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REGULAR VARIATION FOR MEASURES
ON METRIC SPACES

Henrik Hult and Filip Lindskog

ABSTRACT. The foundations of regular variation for Borel measures on a com-
plete separable space S, that is closed under multiplication by nonnegative real
numbers, is reviewed. For such measures an appropriate notion of convergence
is presented and the basic results such as a Portmanteau theorem, a mapping
theorem and a characterization of relative compactness are derived. Regu-
lar variation is defined in this general setting and several statements that are
equivalent to this definition are presented. This extends the notion of regular
variation for Borel measures on the Euclidean space R% to more general metric
spaces. Some examples, including regular variation for Borel measures on R?,
the space of continuous functions C and the Skorohod space D, are provided.

1. Introduction

In many areas of applied probability one encounters a Borel measure v on R¢
with the following asymptotic scaling property: for some o > 0 and all A > 0
(1.1) tim YA o gy, VA

t—oo V(tE) t—oo V(LE)
where E is a fixed reference set such as E = {z € R? : |z| > 1}, tE = {tz :
x € E}, and A may vary over the Borel sets that are bounded away from the
origin 0 (the closure of A does not contain 0). Typically v is a probability measure
but other classes of measures, such as Lévy- or intensity measures for infinitely
divisible distributions or random measures, with this property appear frequently
in the probability literature. The asymptotic scaling property implies that the
function ¢(t) = 1/v(tE) is regularly varying (at co) with index « and that ¢(t)v(tA)
converges to a finite constant u(A) as t — oo. Then (1.1) translates into the
scaling property p(AA) = A=*u(A) for A > 0. A measure satisfying (1.1) is called
regularly varying (see Section 3 for a precise definition). The name is motivated by
t — v(tA) being a regularly varying function (with index —a) whenever u(A) > 0.
To motivate the approach we suggest for defining regular variation for measures on
general spaces, it is useful to first consider the most commonly encountered way to
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define regular variation for measures on RZ. In order to use the well established
notion of vague convergence (see e.g. [17]), instead of R? one considers the space
[—00, 00]4~{0}. The reason is that sets that are bounded away from 0 in R become
topologically bounded (or relatively compact) in [—00,0c]? \. {0}. This means that
regular variation for a measure v on R? can be defined as the vague convergence
v(t:)/v(tE) — u(-) as t — oo, where y is a nonzero measure on [—oo, 0o0]? \ {0}.
There exist definitions of regular variation for measures on other spaces that are
not locally compact. For instance, on the Skorohod space D[0, 1], regular variation
is formulated using polar coordinates and a notion of convergence for boundedly
finite measures (see [13] and [12]). Also in this case the original space is changed
by introducing “points at infinity” in order to turn sets bounded away from 0 in
the original space into metrically bounded sets. It is the aim of this paper to review
the foundations of regular variation for measures on general metric spaces without
considering modifications of the original space of the types explained above.

The first step towards a general formulation of regular variation is to find an
appropriate notion of convergence of measures. Recall that a sequence of bounded
(or totally finite) measures u,, on a separable metric space S converges weakly to a
bounded measure p as n — oo if lim, o [ f dp, = [ f dp for all bounded and con-
tinuous real functions f. By the Portmanteau theorem, an equivalent formulation is
that lim, o0 ptn(A) = u(A) for all Borel sets A with p(0A) = 0, where A denotes
the boundary of A. A convenient way to modify weak convergence to fit into a reg-
ular variation context is to define convergence p, — p by lim,, .o [ fdp, = [ fdu
for all bounded and continuous real functions f that vanish in a neighborhood of
a fixed point sgp € S (the origin). The foundations of this notion of convergence,
including a Portmanteau theorem, a mapping theorem and characterizations of
relative compactness, are presented in Section 2.

To define regular variation for measures on S, the space S has to be closed
under multiplication by nonnegative real numbers A € R;. Moreover, the map
(M z) — Az from Ry x S into S should be continuous, there should exist an
element 0 € S so that 0z = 0 for all x € S, and the metric d on S should satisfy
d(0, A1) < d(0, Aaz) for all A1, Aa € Ry with A; < A2 and all x € S~ {0}. The last
assumption means that for x € S~ {0} the distance to the origin for a point on the
ray {Az : A € Ry} is strictly increasing in A\. Under these additional assumptions
the notion of regular variation for measures on S is introduced in Section 3. An
alternative approach to define regular variation for measures on S would be to
identify S with a product space and use polar coordinates. However, we do not
pursue such alternative approaches here. It is worth noticing that the formulation
of regular variation proposed here is equivalent to usual formulations of regular
variation for measures on R¢, C[0, 1] and D[0, 1] found in e.g. [3, 20, 21, 12, 13].

The advantage of the construction proposed here is two-fold. Firstly, it provides
a general framework for measures on metric spaces. In particular, it is irrelevant
whether the space is locally compact. Secondly, there is no need to introduce
artificial compactification points. These points lead to annoying difficulties that
blur the elegant mathematics underlying the theory. For example, any mappings
h:S — S’ would have to be modified to cope with the compactification points.
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In Section 2 we introduce the space Mg of measures on a complete separable
metric space S. The measures in M, assign finite mass to sets bounded away from
S0, i.e. sg is not contained in the closure of the set, where sq is a fixed element in
S. Convergence in My is closely related to, but not identical to, weak convergence.
We derive relevant fundamental results and characterize relative compactness in
Mj. In Section 3 we consider regular variation for a sequence of measures and
for a single measure in My. A number of statements that are equivalent to the
definition of regular variation for a measure in My is presented. In Section 4 we
give examples that illustrate the framework developed in Sections 2 and 3, and
provide references to related work. In particular we derive results for R, for the
space of continuous functions, and for the space of cadlag functions. All the proofs
are found in Section 5.

Regular variation conditions for probability measures on R¢ appear frequently
in the literature. Natural examples are the studies of the asymptotic behavior of
partial sums of independent and identically distributed terms (the general central
limit theorem, see e.g. [22], [19]), of componentwise partial maxima and point
processes (extreme value theory, see e.g. [20]) and of solutions to random difference
equations (see e.g. [16]). Regular variation also appears naturally in necessary and
sufficient conditions in central limit theorems in Banach spaces, see e.g. [1] and
[10] and the references therein. In the space C([0, 1]; R?) of continuous functions it
is used to characterize max-stable distributions and convergence in distribution of
normalized partial maxima (see [11] and [12]). In the space D([0, 1]; R?) of cadlag
functions the framework of regularly varying measures has been employed to study
the extremal behavior of heavy-tailed stochastic processes and the tail behavior of
functionals of their sample paths (see [13] and [15]).

2. Convergence of measures in the space M,

Let (S,d) be a complete separable metric space. We write . for the Borel
o-algebra on S and B, , = {y € S : d(x,y) < r} for the open ball centered at x
with radius 7.

Let %}, denote the class of real-valued, bounded and continuous functions on S,
and let M, denote the class of finite Borel measures on .¥’. A basic neighborhood
of p € My is a set of the form {v € My : | [ fidv — [ fidu| < e, i =1,...,k},
where ¢ > 0 and f; € 6, for i = 1,...,k. Thus, M, is equipped with the weak
topology. The convergence u, — p in My, weak convergence, is equivalent to
[ fdu, — [ fdufor all f € €. See e.g. Sections 2 and 6 in [5] for details. Fix
an element sy € S, called the origin, and set Sp = S ~\ {so}. The subspace Sy is a
metric space in the relative topology with o-algebra %) = {A: A C Sp, A € S}.
Let %o denote the real-valued bounded and continuous functions f on Sy such that
for each f there exists r > 0 such that f vanishes on By ,; we use the notation By ,
for the ball By, . Let Mg be the class of Borel measures on Sy whose restriction
to S \ By, is finite for each r > 0. A basic neighborhood of 1 € My is a set of
the form {v € My : | [ fidv — [ fidu| <e, i=1,...,k}, where e > 0 and f; € 6
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for ¢ = 1,...,k. Similar to weak convergence, the convergence u, — p in My is
equivalent to [ fdu, — [ fdu for all f € €.

THEOREM 2.1. p,, — p in My if and only if [ fdp, — [ fdu for each f € €.

The proof of this and all subsequent results are found in Section 5.

For 1 € My and 7 > 0, let u(") denote the restriction of u to S By,. Then
p") is finite and p is uniquely determined by its restrictions p(™), 7 > 0. Moreover,
convergence in My has a natural characterization in terms of weak convergence of
the restrictions to S \ By ;.

THEOREM 2.2. (i) If p, — p in My, then ugf) — p") in My(S ~\ By,,.) for all

but at most countably many r > 0.
(ii) If there exists a sequence {r;} withr; | 0 such that u;”) — p") in My (SN Bo.,.,)
for each i, then p, — p in My.

Weak convergence is metrizable (for instance by the Prohorov metric, see
e.g. p. 72 in [5]) and the close relation between weak convergence and convergence
in My in Theorem 2.2 indicates that the topology in My is metrizable too. Theo-
rem 2.3 shows that, with minor modifications of the arguments in [7, pp. 627-628],
we may choose the metric

(2.1) dn, (p,v) = / e—rpr(u(r), y(T))[l +pr(u(r)’ y(r))]—l dr,
0

where p(), (") are the finite restriction of u, v to S~ By, and p, is the Prohorov
metric on My(S \ By ).

THEOREM 2.3. The metric dv, makes Mo a complete separable metric space.

Many useful applications of weak convergence rely on the Portmanteau theorem
and the Mapping theorem. Next we derive the corresponding versions of these
results for convergence in My. A more general version of the Portmanteau theorem
below can be found in [2].

For A C S, let A° and A~ denote the interior and closure of A, and let 0A =
A~ \ A° be the boundary of A.

THEOREM 2.4. (Portmanteau theorem) Let p, u,, € My. The following state-
ments are equivalent.
(i) pn — pin Mg as n — oo,
(ii) limp oo pin(A) = p(A) for all A € % with p(0A) =0 and 0 ¢ A~
(iii) lmsup,,_ o pn(F) < p(F) and iminf, . pn(G) = p(G) for all closed
F e and open G € . with so ¢ F and so ¢ G~.

REMARK 2.1. Consider statement (iii) above. In contrast to weak convergence
of probability measures neither of the two statements implies the other. Take
c € (0,00) {1} and x € Sy. Let py, = I, and p = ¢, where 6,(A) =1ifx € A
and 0 otherwise. If ¢ < 1, then the second statement in (iii) holds but not the
first. If ¢ > 1, then the first statement in (iii) holds but not the second. See also
Remarks 3 and 4 in [2].
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We conclude this section with a mapping theorem. Let (S,.%) and (S',.%")
be complete separable metric spaces. We denote by so and s{, the origin in S and
S’, respectively. The open ball in S’ centered at s with radius r is denoted by
By . For a measurable mapping h : (S,.%) — (S',.%”), let D;, C S be the set of
discontinuity points of h. Notice that Dy, € .7, see e.g. p. 243 in [5].

THEOREM 2.5. (Mapping theorem) Let h : (S,.) — (S',.%’) be a measurable
mapping. If p, — p in Mo(S), u(Dr NSg) = 0, h(sg) = sy and so & Dy, then
pnh™t — ph=t in Mo (S7).

Consider the following statements for a measurable mapping h : S — S':

(i) The mapping h is continuous at sp and h(sg) = s
(ii) For every A € ./ with s{, ¢ A~ it holds that s ¢ h™'(A)~ in S.
(iii) For every e > 0 there exists § > 0 such that By s C h=1(By ).

By Lemma 2.1 below, they are all equivalent. Hence, we could have chosen to
formulate the mapping theorem with any one of them.

LEMMA 2.1. The statements (i)—(iil) are equivalent.

2.1. Relative compactness in M. Since we are interested in convergence
of measures in My it is essential to give an appropriate characterization of relative
compactness. A subset of a topological space is said to be relatively compact if
its closure is compact. A subset of a metric space is compact if and only if it is
sequentially compact. Hence, M C Mj is relatively compact if and only if every
sequence {u,} in M contains a convergent subsequence.

For p € M C Mg and r > 0, let x{") be the restriction of p to S ~ By, and
M) = {u") : € M}. By Theorem 2.2 we have the following characterization of
relative compactness.

THEOREM 2.6. A subset M C My is relatively compact if and only if there exists
a sequence {r;} with r; | 0 such that M) is relatively compact in My(S ~ Bo.,.,)
for each i.

Relative compactness in the weak topology is characterized by Prohorov’s the-
orem. This translates to the following characterization of relative compactness in
M.

THEOREM 2.7. M C My is relatively compact if and only if there exists a
sequence {r;} with r; | 0 such that for each i
(2.2) sup u(S \ By,r,) < 00,

pneM
and for each 1 > 0 there exists a compact set C; C S \ By, such that
(2.3) sup u(S ~\ (Bo,r, UC)) < 1.
pneM

A convenient way to prove the convergence p,, — pin My is to show that{u, } is
relatively compact and show convergence i, (A) — p(A) for sets A in a determining
class «7. The next standard result (e.g. Theorem 2.3 in [5]) is useful for identifying
a determining class of sets in .%.
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THEOREM 2.8. Suppose that <7 is a w-system of sets in Sy and, for each x € Sy
and € > 0, there exists an A € o/ for which x € A C AC B, .. If p,v € My and
w=v on o, then p=v on %.

3. Regularly varying sequences of measures

In the first part of this section we introduce the notion of regularly varying se-
quences of measures in My, only assuming the general setting presented in Section
2. Then we define regular variation for a single measure in M. In order to formu-
late this definition we need to assume further properties of the space S, essentially
we assume that S has the structure of a cone. For a measure v € Mg we provide
equivalent statements which are all equivalent to v being regularly varying. These
statements extend the corresponding equivalent definitions of regular variation for
Borel measures on R? to the general setting considered here.

Recall from e.g. [6] that a positive measurable function ¢ defined on (0, c0)
is regularly varying with index p € R if lims, o ¢(At)/c(t) = N for all A > 0.
Similarly, a sequence {¢,, }n>1 of positive numbers is regularly varying with index
p € Rif lim, o ¢(ap)/cn = AP for all A > 0 (here [An] denotes the integer part of
An).

DEFINITION 3.1. A sequence {vy,}n>1 in My is regularly varying with index
—a < 0 if there exists a sequence {c,}n>1 of positive numbers which is regularly
varying with index « > 0, and a nonzero p € My such that ¢,v, — p in My as
n — 00.

The choice of terminology is motivated by the fact that {v,,(A4)},>1 is a regu-
larly varying sequence for each set A € . with 0 ¢ A~ u(0A) =0 and p(A) > 0.

We will now define regular variation for a single measure in My. In order
to formulate this definition we need to assume further properties of the space S.
Suppose that there is an element 0 € S and let sg = 0 in the definitions of Sy
and My in Section 2. Suppose that the space S is closed under multiplication by
nonnegative real numbers A € R4 and that the map (A, z) — Az from Ry x S
into S is continuous. In particular, we have Oz = 0 for all x € S. Suppose further
that the metric d on S satisfies d(0, A\;z) < d(0, Aex) for all A;, A2 € Ry with
A1 < Az and all x € Sp, i.e. the distance to the origin sg = 0 for a point on the ray
{Az : X € R, } is strictly increasing in .

DEFINITION 3.2. A measure v € My is regularly varying if the sequence
{v(n)}n>1 in My is regularly varying.

In particular, a probability measure P on . is regularly varying if the sequence
{P(n")}n>1 in My is regularly varying.

There are many possible equivalent ways to formulate regular variation for a
measure v € Mg. Consider the following statements.

(i) There exist a nonzero u € My and a regularly varying sequence {cp }n>1
of positive numbers such that ¢,v(n-) — p(-) in My as n — oo.

(ii) There exist a nonzero u € My and a regularly varying function ¢ such
that c(t)v(t-) — p(-) in My as t — oo.
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(iii) There exist a nonzero pn € My and a set E € . with 0 ¢ E~ such that
v(tE)"tu(t) — p(-) in My as t — oo.

(iv) There exists a nonzero u € My such that v(¢[S \ Bo1])"'v(t:) — u(-) in
M, as t — oo.

(v) There exist a nonzero i € My and a sequence {ay, },>1 of positive numbers
such that nv(a, ) — u(-) in My as n — oo.

THEOREM 3.1. (a) Fach of the statements (1)—(v) above implies that p(AA) =
A™u(A) for some o > 0 and all A € S and X > 0. (b) The statements (i)—(v)

are equivalent.

Several equivalent formulations of regular variation for measures on R%, similar
to those above, can be found in e.g. [3] and [21]. Theorem 3.1 extends some of them
to measures on general metric spaces. One could also identify S with a product
space and formulate regular variation in terms of polar coordinates. However, we
have not pursued this approach here.

On R statements equivalent to regular variation for probability measures have
appeared at numerous places in the vast literature on domains of attraction for sums
and maxima. The notion of regular variation for measures on R? first appeared in
[18], where it was used for multivariate extensions of results in [8] on characteriza-
tions of domains of attractions. See Chapter 6 in [19] for a more recent account on
this topic. The definition of regular variation for a measure on R? in [18] differs
from the one considered here and those in e.g. [21] in the sense that the limiting

measure p in the above statements (i)—(v) may be supported in a proper subspace
of S.

4. Examples

In this section we provide some examples of metric spaces on which regularly
varying measures are natural in applications. We consider the Euclidean space R?,
the space of continuous functions, and the space of cadlag functions. We review
some conditions to check relative compactness in M for measures on these spaces
and provide conditions for determining if a given measure is regularly varying.

4.1. The Euclidean space R%. A fundamental example of a metric space S
is the Euclidean space R? with the usual Euclidean norm |-|. The characterization
of relative compactness in My simplifies considerably if My = My(R?). Since the
unit ball is relatively compact in R?, Theorem 2.7 implies that M C My (R?) is
relatively compact if and only if sup,,c,, (RN By,) < oo for each r > 0, and
limp— 00 SUP e s w(REN By r) =0.

Regular variation for measures on R? is often proved by showing convergence
to a measure u € Mo(R?) for an appropriate convergence determining class of
subsets of RY. If Vi, s = {z € R? : || > u,x/|z| € S} for u > 0 and Borel sets
S c {x € R?: || = 1}, then the collection of such sets satisfying 1(0V, s) = 0
form a convergence determining class (see [3]).

THEOREM 4.1. Let v, € Mo(R?) be nonzero and let {c,} be a reqularly vary-
ing sequence with index o > 0. If c,v(nV,, g) — u(Vi,s) as n — oo for each u > 0
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and Borel set S C {x € R% : |z| = 1} with p(0V,,s) = 0, then c,v(n-) — u(-) in
My as n — oo and v is regularly varying.

The sets of the form A, = [0, 00)~{[0,z1]x- - - x[0,z4]}, for & = (21,...,74) €
[0, oo)d7 form a convergence determining class for regular variation for measures on
[0,00)% . {0}. This is well known, see e.g. [20].

THEOREM 4.2. Let v, i € My([0,00)%) be nonzero and let {c,} be a regularly
varying sequence with index o > 0. If c,v(nAz) — u(Az) as n — oo for each
z € [0,00)4 {0}, then c,v(n-) — p(-) in Mgy as n — oo and v is reqularly varying.

To show regular variation in function spaces is typically less straight-forward.
Similar to weak convergence of probability measures on these spaces, convergence is
typically shown by showing relative compactness and convergence for finite dimen-
sional projections of the original measures. In the following two sections we will
exemplify applications of the framework set up in Sections 2 and 3 by considering
regular variation for measures on the space C([0,1]; R?) of continuous functions
with the uniform topology and the space D([0, 1]; R?) of cadlag functions with the
Skorohod .Ji-topology.

4.2. The space C([0,1];R%). Let S be the space C = C([0,1]; R¢) of con-
tinuous functions [0,1] — R? with the uniform topology given by the supremum
norm | - |s. Tightness conditions for weak convergence on C are well known [5,
p. 82] and translate naturally to conditions for relative compactness in My (C). For
z : [0,1] — R the modulus of continuity is given by w, () = Sup|s_¢<s |2(s)—x(t)|.

THEOREM 4.3. A set M C Mg(C) is relatively compact if and only if for each
r >0 and each € >0

(4.1) sup (S~ By,r) < 00,
pneM
(4.2) lim sup p(z: |z(0)] > R) =0,
R—o0 neM
(4.3) lim sup p(z : w, () =€) =0.
=0 peMm

To prove that a measure v € My(C) is regularly varying we typically need
to show that for some regularly varying sequence {c,} of positive numbers, (i)
{eav(n:) : m = 1} is relatively compact, and (ii) any two subsequential limits
of {c,v(n-)} coincide. The point (ii) holds, similar to the case for weak conver-
gence, if the subsequential limits have the same finite dimensional projections. For
(t1,...,tx) € [0,1]% denote by 7, ¢, the map C 3z — (z(t1),...,x(ty)) € R¥*.

sl ”

THEOREM 4.4. Let v, u € My(C) be nonzero and let {c,} be a regularly varying
sequence of positive numbers. Then c,v(n-) — u(-) in Mo(C) as n — oo if and
only if for each integer k > 1 and (t1,...,ts) € [0,1]%

(4.4) cavmy g () = pm ()
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in Mo(R¥*) as n — oo, and for each r > 0 and each e > 0
(4.5) sup cp,v(n[S \ Bo,]) < 00,

(4.6) lir% sup e, v(x : wy(§) = ne) = 0.
—U n

Recall that the regular variation statement c,v(n-) — u(-) can be replaced
by any of the equivalent statements in Theorem 3.1. For those statements there
are corresponding versions of the conditions in Theorem 4.4. Regular variation
on C can be used for studying extremal properties of stochastic processes. The
mapping theorem can be used to determine the tail behavior of functionals of a
heavy-tailed stochastic process with continuous sample paths. Another application
is to characterize max-stable distributions in C. For fi,...,f, € C let \/_, fi
be the element in C given by (\/?:1 fi)(t) = max;=1_. , fi(t). A random variable
X with values in C is said to be max-stable if, for each integer n > 1 there are
functions a,(t) > 0 and b,,(¢) such that a,*(\/]_, X; — b,) = X, where < denotes
equality in distribution and X1, ..., X,, are independent and identically distributed
copies of X. The distribution of X is called simple max-stable if one can choose
an(t) =n and b, (t) = 0 for all t. Max-stable distributions appear as limiting distri-
butions of pointwise maxima of independent and identically distributed stochastic
processes. Their domain of attraction can be characterized in terms of regular vari-
ation. If Y7,Y5,... are independent and identically distributed with values in C,
then n='\/7_, ¥; % X in C for some X (where X necessarily has a simple max-
stable distribution) if and only if the distribution of Y on C is regularly varying
and satisfies statement (v) above (before Theorem 3.1) with a,, = n. The same
characterization holds for random variables taking values in the space D studied
below. See [12, Theorem 2.4] and [11] for more details. Theorem 4.4 provides
necessary and sufficient conditions for a Borel (probability) measure on C to be
regularly varying.

4.3. The space D(]0,1];R?). Let S be the space D = D([0, 1]; R?) of cadlag
functions equipped with the Skorohod Ji-topology. We refer to [5] for details on
this space and the Ji-topology. In particular, elements in D are assumed to be
left-continuous at 1. Notice that if d is the Ji-metric then d(z,0) = |z|e. Notice
also that D is not complete under d but there exists an equivalent metric under
which D is complete (see Section 12 in [5]). Notice also that D is not a topological
vector space since addition in D is in general not continuous (see e.g. [23]). For
T C[0,1] and § > 0, let

we(T) = sup |z(t2) — z(t1)],

t1,t2€T
wl(8) = sup {la(®) = a(t2)| Ala(ta) — (O]}

where the supremum in the definition of w!/(d) is over all (¢,;,t2) satisfying 0 <
tlgtgtgilandtgftlgé.
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THEOREM 4.5. A set M C Mq(D) is relatively compact if and only if for each
r>0ande >0

(4.7) sup #(S \ By,r) < o0,
peM

(4.8) lim sup p(z: |z| > R) =0,
R—o0 neM

(4.9) lim sup p(z: wl(8) >¢e) =0,
5—0 weM

(4.10) lim sup p(z: w,([0,0)) =€) =0,

=0 eMm
(4.11) lim sup p(z: wy([1—46,1)) =€) =0.
6—0 neM

Similar to the space C, regular variation for measures on D is typically proved
by showing relative compactness in My(D) and convergence of finite dimensional
projections (see [13, Theorem 10]).

THEOREM 4.6. Let v, u € My(D) be nonzero and let {c,} be a reqularly varying
sequence of positive numbers. Then c,v(n:) — p(-) in My(D) as n — oo if and
only if there exists T C [0,1] containing 0, 1 and all but at most countably many
points of [0,1] such that

(4.12) cnuﬂ'f:}m)tk (n) — uﬂt:ltk()

in Mo(R%) as n — oo whenever ty,...,t, € T, and for each & > 0
(4.13) glnlo 1imnsup cov(wl(8) = ne) =0

(4.14) %i_r% lim sup ¢, v(w,([0,d)) > ne) =

n

0
;ir% lim sup cpv(w,([1 — 6,1)) = ne) = 0.

(4.15)

Notice that the regular variation statement c,v(n:) — u(-) can be replaced
by any of the equivalent statements in Theorem 3.1. Notice also that the set T
in Theorem 4.6 appears because for ¢ € (0,1) the map 7, (z) = x(¢) is continuous
at x € D if and only if = is continuous at ¢. Regular variation on D can be
used for studying extremal properties of stochastic processes, see [13] and [15].
In particular, the mapping theorem can be used to determine the tail behavior of
functionals of a heavy-tailed stochastic process with cadlag sample paths. Regular
variation is also closely connected to max-stable distributions on D, see [12].

Regularly varying sequences of measures in My(D) appear for instance when
studying large deviations. Consider for instance the stochastic process Xt(n) =
Zy+ -+ Zpyy, t € [0,1], where {Z} is a sequence of independent and iden-
tically distributed R%valued random variables whose common probability distri-
bution P(Z; € -) is regularly varying on R¢ with a > 1. Then the sequence
vn(:) = P(n7'X(™ ¢ .) is regularly varying according to Definition 3.1 with
cn = [nP(|Z1] > n)]7", see [14, Theorem 2.1].
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5. Proofs

PrOOF OF THEOREM 2.1. Suppose p, — i in My and take f € €. Givene >
0 consider the neighborhood N. s(u) ={v:| [ fdv— [ fdu| < }. By assumption
there exists ng such that n > ng implies p, € Ng ¢(p), ie. | [ fdp, — [ fdu| <e.
Hence [ fdu, — [ fdp.

Conversely, suppose that [ fdu, — [ fdp for each f € 4p. Take ¢ > 0
and a neighborhood N ¢, (p) = {v : | [ fidv — [ fidu] < e,;i = 1,...,k}.
Let n; be an integer such that n > n; implies | [ fidp, — [ fidu| < . Hence,
n > max(ni,...,ng) implies pu, € Ne g, 5 (). It follows that p, — pin My. O

LEMMA 5.1. Let p € My, let v > 0 be such that u(0By,) = 0 and let f €
©»(S \ Bo,r) be nonnegative. For each € > 0 there exist nonnegative f1, fo € 6o
such that fi < f < fa on S\ By, and | [g fadp — [g frdp| <e.

PrOOF. For any r’ > r let f1,- be a function on Sy given by

fl , = gr,T’f on S~ BO,T)
o 0 on By, ~\ {0},

where g, (z) = max{min{d(z, s¢),r'} — r,0}/(+' —r) for x € Sg. Then f1, is
continuous, fi,» < f on S\ By, and f1,/(z) T f(x) pointwise on S\ By, as 1’ | r.
We now consider an upper bound. By the Tietze extension theorem (Theorem 3.6.3
in [9]) there exists a nonnegative, bounded continuous extension F' of f to Sy such
that ' = f on S\ By, and sup |F| = sup |f|. For 7"/ < r let fo,~ be a function on
So given by fo,» = gy rF on S\ By, and 0 otherwise. Then f5,~ is continuous,
forn = fon SN By, and fo,(z) | f(x) pointwise on S\ By, as v’ T r. In
particular,

/ f2,7“” d,LL - / fl,r’ d:u‘ < sup ‘f| :LL(BO,T’ N BO,T”) — Sup ‘f| :u‘(aBO,T) =0
S S

as ' | v and r” T r. Hence, for ' and r” sufficiently close to r we may take
flzfl,r’ and f2:f2,r”- O

PROOF OF THEOREM 2.2. (i) Let R, = {r € (0,00) : u(0Bo,) = 0} and
notice that (0,00) \ R, is at most countable. Take r € R, and, without loss of
generality, a nonnegative f € 6,(S \ By,). Given € > 0 there exist, by Lemma
5.1, nonnegative fi, fo € 6(S) with f1 < f < fo on S\ By, such that | [ fodp —

J fidp| < e. Hence, [ fidu, < [ fdun < [ fodp, and by Theorem 2.1 p, — p
in My implies that

/f1du<liminf/fdun <limsup/fdun </fzdu~

Since & > 0 was arbitrary it follows that [ fdu, — [ fdp.
(ii) Take f € %(S); without loss of generality f can be chosen nonnegative.

The support of f is contained in S \ By ,, for some r; > 0 such that u%”) — ()
in My(S\ By,,). Hence f € €,(S\ Bo,,) and [ fdu, = ffdu%”) — [ fdu) =
[ fdu. O
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PROOF OF THEOREM 2.3. The proof consists of minor modifications of argu-
ments that can be found in [7, pp. 628-630]. Here we change from r to 1/r. For
the sake of completeness we have included a full proof.

We show that (i) p, — p in My if and only if dm,(tn, ) — 0, and (ii)
(M, dm,) is complete and separable.

(i) Suppose that dm, (,un,,u) — 0. The integral expression in (2.1) can be
written dng, (fon, fo r)dr, so that for each n, g,(r) decreases with r
and is bounded by 1. Helly s selectlon theorem (p. 336 in [4]), applied to 1 —
gn, implies that there exists a subsequence {n’'} and a non-increasing function g
such that g,/ (r) — g(r) for all continuity points of g. By dominated convergence,
Jo e "g(r)dr = 0 and since g is monotone this implies that g(r) = 0 for all finite
r > 0. Since this holds for all convergent subsequences {g,/(r)}, it follows that

gn(r) — 0 for all continuity points r of g, and hence, for such r, p.(u r ), () =0
as n — 0o. By Theorem 2.2, p,, — p in M.
Suppose that p, — p in My. Then theorem 2.2 implies that uﬁ{’)

in My(S \ By,) for all but at most countably many r > 0. Hence, for such

T, pr(u%),,u( N+ pr(ug),u(r))]’l — 0, which by the dominated convergence

theorem implies that dm, (tn, 1) — 0.

(ii) Separability: For r > 0 let D, be a countable dense set in M, (S \ By,,)
with the weak topology. Let D be the union of D, for rational » > 0. Then D is
countable. L/et us show D is dense in My. Given € > 0 and pu € My pick ' > 0
such that fOT e "dr < /2. Take p,» € D, such that p,(p,, (")) < £/2. Then

pr(,ur ,,u(T ) < ¢g/2 for all r > v'. In particular, dn, (g, 1) < €.

Completeness: Let {u,} be a Cauchy sequence for dpg,. Then {,ugf)} is a
Cauchy sequence for p,. for all but at most countably many r > 0 and by complete-
ness of My(S \ By,) it has a limit g,. These limits are consistent in the sense
that ui’,ﬂ) = p, for v <r. On & put u(A) =lim, o pu.(ANS~ By,). Then p is
a measure. Clearly, p > 0 and u(@) = 0. Moreover, u is countably additive: for
disjoint A,, € % the monotone convergence theorem implies that

u(UAn) = hm,ur(UA N S\BQT])
—hmZ,uTA ﬂS\BOT Z,u O

PROOF OF THEOREM 2.4. We show that (i) < (ii) and (ii) < (iii).
Suppose that (i) holds and take A € . with sg ¢ A~ and p(0A) = 0. Since
so ¢ A~ there exists r > 0 with u(0By ) = 0 such that A C S\ By,,. By Theorem

2.2, ugf) — () in M,(S ~ By,). The Portmanteau theorem for weak convergence
implies (ii).

Suppose that (ii) holds. The Portmanteau theorem for weak convergence im-
plies that ,ugf) — u( in M, (S \ By,) for all r > 0 for which u(9By,) = 0. Since
w(0By ) = 0 for all but at most countably many r > 0, Theorem 2.2 implies
Hn — pin M.
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Suppose that (iii) holds and take A € . with sg ¢ A~ and u(0A) = 0. Then,
lim sup pp, (A) < limsup p, (A7) < (A7)

n—oo n—00

= p(A°) < liminf p,,(A°) < liminf u, (A).

Hence, lim,,_, o pn(A) = p(A), so that (ii) holds.

Suppose that (ii) holds and take a closed F € . with s ¢ F. Notice that
for F. = {s : d(s,F) < ¢} it holds that for small ¢, say ¢ € (0,¢), OF. = {s :
d(s,F)=¢€}, so ¢ F. and u(0F.) = 0 for all but at most countably many e € (0, c).
Hence, limsup,, o pn(F) < p(F:). Since F. | F as ¢ | 0 and since F is closed,
w(F:) | p(F) as e | 0. Hence, limsup,,_, . pun(F) < p(F). Now take an open
G € . with sp ¢ G~ and an r > 0 such that u(0By,) =0 and G C S\ By,. Set
A =8~ By, and so that I' = A\ G is closed. Then

hnniloréf ,un(G) = lhn_ligf(,un(A) - Mn(F)) 2 M(A) - N’(F) = N(G)
Hence, (ii) holds. d

PrOOF OF LEMMA 2.1. (ii) < (iii): Notice that sj ¢ A~ if and only if there
exists € > 0 such that A C S’ \ By ¢, and that so ¢ h™1(A)~ if and only if there
exists 6 > 0 such that h=1(A) C S\ Bys. Hence, (ii) holds if and only if for every
e > 0 there exists § > 0 such that A= (S’ \ By.) C S\ By,. Taking complements
shows that h=!(S" \ By c) C S\ By, if and only if By s C h™(By .« ).

(iii) = (i):

(iii) implies that h(Bos) C h(h™'(By ¢)). Since h(h~'(By .)) C By holds
for any h, it follows that (i) holds.

(i) = (iii): (i) implies that for every € > 0 there exists 6 > 0 such that h(By 5) C
By <, which implies that h=(h(Bos)) C h™'(By ). Since Bos C h~'(h(Bo,s))
holds for any h, it follows that (iii) holds. d

0

PROOF OF THEOREM 2.5. Take A € .9/ with sj ¢ A~ and puh=1(0A) = 0.
Since Oh~1(A) C h=1(0A) U Dy, (see e.g. (A2.3.2) in [7]), we have pu(0h~1(A)) <
ph=1(0A) + u(Dyp) = 0. Since p,, — p in Mo(S), u(dh=1(A)) = 0 and, by Lemma
2.1, so ¢ h=Y(A)~, it follows by Theorem 2.4 (i) that u,h=1(A) — ph~1(A).
Hence, pi,h~! — ph~! in Mg(S'). O

PROOF OF THEOREM 2.6. Suppose M C Mj(S) is relatively compact. Let
{pn} be a subsequence in M. Then there exists a convergent subsequence fi,, — p
for some py € M~. By Theorem 2.2, there exists a sequence {r;} with r; | 0
such that u%j) — p") in My(S \ By,,). Hence, M) is relatively compact in
M, (S \ By, ) for each such r;.

Conversely, suppose there exists a sequence {r;} with r; | 0 such that M () ¢
M, (SN By.r,) is relatively compact for each 4, and let {u, } be a sequence of elements
in M. We use a diagonal argument to find a convergent subsequence. Since M (")

is relatively compact there exists a subsequence {i,, x)} of {tn} such that ufjll()k)

converges to some i, in My(S\ By, ). Similarly since M (r2) is relatively compact
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and {fin, (k) } C M there exists a subsequence { i, )} of {tn, (k) } such that ,u,g:()k)
converges to some fi,, in Mp(S\ By, ). Continuing like this; for each ¢ > 3 let n;(k)

be a subsequence of n;_1 (k) such that uii’i()k) converges to some fi,, in My (S~ By ., ).

Then the diagonal sequence {ji,, 1)} satisfies ”5;:()1@) — iy, in My(S N By,,) for
each i > 1. Take f € 6o(S). There exists some 49 > 1 such thatf vanishes on By,

for each i > ip. In particular f € 6,(S \ By,,) for each i > ip and

[ s =t [ gy =t [ £l = [ £,
Hence, we can define p/ : €5(S) — [0,00] by p/(f) = lim;—oo [ f dpr,. This g/
induces a measure p in My. Indeed, for A € %) we can find a sequence f,, € 6(S)
such that 0 < f,, T I4 and put p(A) = lim, p/(f,). If AN By, =0 for some r > 0,
then exists f,, € %5(S) such that f,, | T4 and hence pu(A) < p/(fn) < co. Thus, p
is finite on sets A with so ¢ A~. To show p is countably additive, let Ay, Ao, ...
be disjoint sets in /) and 0 < fpx T 14, for each k. Then Zk frk T Iu, 4, and we
have by Fubini’s theorem and the monotone convergence theorem that

MW@>QM(ZnQZ@wmmZMM»
k k k

By construction [ fdu = p/(f) for each f € 6,(S). Hence, [ fdp,x) — [ fdu
for each f € %p(S) and we conclude that M is relatively compact in M. O

PROOF OF THEOREM 2.7. Suppose M C Mj is relatively compact. By Theo-
rem 2.6, there exists a sequence {r;} with 7; | 0 such that M) € My(S\ By,,.,) is
relatively compact for each r;. Prohorov’s theorem (Theorem A2.4.1 in [7]) implies
that (2.2) and (2.3) hold.

Conversely, suppose there exists a sequence {r;} with r; | 0 such that (2.2)
and (2.3) hold. Then, by Prohorov’s theorem, M (") C M, (S \ By ,,) is relatively
compact for each i. By Theorem 2.6, M C Mj is relatively compact. O

PROOF OF THEOREM 2.8. Take an open set G € .%;. For each z € GG there
exists a set A, € &7 such that z € A2 C A, C G. Since S is separable, there exists
a countable subcollection {A$ } of {AS,z € G} that covers G. Hence G C U; A3 .
Since A, C G we also have U;A,, C G. Hence G = U; A,,. It follows that the m-
system &7 generates the open sets and hence the Borel o-algebra. By the uniqueness
theorem p = v on .%. O

For the proof of Theorem 3.1 the following simple observation will be helpful.

LEMMA 5.2. Let p € My. Let E4 =S\ By, TEy = {rz:z € E1} forr >0,
and R, = {r > 0: pu(0rE,) = 0}. Then (0,00) \ R, is at most countable and for
some 19 € R, it holds that pu(rEv) > 0 forr € (0,ro).

PROOF. Since p € My it holds that u(rE;) < oo for all » > 0. In addition
OlrEr]NO[r'Eq] = 0 for v # r'. Hence, p(9[rE1]) = 0 for all but at most countably
many 7 > 0. Since p is nonzero pu(rEj) > 0 for r € (0,79) for some ry > 0 and we
may choose rg € ;. O
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PROOF OF THEOREM 3.1(A). We show this statement under the assumption
that (iii) holds. This is sufficient since in the proof of statement (b), below, it is
shown that the limiting measures are the same up to a constant factor.

Suppose that (iii) holds and set Eq = S \ By,1. By Lemma 5.2, u(9[rE1]) =0
for all » € R, C (0,00), where (0,00) \ R, is at most countable. Moreover,
pu(rEy) > 0 for r € (0,r9) for some ro € R,. Hence, for A in a set of positive
measure, e.g. (1/2,1),

v(tA[roE1)) v(tB) v(tA[roE1])  u(AroEi))

V{roB)  vroEr])  w(iB)  p(roEn) € (0, 00)

as t — oo. Hence, by Theorem 1.4.1 in [6], t — v(t[roE1]) is regularly varying and
im I/(t)\El) — lim V(t)\[T‘oEl])
t—oo V(tEy)  t—oo v(t[roE1))
for some a > 0. In particular, u(9[AE1]) = 0 for all A > 0 and v(tE;) 'v(t:) —

w(E1)"tu(-) in Mg as t — co. Moreover, if A € . with 0 ¢ A~ and u(0A) = 0,
then for any A > 0,

= Aia

v(tAA)  v(tAA) v(tAEY) \-a w(A)

V(tEy)  v(tAEY) v(tE) O u(Ey)

as t — oco. Hence, u(AA) = A=*u(A) for such set A and all A > 0. Since these
sets A form a 7m-system that generate the o-algebra %, u(AA) = A~*u(A) for all
Ae .S and X\ > 0. O

In the proof of Theorem 3.1(b) we will use a particular determining class. For
AcCS,let S(A)={sz:s>21,z€c Al andlet &/ ={A e .S: A=5(A), 0¢ A~ }.
Given a measure u € My we write <7, for the class of sets A € & with u(0A) = 0.

LEMMA 5.3. Take A C S with 0 ¢ A~. If A is open (closed), then S(A) is
open (closed).

PROOF. Assume that A is open. Since (A, z) — Az is continuous by assump-
tion, the map fy given by fi(z) = Az is continuous. Moreover, S(A) = Ux>1 A4 =
U,\}lff/{\(A). Hence, S(A) is open.

Assume that A is closed. Take y,, € S(A) with y,, — y for some y € S. Write
Yn = Spin, where s, > 1 and z,, € A. If s,, — o0, then z,, ¢ A for n sufficiently
large (recall that 0 ¢ A). Hence, {s,} has an accumulation point s € [1,00) so that
$ns — s for some subsequence {s,}. Hence, x,, — x for some 2 € A and it follows
that y,, — y’ for some y’ € S(A). Since y,, — y we must have y = y/. O

LEMMA 5.4. Let u,v € My. If u(A) = v(A) for each A € 42,%;, then = v.

PROOF. If 4 and v coincide on JZZ: then they coincide on the 7-system of finite
differences of sets in 27,. By Theorem 2.8 it is sufficient to show that for each z € Sy

and ¢ > 0 there exists a set D of the form D = El ~ ﬁg with /L,/L S 42,7: such
that € D° C D C By .. Take ¢ € (0,¢] such that 0 ¢ B, 5, u(9B;,5) = 0, and
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1(0S(Bys)) = 0. Then S(By5) \ Bys € ﬁ?; and hence we may choose A; = Emﬁ
and Ay = S(By.5) ~ Ba.s. O
PROOF OF THEOREM 3.1(B). We show that (i) = (ii) = (iii) = (iv) = (i)
and that (iv) < (v).
Suppose that (i) holds and set c(t) = cf,. For each Acd (recall the definition
of &/ before Lemma 5.4) and ¢t > 1 it holds that

c ~ ~ ~
(5.1) ; ]“]lcmﬂv(([t] +1)A) < () (tA) < ([t A).

t]+
Since {cn}n>1 is regularly varying it holds that lim, .. ¢n/cnt1 = 1. Hence,

limy_ oo c(t)v(tA) = u(A) for all A € JZZ: By Lemma 5.4 statement (ii) follows if
we show that {c(t)v(t-) : ¢t > 0} is relatively compact in My. Indeed, Lemma 5.4
implies that all subsequential limits coincide. We know from (i) that {c,v(n-) :
n > 1} is relatively compact in My and by Theorem 2.7 there is a sequence 7; | 0
such that for each 4, sup, c(n)v(n[S \ By,,]) < oo and given n > 0 there is a
compact set C; C S \ By, such that

(5.2) sup c(n)v(n[S ~ (Bo.r, U Ci)l) <.

Since S \ By, € &/, (5.1) implies that sup, c(t)v(¢[S \ Bo,,]) < co. Moreover,
(5.2) holds for any compact set C] with C; C C; C S\ By,,. We claim that
we can choose this C/ such that S \ (By,, UC}) € «/. Then (5.1) implies that
sup, c(t)v(¢[S~ (Bo,»UCY)]) < n and by Theorem 2.7 {c(t)v(t-) : t > 0} is relatively
compact. We now show that it is possible to choose such a set C]. Take C] = {sx :
s€ 0,1,z € C;} N (SN Bo,,). The set {sz:s € [0,1],2 € C;} is compact because
it is the image of the compact set [0,1] x C; C R4 x S under the continuous map
from Ry x S to S given by (A, z) — Az. Since C} is the intersection of a compact
set and a closed set it is compact. Clearly, C; C C; and S\ (By,, UC)) € /. This
completes the proof of (ii).

Suppose that (ii) holds. By Lemma 5.2 there exists r > 0 such that u(9[rE]) =
0 and p(rEy) >0. Fort >0 and A € . with 0 ¢ A~ and u(0A) =0,

v(td) _ ctw(td)  p(4)
v(t[rEr])  c@v(t[rEr])  p(rEn)
as t — oo. Hence, by Theorem 2.4 (ii), (iii) holds.

The implication (iii) = (iv) is shown above (proof of statement (a)).

Suppose that (iv) holds. Lemma 5.2 implies that for r in a subset of (0, 00) of
positive measure, lim;_, o, v(trE7)/v(tE;) exists and is positive. Hence, by Theorem
1.4.11in [6], c(t) = v(tE1) ™! is regularly varying with some index o > 0. Hence, the
sequence ¢, = v(nFE;)~! is regularly varying with index o > 0 and ¢,v(n-) — pu(-)
in My, i.e. (i) holds.

Suppose that (iv) holds. As above, this implies that t — v(tFE;) ™! is regularly
varying with some index a > 0. By Theorem 1.5.12 in [6] there exists a sequence
{a,}, which is regularly varying with index 1/, such that lim,, ., n/v(a,E1) = 1.
Hence, (v) holds.
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Suppose that (v) holds. Take r > 0 such that u(9[rE;]) = 0 and u(rE;) > 0.
For t > ay, let k = k(t) be the largest integer with ap < ¢. Then ap < t < ag4+1

and k — oo as t — oo. Hence, for A € &7,
ko (k+1Dv(ags1A) _ v(tA) _ k1 kv(a,A)
Rl Ro(wlBd) S vQrED) Sk (bt Do(apn )
from which it follows that limy_..o v(tA) /v (t[rE1]) = u(A)/u(rEr). To show that

{v(t-)/v(t[rE4]) : t > 0} is relatively compact we can apply the same argument as
in the proof of the implication (i) = (ii). Hence, (iii) holds. O

PROOF OF THEOREM 4.1. By Theorem 3.1(a), the measure p has the scaling
property p(AA) = A=%u(A) for A > 0 and A € 7. It follows that u(9[R4\ By ,]) =
0 for each u > 0 and therefore lim, oo c,v(R[RY \ Bo.]) = w(R? N By,,) for
each u > 0. Hence, {c,v(n-)} is relatively compact in My. By assumption all
subsequential limits agree on sets V,, ¢ with u(0V,, s) = 0, and by Theorem 2.8 the
finite differences of such sets form a determining class. Hence, all subsequential
limits coincide and the proof is complete. O

PROOF OF THEOREM 4.2. Similar to the proof of Theorem 4.1. U

PROOF OF THEOREM 4.3. Let r; | 0. If (4.1)-(4.3) hold for M then they
hold for each M), By [5, Theorem 7.3 p. 82] M) is relatively compact in
M,;(C \ By,;) which by Theorem 2.6 implies that M is relatively compact.

Conversely, suppose that M is relatively compact in M(C). By Theorem 2.7
there exists a sequence r; | 0 such that (4.1) holds for r = r; and given i > 0 there
exists a compact set C; C C \ By, such that sup,c, 1(C \ (C; U Bo,)) < 0.
Choose such C;. Given € > 0, by the Arzela—Ascoli theorem there exist R; and J;
such that C; C {x : |2(0)| < R;} and C; C {z : wy(d;) < €}. We may assume that
Ry > r1 (otherwise C; = 0) and since {z : |z(0)] > R1} C {z : |*|c > r1} We have

sup p(x : |x(0)] > Ry) = sup p(z : |z|eo > 711, |2(0)] > Ry) < 1.
pneM pneM

Since n was arbitrary(4.2) follows. Finally, let ig be an integer such that r;, < e/2.
Then {z : wy(d;,) > e} C {z : |z]sc > 74, } and hence

sup p(x 2 we(0;y) > €) = sup p(x : wy(d;,) > €, ]%|oo > 1iy) <1
peM neM

Since 7 was arbitrary (4.3) holds. O

PROOF OF THEOREM 4.4. By (4.4) it follows in particular that ¢, vy (n-) —
pmy t(-) in Mo(R9). Hence {c,vm, ' (n-)} is relatively compact and (4.2) holds.
In addition, the conditions (4.5)—(4.6) imply by Theorem 4.3 that {c,v(n-)} is
relatively compact. Let p and p’ be subsequential limits. By (4.4) u = p/ on
the m-system of sets 7r;11 (H), for Borel sets H C R%. Hence, u = p' and
env(ne) — u(-) in M.

Conversely, if c,v(n-) — p(-) in My, then (4.4) follows from the Mapping
Theorem (Theorem 2.5). Since {c,v(n-)} is relatively compact (4.5)—(4.6) hold by
Theorem 4.3. O

Stk
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PROOF OF THEOREM 4.5. Let r; | 0. If (4.7)—(4.11) hold then they hold
they hold for each M (). By [5, Theorem 13.2 p. 139 and (13.8) p. 141] M%)
is relatively compact in My(D ~\ By,,) which by Theorem 2.6 implies that M is
relatively compact.

Conversely, suppose that M is relatively compact in My(D). By Theorem 2.7
there exists a sequence r; | 0 such that (4.7) holds and given n > 0 there exists a
compact set C; C D \ By, such that sup,c, (D N\ (C; U Bor,;)) < 1. Choose
such C;. As in the proof of Theorem 4.3 it follows that (4.8) holds. Given € > 0,
by Theorem 13.2 in [5, p. 139 and (13.8) p. 141] there exist ¢; such that C; C {x :
wl(6;) < e}, C; CH{x:we([0,6;)) < e}, and C; C {x : wy([1 —d;,1)) < e}. Let ig
be an integer such that r;, < ¢/2. Then

{x:wl(8;,) > e} CH{x: |@]oo > T4}
{2 :wy([0,05)) > e} C{x:|2|oo > 1i}
{z:wy([1=6;,1)) >e} CH{a:|2|oo > T4}
and hence

sup /,L(J} : w/w/((szo) > 6) = Sup /J,(J,‘ : wlw/(élo) > g, "/E|OO > Tio) <,
pneM neM
sup p(x : we([0,65,)) > €) = sup p(z : wa([0,6:,)) > €, [@[oc > 1) <,
neM neM
sup ,LL(ZE : wa’:((l - 5i07 1)) > 6) = sup /.L(JT : wx((l - (Siov 1)) > €, |x|oo > Tio) <n.
neM pneM

Since 7 was arbitrary (4.9)—(4.11) hold. O

PROOF OF THEOREM 4.6. Suppose v satisfies (4.12)—(4.15). We will use The-
orem 4.5 to show that {c,v(n-)} is relatively compact in My(D). For this we only
need to check (4.8). Take n > 0. Forany R >0and 0 =ty <t; < - <tp=1in
T such that ¢; —t;_1 < 6 where 6 > 0

enV (20 |2 > nR) < cny(x : max | (t;)] > nR/2)

<i<k

+ cnu(:r P max |z(t;)| < nR/2, max t:?ﬁ)@i lz(t)| > R)

"
< cnz/(m P max |z (t;)] > nR/2) + cpr(z s w”(2,0) > nR/2)
By (4.12) {cpvmy, 1tk(n)} is relatively compact and hence we may choose R big
enough such that sup,, ¢, v(z : maxi<i<k |z(t:)| > nR/2) < n/2. By (4.13) we may
choose § > 0 such that sup,, c,v(z : w”(z,0) > nR/2) < n/2. Hence (4.8) holds. It
follows that {c,v(n-)} is relatively compact in My.

Let p and p’ be subsequential limits. We will show p = /. Let T}, (T,/) consist
of the points where the projection 7; is continuous except at a set of u-measure
(1/-measure) zero (see [5, p. 138]). By (4.12) we have ,u7rt_171___7tk = u’wt_hl_“’tk for
ti,...,t, € TNT,NT,. Since 0,1 € TNT, NT, and this set is dense in [0,1] it
follows by Theorem 13.1 in [5] that p = p'.
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Conversely, suppose that ¢,v(n-) — u(-) in My. By the mapping theorem

(Theorem 2.5) (4.12) holds for ti,...,tx € T, and since {c,v(n-)} is relatively
compact (4.13)—-(4.15) hold. O

Acknowledgment

The authors are grateful for the detailed and enlightening comments made by

an anonymous referee which significantly helped to improve the paper.

(1]
2]
(3]

[4]

References

A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random
Variables, Wiley, New York, 1980.

M. Barczy and G. Pap, Portmanteau theorem for unbounded measures, Statist. Probab.
Lett. 76 (2006), 1831-1835.

B. Basrak, The Sample Autocorrelation Function of Non-Linear Time Series, PhD Thesis,
University of Groningen, Department of Mathematics, 2000.

P. Billingsley, Probability and Measures, 3rd edition, Wiley, New York, 1995.

P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley, New York, 1999.
N. Bingham, C. Goldie and J. Teugels, Regular Variation, Cambridge University Press,
Cambridge, 1987.

D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer-
Verlag, New York, 1988.

W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd edition,
Wiley, New York, 1971.

A. Friedman, Foundations of Modern Analysis, Dover Pulications, New York, 1982.

E. Giné, Central limit theorems in Banach spaces: A survey, in Lecture Notes in Math. 860,
1981, 138-152.

E. Giné, M. G. Hahn and P. Vatan, Maz-infinitely divisible and maz-stable sample contin-
uous processes, Probab. Theory Related Fields. 87 (1990), 139-165.

L. de Haan and T. Lin, On convergence toward an extreme value distribution in C[0,1],
Ann. Probab. 29 (2001), 467-483.

H. Hult and F. Lindskog, Extremal behavior of regularly varying stochastic processes,
Stochast. Process. Appl. 115 (2005), 249-274.

H. Hult, F. Lindskog, T. Mikosch and G. Samorodnitsky, Functional large deviations for
multivariate regularly varying random walks, Ann. Appl. Probab. 15 (2005), 2651-2680.
H. Hult and F. Lindskog, Extremal behavior of stochastic integrals driven by regularly vary-
ing Lévy processes, to appear in Ann. Probab.

H. Kesten, Random difference equations and renewal theory for products of random matri-
ces, Acta Math. 131 (1973), 207-248.

O. Kallenberg, Random Measures, 3rd edition, Akademie-Verlag, Berlin, 1983.

M. M. Meerschaert, Regular variation and domains of attraction in R¥, Stat. Probab. Lett.
4 (1986), 43-45.

M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Ran-
dom Vectors: Heavy Tails in Theory and Practice, Wiley, New York, 2001.

S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New
York, 1987.

S. Resnick, On the foundations of multivariate heavy-tail analysis, J. Appl. Probab. 41 A
(2004), 191-212.

E.L. Rvaceva, On domains of attraction of multi-dimensional distributions, Sel. Transl.
Math. Stat. Probab. 2 (1962), 183-205.



140 HULT AND LINDSKOG

(23] W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980),

67-85.
Division of Applied Mathematics (Received 06 07 2006)
Brown University (Revised 31 10 2006)
Providence
USA

henrik_hult@brown.edu

Department of Mathematics
KTH

Stockholm

Sweden

lindskog@kth.se



