COMMON SPECTRAL PROPERTIES OF LINEAR OPERATORS A AND B SUCH THAT $A B A=A^{2}$ AND $B A B=B^{2}$

Christoph Schmoeger

Communicated by Stevan Pilipovic

Abstract

Let A and B be bounded linear operators on a Banach space such that $A B A=A^{2}$ and $B A B=B^{2}$. Then A and B have some spectral properties in common. This situation is studied in the present paper.

1. Terminology and motivation

Throughout this paper X denotes a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. For $A \in \mathcal{L}(X)$, let $N(A)$ denote the null space of A, and let $A(X)$ denote the range of A. We use

$$
\sigma(A), \sigma_{p}(A), \sigma_{a p}(A), \sigma_{r}(A), \sigma_{c}(A) \text { and } \rho(A)
$$

to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator $A \in \mathcal{L}(X)$ is semi-Fredholm if $A(X)$ is closed and either $\alpha(A):=$ $\operatorname{dim} N(A)$ or $\beta(A):=\operatorname{codim} A(X)$ is finite. $A \in \mathcal{L}(X)$ is Fredolm if A is semiFredholm, $\alpha(A)<\infty$ and $\beta(A)<\infty$. The Fredholm spectrum $\sigma_{F}(A)$ of A is given by

$$
\sigma_{F}(A)=\{\lambda \in \mathbb{C}: \lambda I-A \text { is not Fredholm }\} .
$$

The dual space of X is denoted by X^{*} and the adjoint of $A \in \mathcal{L}(X)$ by A^{*}.
The following theorem motivates our investigation:
Theorem 1.1. Let $P, Q \in \mathcal{L}(X)$ such that $P^{2}=P$ and $Q^{2}=Q$. If $A=P Q$ and $B=Q P$, then
(1) $A B A=A^{2}$ and $B A B=B^{2}$;
(2) $\sigma(A) \backslash\{0\}=\sigma(B) \backslash\{0\}$;
(3) $\sigma_{p}(A) \backslash\{0\}=\sigma_{p}(B) \backslash\{0\}$;
(4) $\sigma_{a p}(A) \backslash\{0\}=\sigma_{a p}(B) \backslash\{0\}$;
(5) $\sigma_{r}(A) \backslash\{0\}=\sigma_{r}(B) \backslash\{0\}$;
(6) $\sigma_{c}(A) \backslash\{0\}=\sigma_{c}(B) \backslash\{0\}$;
(7) $\sigma_{F}(A) \backslash\{0\}=\sigma_{F}(B) \backslash\{0\}$.

Proof. (1) $A B A=P Q Q P P Q=P Q P Q=A^{2}, B A B=Q P P Q Q P=$ $Q P Q P=B^{2}$. (2) follows from [2, Proposition 5.3], (3), (4), (5) and (6) are shown in $[\mathbf{1}$, Theorem 3] and (7) follows from $[\mathbf{1}$, Theorem 6].

The main result of this paper reads as follows:
Theorem 1.2. Let $A, B \in \mathcal{L}(X)$ such that $A B A=A^{2}$ and $B A B=B^{2}$. Then
(1) $\sigma_{p}(A) \backslash\{0\}=\sigma_{p}(A B) \backslash\{0\}=\sigma_{p}(B A) \backslash\{0\}=\sigma_{p}(B) \backslash\{0\}$;
(2) $\sigma_{a p}(A) \backslash\{0\}=\sigma_{a p}(A B) \backslash\{0\}=\sigma_{a p}(B A) \backslash\{0\}=\sigma_{a p}(B) \backslash\{0\}$;
(3) $\sigma_{r}(A) \backslash\{0\}=\sigma_{r}(A B) \backslash\{0\}=\sigma_{r}(B A) \backslash\{0\}=\sigma_{r}(B) \backslash\{0\}$;
(4) $\sigma_{c}(A) \backslash\{0\}=\sigma_{c}(A B) \backslash\{0\}=\sigma_{c}(B A) \backslash\{0\}=\sigma_{c}(B) \backslash\{0\}$;
(5) $\sigma(A)=\sigma(B)=\sigma(A B)=\sigma(B A)$;
(6) $\sigma_{F}(A)=\sigma_{F}(B)=\sigma_{F}(A B)=\sigma_{F}(B A)$.

A proof of Theorem 1.2 will be given in Section 2 of this paper.
For results concerning the operator equations $A B A=A^{2}$ and $B A B=B^{2}$ see [4], [6] and [7].

2. Proofs

Throughout we assume that $A, B \in \mathcal{L}(X)$ and that $A B A=A^{2}$ and $B A B=B^{2}$. It it easy to see that if $0 \in \rho(A)$ or $0 \in \rho(B)$, then $A=B=I$. So we always assume that $0 \in \sigma(A)$ and $0 \in \sigma(B)$.

Proposition 2.1. $\sigma_{p}(A) \backslash\{0\}=\sigma_{p}(A B) \backslash\{0\}=\sigma_{p}(B A) \backslash\{0\}=\sigma_{p}(B) \backslash\{0\}$.
Proof. It suffices to show that $\sigma_{p}(A) \backslash\{0\} \subseteq \sigma_{p}(A B) \backslash\{0\} \subseteq \sigma_{p}(B) \backslash\{0\}$. To this end let $\lambda \in \sigma_{p}(A) \backslash\{0\}$. Hence there is $x \in X \backslash\{0\}$ such that $A x=\lambda x$. Then $B A x=\lambda B x$ and $A^{2} x=\lambda^{2} x$, thus $\lambda A B x=A B A x=A^{2} x=\lambda^{2} x$; this gives

$$
\begin{equation*}
A B x=\lambda x \tag{2.1}
\end{equation*}
$$

hence $\lambda \in \sigma_{p}(A B) \backslash\{0\}$ and $B(B x)=B^{2} x=B A B x=\lambda B x$. Because of (2.1), $B x \neq 0$, therefore $0 \in \sigma_{p}(B) \backslash\{0\}$.

Corollary 2.2. If $\lambda \neq 0$, then

$$
\begin{aligned}
& N(A-\lambda I)=N(A B-\lambda I)=A(N(B-\lambda I)) \\
& N(B-\lambda I)=N(B A-\lambda I)=B(N(A-\lambda I))
\end{aligned}
$$

and

$$
\alpha(A-\lambda I)=\alpha(A B-\lambda I)=\alpha(B A-\lambda I)=\alpha(B-\lambda I)
$$

Proof. The proof of Proposition 2.1 shows that $N(A-\lambda I) \subseteq N(A B-\lambda I)$. Let $x \in N(A B-\lambda I)$, thus $A B x=\lambda x$, hence $\lambda A x=A^{2} B x=A B A B x=(A B)^{2} x=$ $\lambda^{2} x$. This gives $x \in N(A-\lambda I)$. Hence we have $N(A-\lambda I)=N(A B-\lambda I)$. Similar arguments show that $N(B-\lambda I)=N(B A-\lambda I)$. From [1, Proposition 2] we see that $N(A B-\lambda I)=A(N(B A-\lambda I))$, thus $N(A B-\lambda I)=A(N(B-\lambda I))$.

It is easy to see that $N(A) \cap N(B-\lambda I)=\{0\}$, hence the restriction of A to $N(B-\lambda I)$ is injective, thus

$$
\alpha(A-\lambda I)=\alpha(A B-\lambda I)=\alpha(A(N(B-\lambda I)))=\alpha(B-\lambda I)
$$

Proposition 2.3. We have

$$
\sigma_{a p}(A) \backslash\{0\}=\sigma_{a p}(A B) \backslash\{0\}=\sigma_{a p}(B A) \backslash\{0\}=\sigma_{a p}(B) \backslash\{0\}
$$

Proof. It suffices to show that $\sigma_{a p}(A) \backslash\{0\} \subseteq \sigma_{a p}(A B) \backslash\{0\} \subseteq \sigma_{a p}(B) \backslash\{0\}$. To this end let $\lambda \in \sigma_{\text {ap }}(A) \backslash\{0\}$. Then there is a sequence $\left(x_{n}\right)$ in X with $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}$ and $(\lambda I-A) x_{n} \rightarrow 0(n \rightarrow \infty)$. Let $z_{n}=(\lambda I-A) x_{n}$; hence $A x_{n}=\lambda x_{n}-z_{n}$ and $z_{n} \rightarrow 0$. Then

$$
A^{2} x_{n}=\lambda A x_{n}-A z_{n}=\lambda\left(\lambda x_{n}-z_{n}\right)-A z_{n}=\lambda^{2} x_{n}-\lambda z_{n}-A z_{n}
$$

and

$$
B A x_{n}=\lambda B x_{n}-B z_{n}
$$

thus

$$
A^{2} x_{n}=A B A x_{n}=\lambda A B x_{n}-A B z_{n}
$$

therefore

$$
\begin{equation*}
\lambda^{2} x_{n}-\lambda A B x_{n}=(\lambda I+A-A B) z_{n} \tag{2.2}
\end{equation*}
$$

this gives $(A B-\lambda I) x_{n} \rightarrow 0$, hence $\lambda \in \sigma_{a p}(A B) \backslash\{0\}$. From(2.2) we get

$$
\lambda^{2} B x_{n}-\lambda B^{2} x_{n}=w_{n}
$$

where $w_{n}=\left(\lambda B+A B-B^{2}\right) z_{n} \rightarrow 0(n \rightarrow \infty)$. Hence

$$
\begin{equation*}
(\lambda I-B) B x_{n}=\lambda^{-1} w_{n} \tag{2.3}
\end{equation*}
$$

Because of (2.2) there is $m \in \mathbb{N}$ such that

$$
B x_{n} \neq 0 \text { for } n \geqslant m \text { and }\left(\left\|B x_{n}\right\|^{-1}\right)_{n \geqslant m} \text { is bounded. }
$$

For $n \geqslant m$ let $y_{n}=\left\|B x_{n}\right\|^{-1} B x_{n}$. Then $\left\|y_{n}\right\|=1$ and, by (2.3)

$$
(\lambda I-B) y_{n}=\left(\lambda\left\|B x_{n}\right\|\right)^{-1} w_{n} \quad(n \geqslant m) .
$$

Therefore $(\lambda I-B) y_{n} \rightarrow 0(n \rightarrow \infty)$, and so $\lambda \in \sigma_{a p}(B) \backslash\{0\}$.
Remark. The proof of Proposition 2.3 also follows from Proposition 2.1 if we apply Berberian-Quigley functor (see e.g. [5, Theorem 1-5.11]).

Proposition 2.4. $\sigma_{r}(A) \backslash\{0\}=\sigma_{r}(A B) \backslash\{0\}$.
Proof. Let $\lambda \in \sigma_{r}(A) \backslash\{0\}$. Hence $\lambda \notin \sigma_{p}(A)$ and $\overline{(\lambda I-A)(X)} \neq X$. Thus $N\left(\lambda I^{*}-A^{*}\right) \neq\{0\}$. By Proposition 2.1, $N\left(\lambda I^{*}-(A B)^{*}\right)=N\left(\lambda I^{*}-B^{*} A^{*}\right) \neq$ $\{0\}$, hence $\overline{(\lambda I-A B)(X)} \neq X$. Since $\lambda \notin \sigma_{p}(A B)($ Proposition 2.1), we have $\lambda \in \sigma_{r}(A B) \backslash\{0\}$.

Now let $\lambda \in \sigma_{r}(A B) \backslash\{0\}$, hence $\lambda \notin \sigma_{p}(A B)$ and $\overline{(\lambda I-A B)(X)} \neq X$. It follows that $N\left(\lambda I^{*}-(A B)^{*}\right)=N\left(\lambda I^{*}-B^{*} A^{*}\right) \neq\{0\}$. From Proposition 2.1 we get $N\left(\lambda I^{*}-A^{*}\right) \neq\{0\}$, thus $\overline{(\lambda I-A)(X)} \neq X$. Since $\lambda \notin \sigma_{p}(A)$ (Proposition 2.1), $\lambda \in \sigma_{r}(A)$.

Corollary 2.5. $\sigma_{r}(A) \backslash\{0\}=\sigma_{r}(B) \backslash\{0\}$.
Proof. By [1, Theorem 3], $\sigma_{r}(A B) \backslash\{0\}=\sigma_{r}(B A) \backslash\{0\}$. Now use Proposition 2.4.

Let $T \in \mathcal{L}(X)$. The number

$$
\gamma(T)=\inf \left\{\frac{\|T X\|}{d(x, N(T))}: x \in X, x \notin N(T)\right\}
$$

is called the minimal modulus of $T ; d(x, T)$ denotes the distance of x from $N(T)$. It is well known that $T(X)$ is closed if and only if $\gamma(T)>0$ (see [3, Satz 55.2]).

Proposition 2.6. $\sigma(A)=\sigma(A B)$.
Proof. Let $\lambda \in \sigma(A) \backslash\{0\}$ and assume to the contrary that $\lambda \in \rho(A B)$. Then $\alpha(\lambda I-A B)=0$ and $\lambda \notin \sigma_{a p}(A B)$. By Proposition 2.1 and Proposition 2.3, $\alpha(\lambda I-A)=0$ and $\lambda \notin \sigma_{a p}(A)$. Therefore

$$
\gamma(\lambda I-A)=\inf \{\|(\lambda I-A) x\|: x \in X,\|x\|=1\}>0
$$

hence $(\lambda I-A)(X)$ is closed. Thus we have shown that $\lambda I-A$ is semi-Fredholm. Since $\lambda \in \rho\left((A B)^{*}\right)=\rho\left(B^{*} A^{*}\right)$, it follows from [2, Proposition 5.3] that $\lambda \in$ $\rho\left(A^{*} B^{*}\right)$. Since $A^{*} B^{*} A^{*}=\left(A^{*}\right)^{2}$ and $B^{*} A^{*} B^{*}=\left(B^{*}\right)^{2}$, the same arguments as above show that $\alpha\left(\lambda I^{*}-A^{*}\right)=0$ and that $\lambda I^{*}-A^{*}$ is semi-Fredholm. By [3, Satz 82.1] it follows now that $\beta(\lambda I-A)=\alpha\left(\lambda I^{*}-A^{*}\right)=0$, thus $0 \in \rho(A)$, a contradiction. Hence $\sigma(A) \backslash\{0\} \subseteq \sigma(A B) \backslash\{0\}$.

Now let $\lambda \in \sigma(A B) \backslash\{0\}$ and assume that $\lambda \in \rho(A)$. Then $\alpha(\lambda I-A)=0$ and $\lambda \notin \sigma_{a p}(A)$. Proposition 2.1 and Proposition 2.3 show that $\alpha(\lambda I-A B)=0$ and $\lambda \notin \sigma_{a p}(A B)$. As in the first part of the proof we conclude that $\gamma(\lambda I-A B)>0$. Thus $\lambda I-A B$ is semi-Fredholm. Since $\lambda \in \rho\left(A^{*}\right)$, the same arguments as above give $\alpha\left(\lambda I^{*}-(A B)^{*}\right)=0$ and $\lambda I^{*}-(A B)^{*}$ is semi-Fredholm. From $\beta(\lambda I-A B)=$ $\alpha\left(\lambda I^{*}-(A B)^{*}\right)=0$ we get the contradiction $\lambda \in \rho(A B)$.

So far we have $\sigma(A) \backslash\{0\}=\sigma(A B) \backslash\{0\}$. It remains to show that $0 \in \sigma(A B)$. Assume to the contrary that there is $C \in \mathcal{L}(X)$ with $A B C=I=C A B$. Then $N(B)=\{0\}$ and $B^{2} C=B$, therefore $B C=I$, hence $A=I$, a contradiction.

Corollary 2.7. $\sigma(A)=\sigma(B)$.
Proof. Since $\sigma(A B) \backslash\{0\}=\sigma(B A) \backslash\{0\}$ [2, Proposition 5.3], Proposition 2.6 shows that $\sigma(A) \backslash\{0\}=\sigma(B) \backslash\{0\}$. Because of $0 \in \sigma(A) \cap \sigma(B)$, we have $\sigma(A)=\sigma(B)$.

Proposition 2.8. $\sigma_{c}(A) \backslash\{0\}=\sigma_{c}(A B) \backslash\{0\}$.
Proof. By Proposition 2.1, Proposition 2.4 and Proposition 2.6

$$
\begin{aligned}
\sigma_{c}(A) \backslash\{0\} & =\sigma(A) \backslash\left[\sigma_{p}(A) \cup \sigma_{r}(A) \cup\{0\}\right] \\
& =\sigma(A B) \backslash\left[\sigma_{p}(A B) \cup \sigma_{r}(A B) \cup\{0\}\right]=\sigma_{c}(A B) \backslash\{0\} .
\end{aligned}
$$

$\operatorname{Corollary}$ 2.9. $\sigma_{c}(A) \backslash\{0\}=\sigma_{c}(B) \backslash\{0\}$.
Proof. Use Proposition 2.8 and [1, Theorem 3].

In what follows \mathcal{A} denotes a complex unital Banach algebra. For $a \in \mathcal{A}$ we write $\sigma(a)$ for the spectrum of a and λ_{a} for the bounded linear operator on \mathcal{A} given by $\lambda_{a}(x)=a x(x \in \mathcal{A})$.

Proposition 2.10. Let $a, b \in \mathcal{A}$.
(1) $\sigma(a)=\sigma\left(\lambda_{a}\right)$;
(2) $\lambda_{a b}=\lambda_{a} \lambda_{b}$;
(3) if $a b a=a^{2}$ and $b a b=b^{2}$, then $\lambda_{a} \lambda_{b} \lambda_{a}=\lambda_{a}^{2}, \lambda_{b} \lambda_{a} \lambda_{b}=\lambda_{b}^{2}$, and

$$
\sigma(a)=\sigma(b)=\sigma(a b)=\sigma(b a)
$$

Proof. (1) [2, Proposition 3.19].
(2) Clear.
(3) follows from (1), (2), Proposition 2.6 and Corollary 2.7.

Let $\mathcal{K}(X)$ denote the ideal of all compact operators in $\mathcal{L}(X)$ and let $\widehat{\mathcal{L}}$ denote the quotient algebra $\mathcal{L}(X) /(X)$. By \widehat{T} we denote the $\operatorname{coset} T+\mathcal{K}(X) \in \widehat{\mathcal{L}}(T \in \mathcal{L}(X))$. Observe that $\widehat{\mathcal{L}}$ is a Banach algebra with unit \widehat{I}. Satz 81.2 in [3] shows that for $T \in \mathcal{L}(X)$ we have

$$
T \text { is Fredholm } \Longleftrightarrow 0 \notin \sigma(\widehat{T})
$$

Hence

$$
\begin{equation*}
\sigma_{F}(T)=\sigma(\widehat{T}) \tag{2.4}
\end{equation*}
$$

Since $\widehat{A} \widehat{B} \widehat{A}=\widehat{A}^{2}$ and $\widehat{B} \widehat{A} \widehat{B}=\widehat{B}^{2}$, an immediate consequence of Proposition 2.10 and (2.4) is

Corollary 2.11. $\sigma_{F}(A)=\sigma_{F}(B)=\sigma_{F}(A B)=\sigma_{F}(B A)$.
The proof of Theorem 1.2 is now complete.
If $T \in \mathcal{L}(X)$ is Fredholm then the $\operatorname{index} \operatorname{ind}(T)$ of T is defined by $\operatorname{ind}(T)=$ $\alpha(T)-\beta(T)$.

Corollary 2.12. Let $\lambda \notin \sigma_{F}(A)$.
(1) If $\lambda \neq 0$, then $\operatorname{ind}(\lambda I-A)=\operatorname{ind}(\lambda I-A B)=\operatorname{ind}(\lambda I-B A)=\operatorname{ind}(\lambda I-B)$.
(2) If $\lambda=0$, then $\operatorname{ind}(A)=\operatorname{ind}(B)=\operatorname{ind}(A B)=\operatorname{ind}(B A)=0$.

Proof. (1) Because of $[\mathbf{1}$, Theorem 6] it suffices to show that $\operatorname{ind}(\lambda I-A)=$ $\operatorname{ind}(\lambda I-B A)$. By Corollary 2.2 and $[\mathbf{3}$, Satz 82.1] we have

$$
\begin{aligned}
\operatorname{ind}(\lambda I-A) & =\alpha(\lambda I-A)-\alpha\left(\lambda I^{*}-A^{*}\right) \\
& =\alpha(\lambda I-A B)-\alpha\left(\lambda I^{*}-A^{*} B^{*}\right) \\
& =\alpha(\lambda I-A B)-\alpha\left(\lambda I^{*}-(B A)^{*}\right) \\
& =\alpha(\lambda I-A B)-\beta(\lambda I-B A) \\
& =\alpha(\lambda I-B A)-\beta(\lambda I-B A)=\operatorname{ind} I-B A) .
\end{aligned}
$$

(2) We have $\widehat{A}=\widehat{B}=\widehat{A B}=\widehat{B A}=\widehat{I}$, thus, by [3, Satz 82.5] we get

$$
\operatorname{ind}(A)=\operatorname{ind}(B)=\operatorname{ind}(A B)=\operatorname{ind}(B A)=\operatorname{ind}(I)=0
$$

An operator $T \in \mathcal{L}(X)$ is called a Riesz operator if $\sigma_{F}(T)=\{0\}$. From Corollary 2.11 we have:

Corollary 2.13. The following assertions are equivalent:
(1) A is a Riesz operator;
(2) B is a Riesz operator;
(3) $A B$ is a Riesz operator;
(4) $B A$ is a Riesz operator.

References

[1] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
[2] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
[3] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
[4] V. Rakočević, A note on a theorem of I. Vidav, Publ. Inst. Math. (Beograd) 68(82) (2000), 105-107.
[5] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960.
[6] Ch. Schmoeger, On the operator equations $A B A=A^{2}$ and $B A B=B^{2}$, Publ. Inst. Math. (Beograd) 78(92) (2005), 127-133.
[7] I. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4(18) (1964), 157-163.

Institut für Analysis (Received 1503 2006)
Universität Karlsruhe (TH)
(Revised 0609 2006)
Englerstraße 2
76128 Karlsruhe
Germany
christoph.schmoeger@math.uni-karlsruhe.de

