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REGULAR VARIATION FOR MEASURES
ON METRIC SPACES

Henrik Hult and Filip Lindskog

Abstract. The foundations of regular variation for Borel measures on a com-
plete separable space S, that is closed under multiplication by nonnegative real

numbers, is reviewed. For such measures an appropriate notion of convergence

is presented and the basic results such as a Portmanteau theorem, a mapping

theorem and a characterization of relative compactness are derived. Regu-

lar variation is defined in this general setting and several statements that are

equivalent to this definition are presented. This extends the notion of regular

variation for Borel measures on the Euclidean space Rd to more general metric
spaces. Some examples, including regular variation for Borel measures on Rd,
the space of continuous functions C and the Skorohod space D, are provided.

1. Introduction

In many areas of applied probability one encounters a Borel measure ν on Rd

with the following asymptotic scaling property: for some α > 0 and all λ > 0

lim
t→∞

ν(λtA)
ν(tE)

= λ−α lim
t→∞

ν(tA)
ν(tE)

,(1.1)

where E is a fixed reference set such as E = {x ∈ Rd : |x| � 1}, tE = {tx :
x ∈ E}, and A may vary over the Borel sets that are bounded away from the
origin 0 (the closure of A does not contain 0). Typically ν is a probability measure
but other classes of measures, such as Lévy- or intensity measures for infinitely
divisible distributions or random measures, with this property appear frequently
in the probability literature. The asymptotic scaling property implies that the
function c(t) = 1/ν(tE) is regularly varying (at ∞) with index α and that c(t)ν(tA)
converges to a finite constant µ(A) as t → ∞. Then (1.1) translates into the
scaling property µ(λA) = λ−αµ(A) for λ > 0. A measure satisfying (1.1) is called
regularly varying (see Section 3 for a precise definition). The name is motivated by
t �→ ν(tA) being a regularly varying function (with index −α) whenever µ(A) > 0.
To motivate the approach we suggest for defining regular variation for measures on
general spaces, it is useful to first consider the most commonly encountered way to
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define regular variation for measures on Rd. In order to use the well established
notion of vague convergence (see e.g. [17]), instead of Rd one considers the space
[−∞,∞]d�{0}. The reason is that sets that are bounded away from 0 in Rd become
topologically bounded (or relatively compact) in [−∞,∞]d � {0}. This means that
regular variation for a measure ν on Rd can be defined as the vague convergence
ν(t·)/ν(tE) → µ(·) as t → ∞, where µ is a nonzero measure on [−∞,∞]d � {0}.
There exist definitions of regular variation for measures on other spaces that are
not locally compact. For instance, on the Skorohod space D[0, 1], regular variation
is formulated using polar coordinates and a notion of convergence for boundedly
finite measures (see [13] and [12]). Also in this case the original space is changed
by introducing “points at infinity” in order to turn sets bounded away from 0 in
the original space into metrically bounded sets. It is the aim of this paper to review
the foundations of regular variation for measures on general metric spaces without
considering modifications of the original space of the types explained above.

The first step towards a general formulation of regular variation is to find an
appropriate notion of convergence of measures. Recall that a sequence of bounded
(or totally finite) measures µn on a separable metric space S converges weakly to a
bounded measure µ as n → ∞ if limn→∞

∫
f dµn =

∫
f dµ for all bounded and con-

tinuous real functions f . By the Portmanteau theorem, an equivalent formulation is
that limn→∞ µn(A) = µ(A) for all Borel sets A with µ(∂A) = 0, where ∂A denotes
the boundary of A. A convenient way to modify weak convergence to fit into a reg-
ular variation context is to define convergence µn → µ by limn→∞

∫
f dµn =

∫
f dµ

for all bounded and continuous real functions f that vanish in a neighborhood of
a fixed point s0 ∈ S (the origin). The foundations of this notion of convergence,
including a Portmanteau theorem, a mapping theorem and characterizations of
relative compactness, are presented in Section 2.

To define regular variation for measures on S, the space S has to be closed
under multiplication by nonnegative real numbers λ ∈ R+. Moreover, the map
(λ, x) �→ λx from R+ × S into S should be continuous, there should exist an
element 0 ∈ S so that 0x = 0 for all x ∈ S, and the metric d on S should satisfy
d(0, λ1x) < d(0, λ2x) for all λ1, λ2 ∈ R+ with λ1 < λ2 and all x ∈ S�{0}. The last
assumption means that for x ∈ S�{0} the distance to the origin for a point on the
ray {λx : λ ∈ R+} is strictly increasing in λ. Under these additional assumptions
the notion of regular variation for measures on S is introduced in Section 3. An
alternative approach to define regular variation for measures on S would be to
identify S with a product space and use polar coordinates. However, we do not
pursue such alternative approaches here. It is worth noticing that the formulation
of regular variation proposed here is equivalent to usual formulations of regular
variation for measures on Rd, C[0, 1] and D[0, 1] found in e.g. [3, 20, 21, 12, 13].

The advantage of the construction proposed here is two-fold. Firstly, it provides
a general framework for measures on metric spaces. In particular, it is irrelevant
whether the space is locally compact. Secondly, there is no need to introduce
artificial compactification points. These points lead to annoying difficulties that
blur the elegant mathematics underlying the theory. For example, any mappings
h : S → S′ would have to be modified to cope with the compactification points.
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In Section 2 we introduce the space M0 of measures on a complete separable
metric space S. The measures in M0 assign finite mass to sets bounded away from
s0, i.e. s0 is not contained in the closure of the set, where s0 is a fixed element in
S. Convergence in M0 is closely related to, but not identical to, weak convergence.
We derive relevant fundamental results and characterize relative compactness in
M0. In Section 3 we consider regular variation for a sequence of measures and
for a single measure in M0. A number of statements that are equivalent to the
definition of regular variation for a measure in M0 is presented. In Section 4 we
give examples that illustrate the framework developed in Sections 2 and 3, and
provide references to related work. In particular we derive results for Rd, for the
space of continuous functions, and for the space of càdlàg functions. All the proofs
are found in Section 5.

Regular variation conditions for probability measures on Rd appear frequently
in the literature. Natural examples are the studies of the asymptotic behavior of
partial sums of independent and identically distributed terms (the general central
limit theorem, see e.g. [22], [19]), of componentwise partial maxima and point
processes (extreme value theory, see e.g. [20]) and of solutions to random difference
equations (see e.g. [16]). Regular variation also appears naturally in necessary and
sufficient conditions in central limit theorems in Banach spaces, see e.g. [1] and
[10] and the references therein. In the space C([0, 1];Rd) of continuous functions it
is used to characterize max-stable distributions and convergence in distribution of
normalized partial maxima (see [11] and [12]). In the space D([0, 1];Rd) of càdlàg
functions the framework of regularly varying measures has been employed to study
the extremal behavior of heavy-tailed stochastic processes and the tail behavior of
functionals of their sample paths (see [13] and [15]).

2. Convergence of measures in the space M0

Let (S, d) be a complete separable metric space. We write S for the Borel
σ-algebra on S and Bx,r = {y ∈ S : d(x, y) < r} for the open ball centered at x
with radius r.

Let Cb denote the class of real-valued, bounded and continuous functions on S,
and let Mb denote the class of finite Borel measures on S . A basic neighborhood
of µ ∈ Mb is a set of the form {ν ∈ Mb : | ∫ fi dν − ∫

fi dµ| < ε, i = 1, . . . , k},
where ε > 0 and fi ∈ Cb for i = 1, . . . , k. Thus, Mb is equipped with the weak
topology. The convergence µn → µ in Mb, weak convergence, is equivalent to∫

f dµn → ∫
f dµ for all f ∈ Cb. See e.g. Sections 2 and 6 in [5] for details. Fix

an element s0 ∈ S, called the origin, and set S0 = S � {s0}. The subspace S0 is a
metric space in the relative topology with σ-algebra S0 = {A : A ⊂ S0, A ∈ S }.
Let C0 denote the real-valued bounded and continuous functions f on S0 such that
for each f there exists r > 0 such that f vanishes on B0,r; we use the notation B0,r

for the ball Bs0,r. Let M0 be the class of Borel measures on S0 whose restriction
to S � B0,r is finite for each r > 0. A basic neighborhood of µ ∈ M0 is a set of
the form {ν ∈ M0 : | ∫ fi dν − ∫

fi dµ| < ε, i = 1, . . . , k}, where ε > 0 and fi ∈ C0
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for i = 1, . . . , k. Similar to weak convergence, the convergence µn → µ in M0 is
equivalent to

∫
f dµn → ∫

f dµ for all f ∈ C0.

Theorem 2.1. µn → µ in M0 if and only if
∫

f dµn → ∫
f dµ for each f ∈ C0.

The proof of this and all subsequent results are found in Section 5.
For µ ∈ M0 and r > 0, let µ(r) denote the restriction of µ to S � B0,r. Then

µ(r) is finite and µ is uniquely determined by its restrictions µ(r), r > 0. Moreover,
convergence in M0 has a natural characterization in terms of weak convergence of
the restrictions to S � B0,r.

Theorem 2.2. (i) If µn → µ in M0, then µ
(r)
n → µ(r) in Mb(S � B0,r) for all

but at most countably many r > 0.
(ii) If there exists a sequence {ri} with ri ↓ 0 such that µ

(ri)
n → µ(ri) in Mb(S�B0,ri

)
for each i, then µn → µ in M0.

Weak convergence is metrizable (for instance by the Prohorov metric, see
e.g. p. 72 in [5]) and the close relation between weak convergence and convergence
in M0 in Theorem 2.2 indicates that the topology in M0 is metrizable too. Theo-
rem 2.3 shows that, with minor modifications of the arguments in [7, pp. 627–628],
we may choose the metric

dM0(µ, ν) =
∫ ∞

0

e−rpr(µ(r), ν(r))[1 + pr(µ(r), ν(r))]−1 dr,(2.1)

where µ(r), ν(r) are the finite restriction of µ, ν to S � B0,r, and pr is the Prohorov
metric on Mb(S � B0,r).

Theorem 2.3. The metric dM0 makes M0 a complete separable metric space.

Many useful applications of weak convergence rely on the Portmanteau theorem
and the Mapping theorem. Next we derive the corresponding versions of these
results for convergence in M0. A more general version of the Portmanteau theorem
below can be found in [2].

For A ⊂ S, let A◦ and A− denote the interior and closure of A, and let ∂A =
A−

� A◦ be the boundary of A.

Theorem 2.4. (Portmanteau theorem) Let µ, µn ∈ M0. The following state-
ments are equivalent.

(i) µn → µ in M0 as n → ∞,
(ii) limn→∞ µn(A) = µ(A) for all A ∈ S with µ(∂A) = 0 and 0 /∈ A−,
(iii) lim supn→∞ µn(F ) � µ(F ) and lim infn→∞ µn(G) � µ(G) for all closed

F ∈ S and open G ∈ S with s0 /∈ F and s0 /∈ G−.

Remark 2.1. Consider statement (iii) above. In contrast to weak convergence
of probability measures neither of the two statements implies the other. Take
c ∈ (0,∞) � {1} and x ∈ S0. Let µn = δx and µ = c δx, where δx(A) = 1 if x ∈ A
and 0 otherwise. If c < 1, then the second statement in (iii) holds but not the
first. If c > 1, then the first statement in (iii) holds but not the second. See also
Remarks 3 and 4 in [2].
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We conclude this section with a mapping theorem. Let (S,S ) and (S′,S ′)
be complete separable metric spaces. We denote by s0 and s′0 the origin in S and
S′, respectively. The open ball in S′ centered at s′0 with radius r is denoted by
B0′,r. For a measurable mapping h : (S,S ) → (S′,S ′), let Dh ⊂ S be the set of
discontinuity points of h. Notice that Dh ∈ S , see e.g. p. 243 in [5].

Theorem 2.5. (Mapping theorem) Let h : (S,S ) → (S′,S ′) be a measurable
mapping. If µn → µ in M0(S), µ(Dh ∩ S0) = 0, h(s0) = s′0 and s0 /∈ Dh, then
µnh−1 → µh−1 in M0′(S′).

Consider the following statements for a measurable mapping h : S → S′:
(i) The mapping h is continuous at s0 and h(s0) = s′0.
(ii) For every A ∈ S ′ with s′0 /∈ A− it holds that s0 /∈ h−1(A)− in S.
(iii) For every ε > 0 there exists δ > 0 such that B0,δ ⊂ h−1(B0′,ε).
By Lemma 2.1 below, they are all equivalent. Hence, we could have chosen to

formulate the mapping theorem with any one of them.

Lemma 2.1. The statements (i)–(iii) are equivalent.

2.1. Relative compactness in M0. Since we are interested in convergence
of measures in M0 it is essential to give an appropriate characterization of relative
compactness. A subset of a topological space is said to be relatively compact if
its closure is compact. A subset of a metric space is compact if and only if it is
sequentially compact. Hence, M ⊂ M0 is relatively compact if and only if every
sequence {µn} in M contains a convergent subsequence.

For µ ∈ M ⊂ M0 and r > 0, let µ(r) be the restriction of µ to S � B0,r and
M (r) = {µ(r) : µ ∈ M}. By Theorem 2.2 we have the following characterization of
relative compactness.

Theorem 2.6. A subset M ⊂ M0 is relatively compact if and only if there exists
a sequence {ri} with ri ↓ 0 such that M (ri) is relatively compact in Mb(S � B0,ri

)
for each i.

Relative compactness in the weak topology is characterized by Prohorov’s the-
orem. This translates to the following characterization of relative compactness in
M0.

Theorem 2.7. M ⊂ M0 is relatively compact if and only if there exists a
sequence {ri} with ri ↓ 0 such that for each i

sup
µ∈M

µ(S � B0,ri
) < ∞,(2.2)

and for each η > 0 there exists a compact set Ci ⊂ S � B0,ri
such that

sup
µ∈M

µ(S � (B0,ri
∪ Ci)) � η.(2.3)

A convenient way to prove the convergence µn → µ in M0 is to show that{µn} is
relatively compact and show convergence µn(A) → µ(A) for sets A in a determining
class A . The next standard result (e.g. Theorem 2.3 in [5]) is useful for identifying
a determining class of sets in S0.
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Theorem 2.8. Suppose that A is a π-system of sets in S0 and, for each x ∈ S0

and ε > 0, there exists an A ∈ A for which x ∈ A◦ ⊂ A ⊂ Bx,ε. If µ, ν ∈ M0 and
µ = ν on A , then µ = ν on S0.

3. Regularly varying sequences of measures

In the first part of this section we introduce the notion of regularly varying se-
quences of measures in M0, only assuming the general setting presented in Section
2. Then we define regular variation for a single measure in M0. In order to formu-
late this definition we need to assume further properties of the space S, essentially
we assume that S has the structure of a cone. For a measure ν ∈ M0 we provide
equivalent statements which are all equivalent to ν being regularly varying. These
statements extend the corresponding equivalent definitions of regular variation for
Borel measures on Rd to the general setting considered here.

Recall from e.g. [6] that a positive measurable function c defined on (0,∞)
is regularly varying with index ρ ∈ R if limt→∞ c(λt)/c(t) = λρ for all λ > 0.
Similarly, a sequence {cn}n�1 of positive numbers is regularly varying with index
ρ ∈ R if limn→∞ c[λn]/cn = λρ for all λ > 0 (here [λn] denotes the integer part of
λn).

Definition 3.1. A sequence {νn}n�1 in M0 is regularly varying with index
−α < 0 if there exists a sequence {cn}n�1 of positive numbers which is regularly
varying with index α > 0, and a nonzero µ ∈ M0 such that cnνn → µ in M0 as
n → ∞.

The choice of terminology is motivated by the fact that {νn(A)}n�1 is a regu-
larly varying sequence for each set A ∈ S with 0 /∈ A−, µ(∂A) = 0 and µ(A) > 0.

We will now define regular variation for a single measure in M0. In order
to formulate this definition we need to assume further properties of the space S.
Suppose that there is an element 0 ∈ S and let s0 = 0 in the definitions of S0

and M0 in Section 2. Suppose that the space S is closed under multiplication by
nonnegative real numbers λ ∈ R+ and that the map (λ, x) �→ λx from R+ × S
into S is continuous. In particular, we have 0x = 0 for all x ∈ S. Suppose further
that the metric d on S satisfies d(0, λ1x) < d(0, λ2x) for all λ1, λ2 ∈ R+ with
λ1 < λ2 and all x ∈ S0, i.e. the distance to the origin s0 = 0 for a point on the ray
{λx : λ ∈ R+} is strictly increasing in λ.

Definition 3.2. A measure ν ∈ M0 is regularly varying if the sequence
{ν(n·)}n�1 in M0 is regularly varying.

In particular, a probability measure P on S is regularly varying if the sequence
{P (n·)}n�1 in M0 is regularly varying.

There are many possible equivalent ways to formulate regular variation for a
measure ν ∈ M0. Consider the following statements.

(i) There exist a nonzero µ ∈ M0 and a regularly varying sequence {cn}n�1

of positive numbers such that cnν(n·) → µ(·) in M0 as n → ∞.
(ii) There exist a nonzero µ ∈ M0 and a regularly varying function c such

that c(t)ν(t·) → µ(·) in M0 as t → ∞.
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(iii) There exist a nonzero µ ∈ M0 and a set E ∈ S with 0 /∈ E− such that
ν(tE)−1ν(t·) → µ(·) in M0 as t → ∞.

(iv) There exists a nonzero µ ∈ M0 such that ν(t[S � B0,1])−1ν(t·) → µ(·) in
M0 as t → ∞.

(v) There exist a nonzero µ ∈ M0 and a sequence {an}n�1 of positive numbers
such that nν(an·) → µ(·) in M0 as n → ∞.

Theorem 3.1. (a) Each of the statements (i)–(v) above implies that µ(λA) =
λ−αµ(A) for some α > 0 and all A ∈ S0 and λ > 0. (b) The statements (i)–(v)
are equivalent.

Several equivalent formulations of regular variation for measures on Rd, similar
to those above, can be found in e.g. [3] and [21]. Theorem 3.1 extends some of them
to measures on general metric spaces. One could also identify S with a product
space and formulate regular variation in terms of polar coordinates. However, we
have not pursued this approach here.

On Rd statements equivalent to regular variation for probability measures have
appeared at numerous places in the vast literature on domains of attraction for sums
and maxima. The notion of regular variation for measures on Rd first appeared in
[18], where it was used for multivariate extensions of results in [8] on characteriza-
tions of domains of attractions. See Chapter 6 in [19] for a more recent account on
this topic. The definition of regular variation for a measure on Rd in [18] differs
from the one considered here and those in e.g. [21] in the sense that the limiting
measure µ in the above statements (i)–(v) may be supported in a proper subspace
of S.

4. Examples

In this section we provide some examples of metric spaces on which regularly
varying measures are natural in applications. We consider the Euclidean space Rd,
the space of continuous functions, and the space of càdlàg functions. We review
some conditions to check relative compactness in M0 for measures on these spaces
and provide conditions for determining if a given measure is regularly varying.

4.1. The Euclidean space Rd. A fundamental example of a metric space S
is the Euclidean space Rd with the usual Euclidean norm | · |. The characterization
of relative compactness in M0 simplifies considerably if M0 = M0(Rd). Since the
unit ball is relatively compact in Rd, Theorem 2.7 implies that M ⊂ M0(Rd) is
relatively compact if and only if supµ∈M µ(Rd

� B0,r) < ∞ for each r > 0, and
limR→∞ supµ∈M µ(Rd

� B0,R) = 0.
Regular variation for measures on Rd is often proved by showing convergence

to a measure µ ∈ M0(Rd) for an appropriate convergence determining class of
subsets of Rd. If Vu,S = {x ∈ Rd : |x| > u, x/|x| ∈ S} for u > 0 and Borel sets
S ⊂ {x ∈ Rd : |x| = 1}, then the collection of such sets satisfying µ(∂Vu,S) = 0
form a convergence determining class (see [3]).

Theorem 4.1. Let ν, µ ∈ M0(Rd) be nonzero and let {cn} be a regularly vary-
ing sequence with index α > 0. If cnν(nVu,S) → µ(Vu,S) as n → ∞ for each u > 0
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and Borel set S ⊂ {x ∈ Rd : |x| = 1} with µ(∂Vu,S) = 0, then cnν(n·) → µ(·) in
M0 as n → ∞ and ν is regularly varying.

The sets of the form Ax = [0,∞)d
�{[0, x1]×· · ·×[0, xd]}, for x = (x1, . . . , xd) ∈

[0,∞)d, form a convergence determining class for regular variation for measures on
[0,∞)d

� {0}. This is well known, see e.g. [20].

Theorem 4.2. Let ν, µ ∈ M0([0,∞)d) be nonzero and let {cn} be a regularly
varying sequence with index α > 0. If cnν(nAx) → µ(Ax) as n → ∞ for each
x ∈ [0,∞)d

�{0}, then cnν(n·) → µ(·) in M0 as n → ∞ and ν is regularly varying.

To show regular variation in function spaces is typically less straight-forward.
Similar to weak convergence of probability measures on these spaces, convergence is
typically shown by showing relative compactness and convergence for finite dimen-
sional projections of the original measures. In the following two sections we will
exemplify applications of the framework set up in Sections 2 and 3 by considering
regular variation for measures on the space C([0, 1];Rd) of continuous functions
with the uniform topology and the space D([0, 1];Rd) of càdlàg functions with the
Skorohod J1-topology.

4.2. The space C([0, 1];Rd). Let S be the space C = C([0, 1];Rd) of con-
tinuous functions [0, 1] → Rd with the uniform topology given by the supremum
norm | · |∞. Tightness conditions for weak convergence on C are well known [5,
p. 82] and translate naturally to conditions for relative compactness in M0(C). For
x : [0, 1] → Rd the modulus of continuity is given by wx(δ) = sup|s−t|�δ |x(s)−x(t)|.

Theorem 4.3. A set M ⊂ M0(C) is relatively compact if and only if for each
r > 0 and each ε > 0

sup
µ∈M

µ(S � B0,r) < ∞,(4.1)

lim
R→∞

sup
µ∈M

µ(x : |x(0)| > R) = 0,(4.2)

lim
δ→0

sup
µ∈M

µ(x : wx(δ) � ε) = 0.(4.3)

To prove that a measure ν ∈ M0(C) is regularly varying we typically need
to show that for some regularly varying sequence {cn} of positive numbers, (i)
{cnν(n·) : n � 1} is relatively compact, and (ii) any two subsequential limits
of {cnν(n·)} coincide. The point (ii) holds, similar to the case for weak conver-
gence, if the subsequential limits have the same finite dimensional projections. For
(t1, . . . , tk) ∈ [0, 1]k denote by πt1,...,tk

the map C 	 x �→ (x(t1), . . . , x(tk)) ∈ Rdk.
The finite dimensional projections of ν ∈ M0(C) are measures of the form νπ−1

t1,...,tk
.

Theorem 4.4. Let ν, µ ∈ M0(C) be nonzero and let {cn} be a regularly varying
sequence of positive numbers. Then cnν(n·) → µ(·) in M0(C) as n → ∞ if and
only if for each integer k � 1 and (t1, . . . , tk) ∈ [0, 1]k

cnνπ−1
t1,...,tk

(n·) → µπ−1
t1,...,tk

(·)(4.4)
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in M0(Rdk) as n → ∞, and for each r > 0 and each ε > 0

sup
n

cnν(n[S � B0,r]) < ∞,(4.5)

lim
δ→0

sup
n

cnν(x : wx(δ) � nε) = 0.(4.6)

Recall that the regular variation statement cnν(n·) → µ(·) can be replaced
by any of the equivalent statements in Theorem 3.1. For those statements there
are corresponding versions of the conditions in Theorem 4.4. Regular variation
on C can be used for studying extremal properties of stochastic processes. The
mapping theorem can be used to determine the tail behavior of functionals of a
heavy-tailed stochastic process with continuous sample paths. Another application
is to characterize max-stable distributions in C. For f1, . . . , fn ∈ C let

∨n
i=1 fi

be the element in C given by (
∨n

i=1 fi)(t) = maxi=1,...,n fi(t). A random variable
X with values in C is said to be max-stable if, for each integer n � 1 there are
functions an(t) > 0 and bn(t) such that a−1

n (
∨n

i=1 Xi − bn) d= X, where d= denotes
equality in distribution and X1, . . . , Xn are independent and identically distributed
copies of X. The distribution of X is called simple max-stable if one can choose
an(t) = n and bn(t) = 0 for all t. Max-stable distributions appear as limiting distri-
butions of pointwise maxima of independent and identically distributed stochastic
processes. Their domain of attraction can be characterized in terms of regular vari-
ation. If Y1, Y2, . . . are independent and identically distributed with values in C,
then n−1

∨n
i=1 Yi

d→ X in C for some X (where X necessarily has a simple max-
stable distribution) if and only if the distribution of Y on C is regularly varying
and satisfies statement (v) above (before Theorem 3.1) with an = n. The same
characterization holds for random variables taking values in the space D studied
below. See [12, Theorem 2.4] and [11] for more details. Theorem 4.4 provides
necessary and sufficient conditions for a Borel (probability) measure on C to be
regularly varying.

4.3. The space D([0, 1];Rd). Let S be the space D = D([0, 1];Rd) of càdlàg
functions equipped with the Skorohod J1-topology. We refer to [5] for details on
this space and the J1-topology. In particular, elements in D are assumed to be
left-continuous at 1. Notice that if d is the J1-metric then d(x, 0) = |x|∞. Notice
also that D is not complete under d but there exists an equivalent metric under
which D is complete (see Section 12 in [5]). Notice also that D is not a topological
vector space since addition in D is in general not continuous (see e.g. [23]). For
T ⊂ [0, 1] and δ > 0, let

wx(T ) = sup
t1,t2∈T

|x(t2) − x(t1)|,

w′′
x(δ) = sup

t,t1,t2

{|x(t) − x(t1)| ∧ |x(t2) − x(t)|},

where the supremum in the definition of w′′
x(δ) is over all (t, t1, t2) satisfying 0 �

t1 � t � t2 � 1 and t2 − t1 � δ.
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Theorem 4.5. A set M ⊂ M0(D) is relatively compact if and only if for each
r > 0 and ε > 0

sup
µ∈M

µ(S � B0,r) < ∞,(4.7)

lim
R→∞

sup
µ∈M

µ(x : |x|∞ > R) = 0,(4.8)

lim
δ→0

sup
µ∈M

µ(x : w′′
x(δ) � ε) = 0,(4.9)

lim
δ→0

sup
µ∈M

µ(x : wx([0, δ)) � ε) = 0,(4.10)

lim
δ→0

sup
µ∈M

µ(x : wx([1 − δ, 1)) � ε) = 0.(4.11)

Similar to the space C, regular variation for measures on D is typically proved
by showing relative compactness in M0(D) and convergence of finite dimensional
projections (see [13, Theorem 10]).

Theorem 4.6. Let ν, µ ∈ M0(D) be nonzero and let {cn} be a regularly varying
sequence of positive numbers. Then cnν(n·) → µ(·) in M0(D) as n → ∞ if and
only if there exists T ⊂ [0, 1] containing 0, 1 and all but at most countably many
points of [0, 1] such that

cnνπ−1
t1,...,tk

(n·) → µπ−1
t1,...,tk

(·)(4.12)

in M0(Rdk) as n → ∞ whenever t1, . . . , tk ∈ T , and for each ε > 0

lim
δ→0

lim sup
n

cnν(w′′
x(δ) � nε) = 0(4.13)

lim
δ→0

lim sup
n

cnν(wx([0, δ)) � nε) = 0(4.14)

lim
δ→0

lim sup
n

cnν(wx([1 − δ, 1)) � nε) = 0.(4.15)

Notice that the regular variation statement cnν(n·) → µ(·) can be replaced
by any of the equivalent statements in Theorem 3.1. Notice also that the set T
in Theorem 4.6 appears because for t ∈ (0, 1) the map πt(x) = x(t) is continuous
at x ∈ D if and only if x is continuous at t. Regular variation on D can be
used for studying extremal properties of stochastic processes, see [13] and [15].
In particular, the mapping theorem can be used to determine the tail behavior of
functionals of a heavy-tailed stochastic process with càdlàg sample paths. Regular
variation is also closely connected to max-stable distributions on D, see [12].

Regularly varying sequences of measures in M0(D) appear for instance when
studying large deviations. Consider for instance the stochastic process X

(n)
t =

Z1 + · · · + Z[nt], t ∈ [0, 1], where {Zk} is a sequence of independent and iden-
tically distributed Rd-valued random variables whose common probability distri-
bution P (Z1 ∈ ·) is regularly varying on Rd with α > 1. Then the sequence
νn(·) = P (n−1X(n) ∈ ·) is regularly varying according to Definition 3.1 with
cn = [nP (|Z1| > n)]−1, see [14, Theorem 2.1].
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5. Proofs

Proof of Theorem 2.1. Suppose µn → µ in M0 and take f ∈ C0. Given ε >
0 consider the neighborhood Nε,f (µ) = {ν : | ∫ f dν − ∫

f dµ| < ε}. By assumption
there exists n0 such that n � n0 implies µn ∈ Nε,f (µ), i.e. | ∫ f dµn − ∫

f dµ| < ε.
Hence

∫
f dµn → ∫

f dµ.
Conversely, suppose that

∫
f dµn → ∫

f dµ for each f ∈ C0. Take ε > 0
and a neighborhood Nε,f1,...,fk

(µ) = {ν : | ∫ fi dν − ∫
fi dµ| < ε, i = 1, . . . , k}.

Let ni be an integer such that n � ni implies | ∫ fi dµn − ∫
fi dµ| < ε. Hence,

n � max(n1, . . . , nk) implies µn ∈ Nε,f1,...,fk
(µ). It follows that µn → µ in M0. �

Lemma 5.1. Let µ ∈ M0, let r > 0 be such that µ(∂B0,r) = 0 and let f ∈
Cb(S � B0,r) be nonnegative. For each ε > 0 there exist nonnegative f1, f2 ∈ C0

such that f1 � f � f2 on S � B0,r and | ∫
S

f2 dµ − ∫
S

f1 dµ| � ε.

Proof. For any r′ > r let f1,r′ be a function on S0 given by

f1,r′ =
{

gr,r′f on S � B0,r,
0 on B0,r � {0},

where gr,r′(x) = max{min{d(x, s0), r′} − r, 0}/(r′ − r) for x ∈ S0. Then f1,r′ is
continuous, f1,r′ � f on S�B0,r and f1,r′(x) ↑ f(x) pointwise on S�B−

0,r as r′ ↓ r.
We now consider an upper bound. By the Tietze extension theorem (Theorem 3.6.3
in [9]) there exists a nonnegative, bounded continuous extension F of f to S0 such
that F = f on S� B0,r and sup |F | = sup |f |. For r′′ < r let f2,r′′ be a function on
S0 given by f2,r′′ = gr′′,rF on S � B0,r and 0 otherwise. Then f2,r′′ is continuous,
f2,r′′ � f on S � B0,r and f2,r′′(x) ↓ f(x) pointwise on S � B0,r as r′′ ↑ r. In
particular,∣∣∣ ∫

S

f2,r′′ dµ −
∫
S

f1,r′ dµ
∣∣∣ � sup |f |µ(B0,r′ � B0,r′′) → sup |f |µ(∂B0,r) = 0

as r′ ↓ r and r′′ ↑ r. Hence, for r′ and r′′ sufficiently close to r we may take
f1 = f1,r′ and f2 = f2,r′′ . �

Proof of Theorem 2.2. (i) Let Rµ = {r ∈ (0,∞) : µ(∂B0,r) = 0} and
notice that (0,∞) � Rµ is at most countable. Take r ∈ Rµ and, without loss of
generality, a nonnegative f ∈ Cb(S � B0,r). Given ε > 0 there exist, by Lemma
5.1, nonnegative f1, f2 ∈ C0(S) with f1 � f � f2 on S � B0,r such that | ∫ f2 dµ −∫

f1 dµ| � ε. Hence,
∫

f1 dµn �
∫

f dµn �
∫

f2 dµn and by Theorem 2.1 µn → µ
in M0 implies that∫

f1 dµ � lim inf
n

∫
f dµn � lim sup

n

∫
f dµn �

∫
f2 dµ.

Since ε > 0 was arbitrary it follows that
∫

f dµn → ∫
f dµ.

(ii) Take f ∈ C0(S); without loss of generality f can be chosen nonnegative.
The support of f is contained in S � B0,ri

for some ri > 0 such that µ
(ri)
n → µ(ri)

in Mb(S�B0,ri
). Hence f ∈ Cb(S�B0,ri

) and
∫

f dµn =
∫

f dµ
(ri)
n → ∫

f dµ(ri) =∫
f dµ. �
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Proof of Theorem 2.3. The proof consists of minor modifications of argu-
ments that can be found in [7, pp. 628–630]. Here we change from r to 1/r. For
the sake of completeness we have included a full proof.

We show that (i) µn → µ in M0 if and only if dM0(µn, µ) → 0, and (ii)
(M0, dM0) is complete and separable.

(i) Suppose that dM0(µn, µ) → 0. The integral expression in (2.1) can be
written dM0(µn, µ) =

∫ ∞
0

e−rgn(r) dr, so that for each n, gn(r) decreases with r
and is bounded by 1. Helly’s selection theorem (p. 336 in [4]), applied to 1 −
gn, implies that there exists a subsequence {n′} and a non-increasing function g
such that gn′(r) → g(r) for all continuity points of g. By dominated convergence,∫ ∞
0

e−rg(r) dr = 0 and since g is monotone this implies that g(r) = 0 for all finite
r > 0. Since this holds for all convergent subsequences {gn′(r)}, it follows that
gn(r) → 0 for all continuity points r of g, and hence, for such r, pr(µ

(r)
n , µ(r)) → 0

as n → ∞. By Theorem 2.2, µn → µ in M0.
Suppose that µn → µ in M0. Then theorem 2.2 implies that µ

(r)
n → µ(r)

in Mb(S � B0,r) for all but at most countably many r > 0. Hence, for such
r, pr(µ

(r)
n , µ(r))[1 + pr(µ

(r)
n , µ(r))]−1 → 0, which by the dominated convergence

theorem implies that dM0(µn, µ) → 0.
(ii) Separability: For r > 0 let Dr be a countable dense set in Mb(S � B0,r)

with the weak topology. Let D be the union of Dr for rational r > 0. Then D is
countable. Let us show D is dense in M0. Given ε > 0 and µ ∈ M0 pick r′ > 0
such that

∫ r′

0
e−r dr < ε/2. Take µr′ ∈ Dr′ such that pr′(µr′ , µ(r′)) < ε/2. Then

pr(µ
(r)
r′ , µ(r)) < ε/2 for all r > r′. In particular, dM0(µr′ , µ) < ε.
Completeness: Let {µn} be a Cauchy sequence for dM0 . Then {µ(r)

n } is a
Cauchy sequence for pr for all but at most countably many r > 0 and by complete-
ness of Mb(S � B0,r) it has a limit µr. These limits are consistent in the sense
that µ

(r)
r′ = µr for r′ < r. On S0 put µ(A) = limr→0 µr(A ∩ S � B0,r). Then µ is

a measure. Clearly, µ � 0 and µ(∅) = 0. Moreover, µ is countably additive: for
disjoint An ∈ S0 the monotone convergence theorem implies that

µ

( ⋃
n

An

)
= lim

r→0
µr

(⋃
n

An ∩ [S � B0,r]
)

= lim
r→0

∑
n

µr

(
An ∩ [S � B0,r]

)
=

∑
n

µ(An). �

Proof of Theorem 2.4. We show that (i) ⇔ (ii) and (ii) ⇔ (iii).
Suppose that (i) holds and take A ∈ S with s0 /∈ A− and µ(∂A) = 0. Since

s0 /∈ A− there exists r > 0 with µ(∂B0,r) = 0 such that A ⊂ S�B0,r. By Theorem
2.2, µ

(r)
n → µ(r) in Mb(S � B0,r). The Portmanteau theorem for weak convergence

implies (ii).
Suppose that (ii) holds. The Portmanteau theorem for weak convergence im-

plies that µ
(r)
n → µ(r) in Mb(S � B0,r) for all r > 0 for which µ(∂B0,r) = 0. Since

µ(∂B0,r) = 0 for all but at most countably many r > 0, Theorem 2.2 implies
µn → µ in M0.
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Suppose that (iii) holds and take A ∈ S with s0 /∈ A− and µ(∂A) = 0. Then,

lim sup
n→∞

µn(A) � lim sup
n→∞

µn(A−) � µ(A−)

= µ(A◦) � lim inf
n→∞ µn(A◦) � lim inf

n→∞ µn(A).

Hence, limn→∞ µn(A) = µ(A), so that (ii) holds.
Suppose that (ii) holds and take a closed F ∈ S with s0 /∈ F . Notice that

for Fε = {s : d(s, F ) � ε} it holds that for small ε, say ε ∈ (0, c), ∂Fε = {s :
d(s, F ) = ε}, s0 /∈ Fε and µ(∂Fε) = 0 for all but at most countably many ε ∈ (0, c).
Hence, lim supn→∞ µn(F ) � µ(Fε). Since Fε ↓ F as ε ↓ 0 and since F is closed,
µ(Fε) ↓ µ(F ) as ε ↓ 0. Hence, lim supn→∞ µn(F ) � µ(F ). Now take an open
G ∈ S with s0 /∈ G− and an r > 0 such that µ(∂B0,r) = 0 and G ⊂ S � B0,r. Set
A = S � B−

0,r and so that F = A � G is closed. Then

lim inf
n→∞ µn(G) = lim inf

n→∞ (µn(A) − µn(F )) � µ(A) − µ(F ) = µ(G).

Hence, (ii) holds. �

Proof of Lemma 2.1. (ii) ⇔ (iii): Notice that s′0 /∈ A− if and only if there
exists ε > 0 such that A ⊂ S′

� B0′,ε, and that s0 /∈ h−1(A)− if and only if there
exists δ > 0 such that h−1(A) ⊂ S � B0,δ. Hence, (ii) holds if and only if for every
ε > 0 there exists δ > 0 such that h−1(S′

� B0′,ε) ⊂ S� B0,δ. Taking complements
shows that h−1(S′

� B0′,ε) ⊂ S � B0,δ if and only if B0,δ ⊂ h−1(B0′,ε).
(iii) ⇒ (i):
(iii) implies that h(B0,δ) ⊂ h(h−1(B0′,ε)). Since h(h−1(B0′,ε)) ⊂ B0′,ε holds

for any h, it follows that (i) holds.
(i) ⇒ (iii): (i) implies that for every ε > 0 there exists δ > 0 such that h(B0,δ) ⊂

B0′,ε, which implies that h−1(h(B0,δ)) ⊂ h−1(B0′,ε). Since B0,δ ⊂ h−1(h(B0,δ))
holds for any h, it follows that (iii) holds. �

Proof of Theorem 2.5. Take A ∈ S ′ with s′0 /∈ A− and µh−1(∂A) = 0.
Since ∂h−1(A) ⊂ h−1(∂A) ∪ Dh (see e.g. (A2.3.2) in [7]), we have µ(∂h−1(A)) �
µh−1(∂A) + µ(Dh) = 0. Since µn → µ in M0(S), µ(∂h−1(A)) = 0 and, by Lemma
2.1, s0 /∈ h−1(A)−, it follows by Theorem 2.4 (ii) that µnh−1(A) → µh−1(A).
Hence, µnh−1 → µh−1 in M0(S′). �

Proof of Theorem 2.6. Suppose M ⊂ M0(S) is relatively compact. Let
{µn} be a subsequence in M . Then there exists a convergent subsequence µnk

→ µ
for some µ ∈ M−. By Theorem 2.2, there exists a sequence {ri} with ri ↓ 0
such that µ

(ri)
nk → µ(ri) in Mb(S � B0,ri

). Hence, M (ri) is relatively compact in
Mb(S � B0,ri

) for each such ri.
Conversely, suppose there exists a sequence {ri} with ri ↓ 0 such that M (ri) ⊂

Mb(S�B0,ri
) is relatively compact for each i, and let {µn} be a sequence of elements

in M . We use a diagonal argument to find a convergent subsequence. Since M (r1)

is relatively compact there exists a subsequence {µn1(k)} of {µn} such that µ
(r1)
n1(k)

converges to some µr1 in Mb(S�B0,r1). Similarly since M (r2) is relatively compact
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and {µn1(k)} ⊂ M there exists a subsequence {µn2(k)} of {µn1(k)} such that µ
(r2)
n2(k)

converges to some µr2 in Mb(S�B0,r2). Continuing like this; for each i � 3 let ni(k)
be a subsequence of ni−1(k) such that µ

(ri)
ni(k) converges to some µri

in Mb(S�B0,ri
).

Then the diagonal sequence {µnk(k)} satisfies µ
(ri)
nk(k) → µri

in Mb(S � B0,ri
) for

each i � 1. Take f ∈ C0(S). There exists some i0 � 1 such thatf vanishes on B0,ri

for each i � i0. In particular f ∈ Cb(S � B0,ri
) for each i � i0 and∫

f dµri
= lim

k

∫
f dµ

(ri)
nk(k) = lim

k

∫
f dµ

(ri0 )

nk(k) =
∫

f dµri0
.

Hence, we can define µ′ : C0(S) → [0,∞] by µ′(f) = limi→∞
∫

f dµri
. This µ′

induces a measure µ in M0. Indeed, for A ∈ S0 we can find a sequence fn ∈ C0(S)
such that 0 � fn ↑ IA and put µ(A) = limn µ′(fn). If A ∩ B0,r = ∅ for some r > 0,
then exists fn ∈ C0(S) such that fn ↓ IA and hence µ(A) � µ′(fn) < ∞. Thus, µ
is finite on sets A with s0 /∈ A−. To show µ is countably additive, let A1, A2, . . .
be disjoint sets in S0 and 0 � fnk ↑ IAk

for each k. Then
∑

k fnk ↑ I∪kAk
and we

have by Fubini’s theorem and the monotone convergence theorem that

µ(∪kAk) = lim
n

µ′
(∑

k

fnk

)
=

∑
k

lim
n

µ′(fnk) =
∑

k

µ(Ak).

By construction
∫

f dµ = µ′(f) for each f ∈ C0(S). Hence,
∫

f dµnk(k) → ∫
f dµ

for each f ∈ C0(S) and we conclude that M is relatively compact in M0. �
Proof of Theorem 2.7. Suppose M ⊂ M0 is relatively compact. By Theo-

rem 2.6, there exists a sequence {ri} with ri ↓ 0 such that M (ri) ⊂ Mb(S�B0,ri
) is

relatively compact for each ri. Prohorov’s theorem (Theorem A2.4.1 in [7]) implies
that (2.2) and (2.3) hold.

Conversely, suppose there exists a sequence {ri} with ri ↓ 0 such that (2.2)
and (2.3) hold. Then, by Prohorov’s theorem, M (ri) ⊂ Mb(S � B0,ri

) is relatively
compact for each i. By Theorem 2.6, M ⊂ M0 is relatively compact. �

Proof of Theorem 2.8. Take an open set G ∈ S0. For each x ∈ G there
exists a set Ax ∈ A such that x ∈ A◦

x ⊂ Ax ⊂ G. Since S is separable, there exists
a countable subcollection {A◦

xi
} of {A◦

x, x ∈ G} that covers G. Hence G ⊂ ∪iA
◦
xi

.
Since Ax ⊂ G we also have ∪iAxi

⊂ G. Hence G = ∪iAxi
. It follows that the π-

system A generates the open sets and hence the Borel σ-algebra. By the uniqueness
theorem µ = ν on S0. �

For the proof of Theorem 3.1 the following simple observation will be helpful.

Lemma 5.2. Let µ ∈ M0. Let E1 = S � B0,1, rE1 = {rx : x ∈ E1} for r > 0,
and Rµ = {r > 0 : µ(∂rE1) = 0}. Then (0,∞) � Rµ is at most countable and for
some r0 ∈ Rµ it holds that µ(rE1) > 0 for r ∈ (0, r0).

Proof. Since µ ∈ M0 it holds that µ(rE1) < ∞ for all r > 0. In addition
∂[rE1]∩ ∂[r′E1] = ∅ for r �= r′. Hence, µ(∂[rE1]) = 0 for all but at most countably
many r > 0. Since µ is nonzero µ(rE1) > 0 for r ∈ (0, r0) for some r0 > 0 and we
may choose r0 ∈ Rµ. �



REGULAR VARIATION ON METRIC SPACES 135

Proof of Theorem 3.1(a). We show this statement under the assumption
that (iii) holds. This is sufficient since in the proof of statement (b), below, it is
shown that the limiting measures are the same up to a constant factor.

Suppose that (iii) holds and set E1 = S � B0,1. By Lemma 5.2, µ(∂[rE1]) = 0
for all r ∈ Rµ ⊂ (0,∞), where (0,∞) � Rµ is at most countable. Moreover,
µ(rE1) > 0 for r ∈ (0, r0) for some r0 ∈ Rµ. Hence, for λ in a set of positive
measure, e.g. (1/2, 1),

ν(tλ[r0E1])
ν(t[r0E1])

=
ν(tB)

ν(t[r0E1])
ν(tλ[r0E1])

ν(tB)
→ µ(λ[r0E1])

µ(r0E1)
∈ (0,∞)

as t → ∞. Hence, by Theorem 1.4.1 in [6], t �→ ν(t[r0E1]) is regularly varying and

lim
t→∞

ν(tλE1)
ν(tE1)

= lim
t→∞

ν(tλ[r0E1])
ν(t[r0E1])

= λ−α

for some α > 0. In particular, µ(∂[λE1]) = 0 for all λ > 0 and ν(tE1)−1ν(t·) →
µ(E1)−1µ(·) in M0 as t → ∞. Moreover, if A ∈ S with 0 /∈ A− and µ(∂A) = 0,
then for any λ > 0,

ν(tλA)
ν(tE1)

=
ν(tλA)
ν(tλE1)

ν(tλE1)
ν(tE1)

→ λ−α µ(A)
µ(E1)

as t → ∞. Hence, µ(λA) = λ−αµ(A) for such set A and all λ > 0. Since these
sets A form a π-system that generate the σ-algebra S0, µ(λA) = λ−αµ(A) for all
A ∈ S0 and λ > 0. �

In the proof of Theorem 3.1(b) we will use a particular determining class. For
A ⊂ S, let S(A) = {sx : s � 1, x ∈ A} and let Ã = {A ∈ S : A = S(A), 0 /∈ A−}.
Given a measure µ ∈ M0 we write Ãµ for the class of sets Ã ∈ Ã with µ(∂Ã) = 0.

Lemma 5.3. Take A ⊂ S with 0 /∈ A−. If A is open (closed), then S(A) is
open (closed).

Proof. Assume that A is open. Since (λ, x) �→ λx is continuous by assump-
tion, the map fλ given by fλ(x) = λx is continuous. Moreover, S(A) = ∪λ�1λA =
∪λ�1f

−1
1/λ(A). Hence, S(A) is open.

Assume that A is closed. Take yn ∈ S(A) with yn → y for some y ∈ S. Write
yn = snxn, where sn � 1 and xn ∈ A. If sn → ∞, then xn /∈ A for n sufficiently
large (recall that 0 /∈ A). Hence, {sn} has an accumulation point s ∈ [1,∞) so that
sn′ → s for some subsequence {sn′}. Hence, xn′ → x for some x ∈ A and it follows
that yn′ → y′ for some y′ ∈ S(A). Since yn → y we must have y = y′. �

Lemma 5.4. Let µ, ν ∈ M0. If µ(Ã) = ν(Ã) for each Ã ∈ Ãµ, then µ = ν.

Proof. If µ and ν coincide on Ãµ then they coincide on the π-system of finite
differences of sets in Ãµ. By Theorem 2.8 it is sufficient to show that for each x ∈ S0

and ε > 0 there exists a set D of the form D = Ã1 � Ã2 with Ã1, Ã2 ∈ Ãµ such
that x ∈ D◦ ⊂ D ⊂ Bx,ε. Take δ ∈ (0, ε] such that 0 /∈ B−

x,δ, µ(∂Bx,δ) = 0, and
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µ(∂S(Bx,δ)) = 0. Then S(Bx,δ) � Bx,δ ∈ Ãµ and hence we may choose Ã1 = B̃x,δ

and Ã2 = S(Bx,δ) � Bx,δ. �
Proof of Theorem 3.1(b). We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i)

and that (iv) ⇔ (v).
Suppose that (i) holds and set c(t) = c[t]. For each Ã ∈ Ã (recall the definition

of Ã before Lemma 5.4) and t � 1 it holds that
c[t]

c[t]+1
c[t]+1ν(([t] + 1)Ã) � c(t)ν(tÃ) � c[t]ν([t]Ã).(5.1)

Since {cn}n�1 is regularly varying it holds that limn→∞ cn/cn+1 = 1. Hence,
limt→∞ c(t)ν(tÃ) = µ(Ã) for all Ã ∈ Ãµ. By Lemma 5.4 statement (ii) follows if
we show that {c(t)ν(t·) : t > 0} is relatively compact in M0. Indeed, Lemma 5.4
implies that all subsequential limits coincide. We know from (i) that {cnν(n·) :
n � 1} is relatively compact in M0 and by Theorem 2.7 there is a sequence ri ↓ 0
such that for each i, supn c(n)ν(n[S � B0,ri

]) < ∞ and given η > 0 there is a
compact set Ci ⊂ S � B0,ri

such that

sup
n

c(n)ν(n[S � (B0,ri
∪ Ci)]) � η.(5.2)

Since S � B0,r ∈ Ã , (5.1) implies that supt c(t)ν(t[S � B0,ri
]) < ∞. Moreover,

(5.2) holds for any compact set C ′
i with Ci ⊂ C ′

i ⊂ S � B0,ri
. We claim that

we can choose this C ′
i such that S � (B0,ri

∪ C ′
i) ∈ Ã . Then (5.1) implies that

supt c(t)ν(t[S�(B0,r∪C ′
i)]) � η and by Theorem 2.7 {c(t)ν(t·) : t > 0} is relatively

compact. We now show that it is possible to choose such a set C ′
i. Take C ′

i = {sx :
s ∈ [0, 1], x ∈ Ci} ∩ (S � B0,ri

). The set {sx : s ∈ [0, 1], x ∈ Ci} is compact because
it is the image of the compact set [0, 1] × Ci ⊂ R+ × S under the continuous map
from R+ × S to S given by (λ, x) �→ λx. Since C ′

i is the intersection of a compact
set and a closed set it is compact. Clearly, Ci ⊂ C ′

i and S� (B0,ri
∪C ′

i) ∈ Ã . This
completes the proof of (ii).

Suppose that (ii) holds. By Lemma 5.2 there exists r > 0 such that µ(∂[rE1]) =
0 and µ(rE1) > 0. For t > 0 and A ∈ S with 0 /∈ A− and µ(∂A) = 0,

ν(tA)
ν(t[rE1])

=
c(t)ν(tA)

c(t)ν(t[rE1])
→ µ(A)

µ(rE1)
as t → ∞. Hence, by Theorem 2.4 (ii), (iii) holds.

The implication (iii) ⇒ (iv) is shown above (proof of statement (a)).
Suppose that (iv) holds. Lemma 5.2 implies that for r in a subset of (0,∞) of

positive measure, limt→∞ ν(trE1)/ν(tE1) exists and is positive. Hence, by Theorem
1.4.1 in [6], c(t) = ν(tE1)−1 is regularly varying with some index α > 0. Hence, the
sequence cn = ν(nE1)−1 is regularly varying with index α > 0 and cnν(n·) → µ(·)
in M0, i.e. (i) holds.

Suppose that (iv) holds. As above, this implies that t �→ ν(tE1)−1 is regularly
varying with some index α > 0. By Theorem 1.5.12 in [6] there exists a sequence
{an}, which is regularly varying with index 1/α, such that limn→∞ n/ν(anE1) = 1.
Hence, (v) holds.
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Suppose that (v) holds. Take r > 0 such that µ(∂[rE1]) = 0 and µ(rE1) > 0.
For t > a1, let k = k(t) be the largest integer with ak � t. Then ak � t < ak+1

and k → ∞ as t → ∞. Hence, for Ã ∈ Ã ,

k

k + 1
(k + 1)ν(ak+1Ã)

kν(ak[rE1])
� ν(tÃ)

ν(t[rE1])
� k + 1

k

kν(akÃ)
(k + 1)ν(ak+1[rE1])

from which it follows that limt→∞ ν(tÃ)/ν(t[rE1]) = µ(Ã)/µ(rE1). To show that
{ν(t·)/ν(t[rE1]) : t > 0} is relatively compact we can apply the same argument as
in the proof of the implication (i) ⇒ (ii). Hence, (iii) holds. �

Proof of Theorem 4.1. By Theorem 3.1(a), the measure µ has the scaling
property µ(λA) = λ−αµ(A) for λ > 0 and A ∈ S0. It follows that µ(∂[Rd

�B0,u]) =
0 for each u > 0 and therefore limn→∞ cnν(n[Rd

� B0,u]) = µ(Rd
� B0,u) for

each u > 0. Hence, {cnν(n·)} is relatively compact in M0. By assumption all
subsequential limits agree on sets Vu,S with µ(∂Vu,S) = 0, and by Theorem 2.8 the
finite differences of such sets form a determining class. Hence, all subsequential
limits coincide and the proof is complete. �

Proof of Theorem 4.2. Similar to the proof of Theorem 4.1. �
Proof of Theorem 4.3. Let ri ↓ 0. If (4.1)–(4.3) hold for M then they

hold for each M (ri). By [5, Theorem 7.3 p. 82] M (ri) is relatively compact in
Mb(C � B0,ri

) which by Theorem 2.6 implies that M is relatively compact.
Conversely, suppose that M is relatively compact in M0(C). By Theorem 2.7

there exists a sequence ri ↓ 0 such that (4.1) holds for r = ri and given η > 0 there
exists a compact set Ci ⊂ C � B0,ri

such that supµ∈M µ(C � (Ci ∪ B0,ri
)) < η.

Choose such Ci. Given ε > 0, by the Arzelà–Ascoli theorem there exist Ri and δi

such that Ci ⊂ {x : |x(0)| � Ri} and Ci ⊂ {x : wx(δi) � ε}. We may assume that
R1 > r1 (otherwise C1 = ∅) and since {x : |x(0)| > R1} ⊂ {x : |x|∞ > r1} we have

sup
µ∈M

µ(x : |x(0)| > R1) = sup
µ∈M

µ(x : |x|∞ > r1, |x(0)| > R1) < η.

Since η was arbitrary(4.2) follows. Finally, let i0 be an integer such that ri0 < ε/2.
Then {x : wx(δi0) > ε} ⊂ {x : |x|∞ > ri0} and hence

sup
µ∈M

µ(x : wx(δi0) > ε) = sup
µ∈M

µ(x : wx(δi0) > ε, |x|∞ > ri0) < η.

Since η was arbitrary (4.3) holds. �

Proof of Theorem 4.4. By (4.4) it follows in particular that cnνπ−1
0 (n·) →

µπ−1
0 (·) in M0(Rd). Hence {cnνπ−1

0 (n·)} is relatively compact and (4.2) holds.
In addition, the conditions (4.5)–(4.6) imply by Theorem 4.3 that {cnν(n·)} is
relatively compact. Let µ and µ′ be subsequential limits. By (4.4) µ = µ′ on
the π-system of sets π−1

t1,...,tk
(H), for Borel sets H ⊂ Rdk. Hence, µ = µ′ and

cnν(n·) → µ(·) in M0.
Conversely, if cnν(n·) → µ(·) in M0, then (4.4) follows from the Mapping

Theorem (Theorem 2.5). Since {cnν(n·)} is relatively compact (4.5)–(4.6) hold by
Theorem 4.3. �
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Proof of Theorem 4.5. Let ri ↓ 0. If (4.7)–(4.11) hold then they hold
they hold for each M (ri). By [5, Theorem 13.2 p. 139 and (13.8) p. 141] M (ri)

is relatively compact in Mb(D � B0,ri
) which by Theorem 2.6 implies that M is

relatively compact.
Conversely, suppose that M is relatively compact in M0(D). By Theorem 2.7

there exists a sequence ri ↓ 0 such that (4.7) holds and given η > 0 there exists a
compact set Ci ⊂ D � B0,ri

such that supµ∈M µ(D � (Ci ∪ B0,ri
)) < η. Choose

such Ci. As in the proof of Theorem 4.3 it follows that (4.8) holds. Given ε > 0,
by Theorem 13.2 in [5, p. 139 and (13.8) p. 141] there exist δi such that Ci ⊂ {x :
w′′

x(δi) � ε}, Ci ⊂ {x : wx([0, δi)) � ε}, and Ci ⊂ {x : wx([1 − δi, 1)) � ε}. Let i0
be an integer such that ri0 < ε/2. Then

{x : w′′
x(δi0) > ε} ⊂ {x : |x|∞ > ri0}

{x : wx([0, δi0)) > ε} ⊂ {x : |x|∞ > ri0}
{x : wx([1 − δi, 1)) > ε} ⊂ {x : |x|∞ > ri0}.

and hence

sup
µ∈M

µ(x : w′′
x(δi0) > ε) = sup

µ∈M
µ(x : w′′

x(δi0) > ε, |x|∞ > ri0) < η,

sup
µ∈M

µ(x : wx([0, δi0)) > ε) = sup
µ∈M

µ(x : wx([0, δi0)) > ε, |x|∞ > ri0) < η,

sup
µ∈M

µ(x : wx((1 − δi0 , 1)) > ε) = sup
µ∈M

µ(x : wx((1 − δi0 , 1)) > ε, |x|∞ > ri0) < η.

Since η was arbitrary (4.9)–(4.11) hold. �

Proof of Theorem 4.6. Suppose ν satisfies (4.12)–(4.15). We will use The-
orem 4.5 to show that {cnν(n·)} is relatively compact in M0(D). For this we only
need to check (4.8). Take η > 0. For any R > 0 and 0 = t0 < t1 < · · · < tk = 1 in
T such that ti − ti−1 < δ where δ > 0

cnν(x : |x|∞ > nR) � cnν
(
x : max

1�i�k
|x(ti)| > nR/2

)
+ cnν

(
x : max

1�i�k
|x(ti)| � nR/2, max

1�i�k
sup

ti−1�t�ti

|x(t)| > R
)

� cnν
(
x : max

1�i�k
|x(ti)| > nR/2

)
+ cnν

(
x : w′′(x, δ) > nR/2

)
By (4.12) {cnνπ−1

t1,...,tk
(n·)} is relatively compact and hence we may choose R big

enough such that supn cnν(x : max1�i�k |x(ti)| > nR/2) < η/2. By (4.13) we may
choose δ > 0 such that supn cnν(x : w′′(x, δ) > nR/2) < η/2. Hence (4.8) holds. It
follows that {cnν(n·)} is relatively compact in M0.

Let µ and µ′ be subsequential limits. We will show µ = µ′. Let Tµ (Tµ′) consist
of the points where the projection πt is continuous except at a set of µ-measure
(µ′-measure) zero (see [5, p. 138]). By (4.12) we have µπ−1

t1,...,tk
= µ′π−1

t1,...,tk
for

t1, . . . , tk ∈ T ∩ Tµ ∩ Tµ′ . Since 0, 1 ∈ T ∩ Tµ ∩ Tµ′ and this set is dense in [0, 1] it
follows by Theorem 13.1 in [5] that µ = µ′.
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Conversely, suppose that cnν(n·) → µ(·) in M0. By the mapping theorem
(Theorem 2.5) (4.12) holds for t1, . . . , tk ∈ Tµ and since {cnν(n·)} is relatively
compact (4.13)–(4.15) hold. �
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