)�{0} ⊆ σap(AB)�{0} ⊆ σap(B)�{0}.

To this end let λ ∈ σap(A)�{0}. Then there is a sequence (xn) in X with ‖xn‖ = 1
for all n ∈ N and (λI − A)xn → 0 (n → ∞). Let zn = (λI − A)xn; hence
Axn = λxn − zn and zn → 0. Then

A2xn = λAxn − Azn = λ(λxn − zn) − Azn = λ2xn − λzn − Azn

and
BAxn = λBxn − Bzn,

thus
A2xn = ABAxn = λABxn − ABzn,

therefore

(2.2) λ2xn − λABxn = (λI + A − AB)zn,

this gives (AB − λI)xn → 0, hence λ ∈ σap(AB) � {0}. From(2.2) we get

λ2Bxn − λB2xn = wn,

where wn = (λB + AB − B2)zn → 0 (n → ∞). Hence

(2.3) (λI − B)Bxn = λ−1wn.

Because of (2.2) there is m ∈ N such that

Bxn �= 0 for n � m and (‖Bxn‖−1)n�m is bounded.

For n � m let yn = ‖Bxn‖−1Bxn. Then ‖yn‖ = 1 and, by (2.3)

(λI − B)yn = (λ‖Bxn‖)−1wn (n � m).

Therefore (λI − B)yn → 0 (n → ∞), and so λ ∈ σap(B) � {0}. �

Remark. The proof of Proposition 2.3 also follows from Proposition 2.1 if we
apply Berberian–Quigley functor (see e.g. [5, Theorem 1-5.11]).

Proposition 2.4. σr(A) � {0} = σr(AB) � {0}.
Proof. Let λ ∈ σr(A) � {0}. Hence λ /∈ σp(A) and (λI − A)(X) �= X. Thus

N(λI∗ − A∗) �= {0}. By Proposition 2.1, N(λI∗ − (AB)∗) = N(λI∗ − B∗A∗) �=
{0}, hence (λI − AB)(X) �= X. Since λ /∈ σp(AB)(Proposition 2.1), we have
λ ∈ σr(AB) � {0}.

Now let λ ∈ σr(AB) � {0}, hence λ /∈ σp(AB) and (λI − AB)(X) �= X.
It follows thatN(λI∗ − (AB)∗) = N(λI∗ − B∗A∗) �= {0}. From Proposition 2.1 we
get N(λI∗−A∗) �= {0}, thus (λI − A)(X) �= X. Since λ /∈ σp(A) (Proposition 2.1),
λ ∈ σr(A). �
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Corollary 2.5. σr(A) � {0} = σr(B) � {0}.
Proof. By [1, Theorem 3], σr(AB) � {0} = σr(BA) � {0}. Now use Propo-

sition 2.4. �
Let T ∈ L(X). The number

γ(T ) = inf
{ ‖TX‖

d (x,N(T ))
: x ∈ X, x /∈ N(T )

}

is called the minimal modulus of T ; d (x, T ) denotes the distance of x from N(T ).
It is well known that T (X) is closed if and only if γ(T ) > 0 (see [3, Satz 55.2]).

Proposition 2.6. σ(A) = σ(AB).

Proof. Let λ ∈ σ(A) � {0} and assume to the contrary that λ ∈ ρ(AB).
Then α(λI − AB) = 0 and λ /∈ σap(AB). By Proposition 2.1 and Proposition 2.3,
α(λI − A) = 0 and λ /∈ σap(A). Therefore

γ(λI − A) = inf{‖(λI − A)x‖ : x ∈ X, ‖x‖ = 1} > 0

hence (λI − A)(X) is closed. Thus we have shown that λI − A is semi-Fredholm.
Since λ ∈ ρ((AB)∗) = ρ(B∗A∗), it follows from [2, Proposition 5.3] that λ ∈
ρ(A∗B∗). Since A∗B∗A∗ = (A∗)2 and B∗A∗B∗ = (B∗)2, the same arguments as
above show that α(λI∗ − A∗) = 0 and that λI∗ − A∗ is semi-Fredholm. By [3,
Satz 82.1] it follows now that β(λI − A) = α(λI∗ − A∗) = 0, thus 0 ∈ ρ(A), a
contradiction. Hence σ(A) � {0} ⊆ σ(AB) � {0}.

Now let λ ∈ σ(AB) � {0} and assume that λ ∈ ρ(A). Then α(λI −A) = 0 and
λ /∈ σap(A). Proposition 2.1 and Proposition 2.3 show that α(λI − AB) = 0 and
λ /∈ σap(AB). As in the first part of the proof we conclude that γ(λI − AB) > 0.
Thus λI − AB is semi-Fredholm. Since λ ∈ ρ(A∗), the same arguments as above
give α(λI∗ − (AB)∗) = 0 and λI∗ − (AB)∗ is semi-Fredholm. From β(λI −AB) =
α(λI∗ − (AB)∗) = 0 we get the contradiction λ ∈ ρ(AB).

So far we have σ(A)�{0} = σ(AB)�{0}. It remains to show that 0 ∈ σ(AB).
Assume to the contrary that there is C ∈ L(X) with ABC = I = CAB. Then
N(B) = {0} and B2C = B, therefore BC = I, hence A = I, a contradiction. �

Corollary 2.7. σ(A) = σ(B).

Proof. Since σ(AB) � {0} = σ(BA) � {0} [2, Proposition 5.3], Proposition
2.6 shows that σ(A) � {0} = σ(B) � {0}. Because of 0 ∈ σ(A) ∩ σ(B), we have
σ(A) = σ(B). �

Proposition 2.8. σc(A) � {0} = σc(AB) � {0}.
Proof. By Proposition 2.1, Proposition 2.4 and Proposition 2.6

σc(A) � {0} = σ(A) � [σp(A) ∪ σr(A) ∪ {0}]
= σ(AB) � [σp(AB) ∪ σr(AB) ∪ {0}] = σc(AB) � {0}. �

Corollary 2.9. σc(A) � {0} = σc(B) � {0}.
Proof. Use Proposition 2.8 and [1, Theorem 3]. �
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In what follows A denotes a complex unital Banach algebra. For a ∈ A we
write σ(a) for the spectrum of a and λa for the bounded linear operator on A given
by λa(x) = ax (x ∈ A).

Proposition 2.10. Let a, b ∈ A.
(1) σ(a) = σ(λa);
(2) λab = λaλb;
(3) if aba = a2 and bab = b2, then λaλbλa = λ2

a, λbλaλb = λ2
b , and

σ(a) = σ(b) = σ(ab) = σ(ba).

Proof. (1) [2, Proposition 3.19].
(2) Clear.
(3) follows from (1), (2), Proposition 2.6 and Corollary 2.7. �

Let K(X) denote the ideal of all compact operators in L(X) and let L̂ denote the
quotient algebra L(X)/(̧X). By T̂ we denote the coset T +K(X) ∈ L̂ (T ∈ L(X)).
Observe that L̂ is a Banach algebra with unit Î. Satz 81.2 in [3] shows that for
T ∈ L(X) we have

T is Fredholm ⇐⇒ 0 /∈ σ(T̂ ).
Hence

σF (T ) = σ(T̂ ).(2.4)

Since ÂB̂Â = Â2 and B̂ÂB̂ = B̂2, an immediate consequence of Proposition 2.10
and (2.4) is

Corollary 2.11. σF (A) = σF (B) = σF (AB) = σF (BA).

The proof of Theorem 1.2 is now complete. �

If T ∈ L(X) is Fredholm then the index ind(T ) of T is defined by ind(T ) =
α(T ) − β(T ).

Corollary 2.12. Let λ /∈ σF (A).
(1) If λ �= 0, then ind(λI −A) = ind(λI −AB) = ind(λI −BA) = ind(λI −B).
(2) If λ = 0, then ind(A) = ind(B) = ind(AB) = ind(BA) = 0.

Proof. (1) Because of [1, Theorem 6] it suffices to show that ind(λI − A) =
ind(λI − BA). By Corollary 2.2 and [3, Satz 82.1] we have

ind(λI − A) = α(λI − A) − α(λI∗ − A∗)

= α(λI − AB) − α(λI∗ − A∗B∗)

= α(λI − AB) − α(λI∗ − (BA)∗)

= α(λI − AB) − β(λI − BA)

= α(λI − BA) − β(λI − BA) = ind I − BA).

(2) We have Â = B̂ = ÂB = B̂A = Î, thus, by [3, Satz 82.5] we get

ind(A) = ind(B) = ind(AB) = ind(BA) = ind(I) = 0. �
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An operator T ∈ L(X) is called a Riesz operator if σF (T ) = {0}. From
Corollary 2.11 we have:

Corollary 2.13. The following assertions are equivalent:
(1) A is a Riesz operator;
(2) B is a Riesz operator;
(3) AB is a Riesz operator;
(4) BA is a Riesz operator.
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