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GOOD DECOMPOSITION IN THE CLASS
OF CONVEX FUNCTIONS OF HIGHER ORDER

Slobodanka Janković and Tatjana Ostrogorski

Abstract. The problems investigated in this article are connected to the
fact that the class of slowly varying functions is not closed with respect to
the operation of subtraction. We study the class of functions Fk−1, which
are nonnegative and i-convex for 0 � i < k, where k is a positive integer.
We present necessary and sufficient condition that guarantee that, no matter
how we decompose an additively slowly varying function L ∈ Fk−1 into a sum
L = F + G, F, G ∈ Fk−1, then necessarily F and G are additively slowly
varying.

1. Introduction

A positive measurable function l : [a,+∞) → R
+, is slowly varying if, for every

s > 0,
l(st)
l(t)

→ 1, t → +∞.

Karamata introduced this class of functions in [4] and proved the basic properties;
see [1] and [7] for subsequent development of this theory and its applications. A
measurable function L : [a,+∞) → R

+, is additively slowly varying if, for every
h ∈ R,

L(x + h)
L(x)

→ 1, x → +∞.

In order to distinguish between the two introduced classes of slowly varying func-
tions, we shall call functions from the first class multiplicatively slowly varying
functions. It is not difficult to see that the following relationship exists between
the two classes of functions: every additively slowly varying function L can be
represented as L = l ◦ exp, where l is a multiplicatively slowly varying function,
and conversely, if a function L can be represented as L = l ◦ exp, where l is a
multiplicatively slowly varying function, then it is additively slowly varying.

The classes of multiplicatively and additively slowly varying functions are closed
with respect to the arithmetic operations: addition, multiplication and division, but
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158 JANKOVIĆ AND OSTROGORSKI

not with respect to subtraction. The question whether a linear combination of two
slowly varying functions is again slowly varying appears in probability theory and
in differential equations with the regularly varying coefficients. Shimura (see [8]
and [9]) investigated related problems connected to probability theory, and Maric
[5] mentioned this question, related to differential equations. In connection with
the fact that the class of slowly varying functions is not closed under subtraction,
the following general problem appears:

Let F be a class of functions mapping [a,+∞) into R
+, which is closed under

the operation of addition. Find a subclass of the class F , consisting of functions
with the following property: no matter how we represent this function as a sum of
two functions from F , both summands are necessarily slowly varying (either in the
multiplicative, or in the additive sense).

For a function that has the property above we say that it has the property of
good decomposition in the class F .

In the article [2], we studied the following problem: given a nondecreasing to
infinity slowly varying function f , find conditions under which, no mater how we
decompose f into a sum of two nondecreasing functions f = f1 + f2, f1 and f2

are necessarily slowly varying. In this case, the class F0, consisting of positive,
nondecreasing to infinity functions, was investigated. It was proved in [2] that the
necessary and sufficient condition for f to have the property of good decomposition
in the multiplicative sense in the class F0 is that, for all s > 1,

f(st) − f(t) = O(1), t → +∞.

The class of positive and nondecreasing to infinity functions satisfying the condition
above was denoted OΠ+. From the mentioned relationship between multiplicatively
and additively slowly varying slowly varying functions, it is easy to deduce that a
necessary and sufficient condition for a function F to have the property of good
decomposition in the additive sense in the class F0, is the following one: for every
h ∈ R,

(1.1) F (x + h) − F (x) = O(1) x → +∞.

The class of positive and nondecreasing to infinity functions, satisfying (1.1), we
denote by OΠ+

1 .
In [3], the class F1 consisted of positive, increasing and convex functions. It

was proved there that a function F ∈ F1 has the property of good decomposition in
the additive sense in the class F1 if and only if the following condition is satisfied:
for every h ∈ R,

(1.2) F (x + 2h) − 2F (x + h) + F (x) = O(x), x → +∞.

The class of positive, increasing and convex functions, defined by the condition
(1.2) is denoted by OΠ+

2 . The classes OΠ+
1 and OΠ+

2 are subclasses of the class of
additively slowly varying functions.

In the sequel we investigate the property of good decomposition for the class
Fk−1 of positive, nondecreasing functions, which are i-convex, i = 0, 1, . . . , k − 1,
k � 1.
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2. Convex functions of higher order

In this section we summarize some facts about convex functions of higher order,
which will be used in the sequel, and can be found in [6]. Apart from this, we also
prove a theorem concerning the remainder term in Taylor formula for (k−1)-convex
functions.

Let F : D → R, where D ⊂ R, and let x0, x1, . . . xn be points from D. The
divided differences of the function F are defined recurrently in the following way:
the divided difference of order 1 at the point x0 ∈ D is the function in x defined by

[x0, x;F ] =
F (x) − F (x0)

x − x0

on the set D � {x0}. The divided difference of order k + 1 at different points
x0, x1, . . . xk ∈ D is the function in x defined by

[x0, x1, . . . xk, x;F ] =
[x0, x1, . . . xk−1, x;F ] − [x0, x1, . . . xk−1, xk;F ]

x − xk
,

on the set D � {x0, x1, . . . xk}. If we see the divided difference of order k as a
function of k + 1 variables, then this function is symmetric.

Monotonicity properties of the function F can be expressed in terms of divided
differences. We have that the function F is nondecreasing if and only if its divided
difference of the first order is nonnegative. The function F is convex if and only if
its divided difference of the first order is monotone nondecreasing in each variable.
Actually, since the divided difference is a symmetric function, it is enough to assume
that the monotonicity holds for one variable only. From the above facts it follows
that a function is convex if and only if its divided difference of second order is
nonnegative. This inspired the idea to define convex functions of higher order in
the following way: a function F : D → R, D ⊂ R, is said to be (k − 1)-convex
if its divided difference of order k is nonnegative. Accordingly, 0-convex functions
are nondecreasing functions, and 1-convex functions are classical convex functions.

If F is a (k− 1)-convex function (k � 2), defined on an open interval I, then it
is continuous, it has continuous derivatives of orders 1, 2, . . . , k − 2 (if k � 3), and
it has the left and the right derivatives of order k − 1. Also, its i-th derivative is a
(k − i − 1)-convex function, for 0 � i � k − 1.

If F is (k − 1)-convex, defined on an open interval I, and if a, b ∈ I, then
Newton–Leibniz formula holds:∫ b

a

F (i)(x)dx = F (i−1)(b) − F (i−1)(a),

for 1 � i � k − 1. For i < k − 1, the formula above follows from a theorem which
can be found in every textbook on calculus, and for i = k − 1 this formula follows
from Theorem A, Section 1.2, in [6]. Here F (k−1) - the (k − 1)-th derivative of F
is either the left, or the right first derivative of the convex function F (k−2).

Theorem 2.1. Let F : I → R, where I is an open interval on the real line, be
a (k − 1)-convex function, k > 1. Let x, x + h be points from I. Then (k − 1)-th
remainder term in Taylor formula
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(2.1) Rk−1
h F (x) = F (x+h)−F (x)−hF ′(x)− h2

2!
F ′′(x)−· · ·− hk−1

(k − 1)!
F (k−1)(x)

can be written as

(2.2) Rk−1
h F (x) =

∫ h

0

(h − t)k−2

(k − 2)!

(
F (k−1)(x + t) − F (k−1)(x)

)
dt.

Proof. First we prove by induction in s that the remainder of order s in
Taylor formula

Rs
hF (x) = F (x + h) − F (x) − hF ′(x) − h2

2!
F ′′(x) − · · · − hs

s!
F (s)(x)

can be represented as

(2.3) Rs
hF (x) =

∫ h

0

(h − t)s

s!
F (s+1)(x + t) dt,

for 0 � s � k − 2. For s = 0 we have

R0
hF (x) = F (x + h) − F (x) =

∫ h

0

F ′(x + t) dt =
∫ h

0

(h − t)0

0!
F (0+1)(x + t) dt.

Suppose that 0 < s � k − 2 and suppose that the formula obtained when in (2.3)
we replace s by sa s− 1 is true. We have to prove that the formula (2.3) is correct.
Since, by the induction hypothesis,

Rs−1
h F (x) =

∫ h

0

(h − t)s−1

(s − 1)!
F (s)(x + t) dt,

and since

(2.4) Rs
hF (x) = Rs−1

h F (x) − hs

s!
F (s)(x),

we have

Rs
hF (x) =

∫ h

0

(h − t)s−1

(s − 1)!
F (s)(x + t) dt − hs

s!
F (s)(x)

= − (h − t)s

s!
F (s)(x + t)

∣∣∣∣
t=h

t=0

+
∫ h

0

(h − t)s

s!
F (s+1)(x + t) dt − hs

s!
F (s)(x)

=
hs

s!
F (s)(x) +

∫ h

0

(h − t)s

s!
F (s+1)(x + t) dt − hs

s!
F (s)(x)

=
∫ h

0

(h − t)s

s!
F (s+1)(x + t) dt,

which had to be proved. From (2.4), (2.3) and
∫ h

0

(h − t)k−2

(k − 2)!
dt =

(h − t)k−1

(k − 1)!

∣∣∣∣
t=h

t=0

=
hk−1

(k − 1)!
,

we obtain that
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Rk−1
h F (x) = Rk−2

h F (x) − hk−1

(k − 1)!
F (k−1)(x)

=
∫ h

0

(h − t)k−2

(k − 2)!
F (k−1)(x + t) dt −

∫ h

0

(h − t)k−2

(k − 2)!
F (k−1)(x) dt

=
∫ h

0

(h − t)k−2

(k − 2)!

(
F (k−1)(x + t) − F (k−1)(x)

)
dt,

which ends the proof. �

3. The class OΠ+
k

The conditions (1.1) and (1.2) put restriction on the growth of functions. It is
natural to expect that, since the class Fk−1 consists of functions satisfying convexity
conditions of higher order, the restriction on the growth of functions in order to
obtain necessary and sufficient conditions for the property of good decomposition
will be expressed in terms of differences of higher order.

Let F : [a,+∞) → R and let h > 0. The difference of the function F with the
step h is defined by ∆hF (x) = F (x + h)− F (x). As usual, ∆k

h = ∆h ◦∆h · · · ◦∆h,
where ∆h appears k times on the right-hand side. Usually, in the case when h = 1,
the index h can be omitted; in particular, ∆h = ∆

In the sequel we shall deal with functions defined on the half-line [a,+∞), which
are positive, nondecreasing and i-convex, for i = 0, 1, . . . , k − 1, k � 1. This will
be the class of functions Fk−1, on which we shall further investigate the property
of good decomposition.

Definition 3.1. If k is a positive integer, OΠ+
k is the class of positive non-

decreasing real functions, defined on the infinite interval [a,+∞), for some a > 0,
which are i-convex, for i = 0, 1, . . . , k − 1, and satisfy the following condition:

(3.1) ∆k
hF (x) = O

(
xk−1

)
x → +∞

for every h ∈ R
+.

Obviously, (1.1) and (1.2) are special cases of (3.1). It will be proved that the
condition (3.1) is sufficient to guarantee that functions from OΠ+

k are additively
slowly varying.

Lemma 3.1. For any fixed integer k � 1, the solution of the difference equation

(3.2) ∆kyn = bn, n = 0, 1, 2, . . .

is given by

(3.3) yn =
k−1∑
i=0

(
n

i − s

)
∆iy0 +

n−1∑
j=0

(
n − j − 1

k − 1

)
bj .
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Proof. The solution (3.3) of the difference equation (3.2) can be obtained by
using the procedure of reducing the order of the difference equation. This procedure
is based on the fact that the solution of the difference equation

(3.4) ∆zn = cn, n = 0, 1, 2, . . .

is given by

(3.5) zn = z0 +
n−1∑
r=0

cr.

The formula (3.5) can be proved in the following way:

zn = z0 +
n−1∑
r=0

(zr+1 − zr) = z0 +
n−1∑
r=0

∆zr = z0 +
n−1∑
r=0

cr.

Coming back to the equation (3.2), we have that, since the order of the difference
equation (3.2) is equal to k, the procedure of reducing the order has to be applied
k times. This way we obtain, consecutively, formulas in which

(3.6) ∆k−1yn, ∆k−2yn, . . . ∆0yn(= yn)

are expressed through members of the sequence bn. By computing several members
of the sequence (3.6), one can verify that the formula

(3.7) ∆syn =
k−1∑
i=0

(
n

i − s

)
∆iy0 +

n−1∑
j=0

(
n − j − 1
k − s − 1

)
bj +

(
0

k − s

)
bn,

is valid for them. That the formula (3.7) is indeed correct can be proved using the
method of mathematical induction in s, s = k, k − 1, . . . 0.

For s = k the correctness of the formula (3.7) follows from the fact that in this
case it reduces to (3.2). Suppose that (3.7) is valid for some integer s, k � s > 0,
and let us prove that it is valid for the integer s − 1. Put

zn = ∆s−1yn, cn =
k−1∑
i=0

(
n

i − s

)
∆iy0 +

n−1∑
j=0

(
n − j − 1
k − s − 1

)
bj +

(
0

k − s

)
bn.

Since ∆syn = ∆∆s−1yn = ∆zn, the inductive hypothesis reduces to

∆zn = cn, n = 0, 1, 2, . . .

By applying the formula (4) we obtain

∆s−1yn = zn = z0 +
n−1∑
r=0

cr

= ∆s−1y0 +
n−1∑
r=0

(k−1∑
i=0

(
r

i − s

)
∆iy0 +

r−1∑
j=0

(
r − j − 1
k − s − 1

)
bj +

(
0

k − s

)
br

)

= ∆s−1y0 +
k−1∑
i=0

(n−1∑
r=0

(
r

i−s

))
∆iy0 +

n−1∑
j=0

( n−1∑
r=j+1

(
r−j−1
k−s−1

))
bj +

n−1∑
r=0

(
0

k−s

)
br.
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Since
n−1∑
r=0

(
r

i − s

)
=

n−1∑
r=0

((
r + 1

i − s + 1

)
−

(
r

i − s + 1

))
=

(
n

i − s + 1

)
−

(
0

i − s + 1

)
,

n−1∑
r=j+1

(
r − j − 1
k − s − 1

)
=

n−1∑
r=j+1

((
r − j

k − s

)
−

(
r − j − 1

k − s

))
=

(
n − j − 1

k − s

)
−

(
0

k − s

)
,

(
0

i − s + 1

)
=

{
1, i = s − 1
0, i �= s − 1 ,

we have

∆s−1yn = ∆s−1y0 +
k−1∑
i=0

(
n

i − s + 1

)
∆iy0 − ∆s−1y0

+
n−1∑
j=0

((
n − j − 1

k − s

)
−

(
0

k − s

))
bj +

n−1∑
r=0

(
0

k − s

)
br

=
k−1∑
i=0

(
n

i − s + 1

)
∆iy0 +

n−1∑
j=0

(
n − j − 1

k − s

)
bj

=
k−1∑
i=0

(
n

i − s + 1

)
∆iy0 +

n−1∑
j=0

(
n − j − 1

k − s

)
bj +

(
0

k − s + 1

)
bn,

which finishes the proof. �

Remark. We used that the value of the binomial coefficient
(

a
m

)
= 0 if m is a

negative integer. In this way the binomial coefficient
(

a
m

)
is defined for every integer

m, while the basic recurrent relation for binomial coefficients
(

a
m

)
+

(
a

m+1

)
=

(
a+1
m+1

)
is preserved.

Theorem 3.1. If F ∈ OΠ+
k , k � 1, then F is additively slowly varying.

Proof. Let [a,+∞) be the interval on which the function F is defined. It
is sufficient to prove that yn+1/yn → 1, as n → ∞, where yn = F (a + n), n =
0, 1, 2, . . . . Really, if for x � a we denote by n the integer part of x − a, then we
have since F is nondecreasing,

1 � F (x + 1)
F (x)

� yn+2

yn
=

yn+2

yn+1
· yn+1

yn
→ 1, x → +∞,

(here n depends on x, and n → ∞ as x → +∞), and by an additive form of Lemma
1.15 of Seneta [7] this is sufficient to deduce the additive slow variation of F .

Define the sequence bn := ∆kyn. Condition (3.1) gives bn = annk−1, where an

is a bounded sequence of nonnegative real numbers. Using Lemma 3.1 we obtain

∆yn =
k−1∑
i=1

(
n

i − 1

)
∆iy0 +

n−1∑
j=0

(
n − 1 − j

k − 2

)
bj (:= An + Bn),
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yn =
k−1∑
i=0

(
n

i

)
∆iy0 +

n−1∑
j=0

(
n − 1 − j

k − 1

)
bj (:= Cn + Dn).

It is enough to prove that
∆yn

yn
=

yn+1 − yn

yn
→ 0, n → ∞,

i.e. that
An + Bn

Cn + Dn
→ 0, n → ∞.

Since
An + Bn

Cn + Dn
� max

{
An

Cn
,
Bn

Dn

}
,

we shall do it by proving that
An

Cn
,
Bn

Dn
→ 0, n → ∞

Since An and Cn are polynomials in n, and deg(An) < deg(Cn), we have that
An/Cn → 0, n → ∞. So it remains to prove that Bn/Dn → 0, n → ∞. We shall
prove that, for every positive integer m, the inequality

Bn

Dn
� 1

m
,

holds for n large enough. The inequality above is equivalent to Dn − mBn � 0,
which, in turn is equivalent to

(3.8)
n−1∑
j=0

bj

(
n − 1 − j

k − 2

)
n − k + 1 − km + m − j

k − 1
� 0.

We shall split the sum from (3.8) into two sums

n−k−mk+m∑
j=0

bj

(
n − 1 − j

k − 2

)
n − k + 1 − km + m − j

k − 1

−
n−k+1∑

j=n−k−mk+m+2

bj

(
n − 1 − j

k − 2

)
j − n + k − 1 + km − m

k − 1
(:= Sn − Tn),

and we only have to prove that Sn � Tn for n large enough. The summands from
(3.8), which do not appear in either Sn or Tn, are equal to zero. The summands
from Sn and Tn are nonnegative. We have

Sn �
n−k−mk+m∑

j=1

ajj
k−1

(
n − 1 − j

k − 2

)
n − k + 1 − km + m − j

k − 1
.

We can write the coefficient in the preceding sum in the form

jk−1

(
n − 1 − j

k − 2

)
n − k + 1 − km + m − j

k − 1
=
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= jk−1 (n − 1 − j)(n − 2 − j) · · · (n − k + 2 − j)
(k − 2)!

n − k + 1 − km + m − j

k − 1

=
1

(k−1)!
[j(n−1−j)][j(n−2−j)] · · · [j(n−k+2−j)][j(n−k + 1−km+m−j)].

Every term in the square brackets achieves its minimum in j, 1 � j � n−k−mk+m,
in the case when j = 1. Having that in mind, we obtain

Sn �
(

n − 2
k − 2

)
n − k − km + m

k − 1

n−k−mk+m∑
j=1

aj .

We have

Tn =
n−k+1∑

j=n−k−mk+m+2

ajj
k−1

(
n − 1 − j

k − 2

)
j − n + k − 1 + km − m

k − 1
.

As

jk−1

(
n − 1 − j

k − 2

)
j − n + k − 1 + km − m

k − 1
� (n − k + 1)k−1

(
mk − m + k − 3

k − 2

)
m,

for n − k − mk + m + 2 � j � n − k + 1, we obtain

Tn � (n − k + 1)k−1

(
mk − m + k − 3

k − 2

)
m

n−k+1∑
j=n−k−mk+m+2

aj .

We have
n−k−mk+m∑

j=1

aj ��
n−k+1∑

j=n−k−mk+m+2

aj .

Really, if the series
∑∞

j=1 aj converges, then the left-hand side of the preceding
formula has a positive limit and the right-hand side tends to zero. And if this
series diverges, then the left-hand side tends to plus infinity and the right-hand
side is bounded, because the sequence an is bounded and the number of summands
on the right-hand side mk − m − 1 does not depend on n. We have also(

n − 2
k − 2

)
n − k − km + m

k − 1
� (n − k + 1)k−1

(
mk − m + k − 3

k − 2

)
m (� nk−1).

From these two facts and from inequalities for Sn and Tn proven above, it follows
that Sn � Tn for n large enough. �

4. The property of good decomposition in the class Fk−1

Let Fk−1 be a class of positive, nondecreasing functions, defined on the interval
[a,+∞), which are i-convex for i = 0, 1, . . . , k − 1, k � 1. In the sequel we shall
prove that the class OΠ+

k is the class of functions having the property of good
decomposition in the additive sense in the class Fk−1.

First we need the following lemma which will establish the relationship between
the condition (3.1) with a condition on the operator
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Rk−1
h F (x) = F (x + h) − F (x) − hF ′(x) − h2

2!
F ′′(x) − · · · − hk−1

(k − 1)!
F (k−1)(x).

Lemma 4.1. Let F be a positive (k − 1)-convex function, k � 1. If

(4.1) (∀h > 0) Rk−1
h F (x) = O

(
xk−1

)
, x → +∞,

then the condition (3.1) is valid too.

Proof. Since F (k−1) is a nondecreasing function, we obtain from (2.2)

Rk−1
h F (x) �

(
F (k−1)(x + h) − F (k−1)(x)

) ∫ h

0

(h − t)k−2

(k − 2)!
dt(4.2)

=
hk−1

(k − 1)!
∆hF (k−1)(x),

and

Rk−1
h F (x) �

∫ h

h/2

(h − t)k−2

(k − 2)!

(
F (k−1)(x + t) − F (k−1)(x)

)
dt(4.3)

�
(
F (k−1)(x + h/2) − F (k−1)(x)

) ∫ h

h/2

(h − t)k−2

(k − 2)!
dt

=
hk−1

2k−1(k − 1)!
∆h/2F

(k−1).

From (4.2) and (4.3) we obtain that the condition (4.1) is equivalent to the condition

(4.4) (∀h > 0) ∆hF (k−1)(x) = O
(
xk−1

)
, x → +∞.

We shall prove by induction in i that conditions

(4.5) (∀h > 0) ∆i
hF (k−i)(x) = O

(
xk−1

)
, x → +∞,

hold, for i = 1, 2, . . . , k. For i = 1, the condition (4.5) reduces to (4.4). Suppose
that 1 � i < k and that (4.5) is satisfied. Bearing in mind that

∆i+1
h F (k−i−1)(x) = ∆i

h∆hF (k−i−1)(x) =

= ∆i
h

∫ h

0

F (k−i)(x + t) dt =
∫ h

0

∆i
hF (k−i)(x + t) dt,

we conclude that the condition (4.5) holds also in the case when we substitute i by
i + 1 in it. The induction is done.

If we put i = k in (4.5), we obtain the condition (3.1) from the definition of
the class OΠ+

k . �

Theorem 4.1. A function L has the property of good decomposition in the
additive sense in the class Fk−1 if and only if it belongs to the class OΠ+

k .
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Proof. Let L ∈ OΠ+
k and let F,G be functions from Fk−1 such that F +G =

L. For h > 0, we have that ∆k
hF (x) + ∆k

hG(x) = ∆k
hL(x). Since F and G

are (k − 1)-convex, then ∆k
hF (x) � 0 and ∆k

hG(x) � 0. From this and from
∆k

hL(x) = O(xk−1), x → +∞, it follows that the same holds for F and for G, i.e.,
functions F and G also belong to OΠ+

k . According to Theorem 3.1 we conclude
that F and G are additively slowly varying.

For the converse, suppose that L ∈ Fk−1, but L /∈ OΠ+
k . According to Lemma

4.1, it follows that there exists an increasing sequence of points xn, x0 = a, xn →
+∞ as n → ∞, and h > 0 such that the following conditions are fulfilled: xn >
xn−1 + h, and

Rk−1
h L(xn)
xk−1

n

→ +∞, n → ∞,

holds. We select a subsequence of xn in such a way that when the point xn−1 is
chosen, we pick xn which satisfies

(4.6) L(xn−1) +
L′(xn−1)

1!
(xn − xn−1) +

L′′(xn−1)
2!

(xn − xn−1)2 + · · ·

+
L(k−1)(xn−1)

(k − 1)!
(xn − xn−1)k−1 < Rk−1

h L(xn),

for n = 1, 2, . . . .
We shall construct functions F and G which belong to Fk−1, F + G = L, and

which are not additively slowly varying. We start this by defining functions f and
g in the following way: f(a) = g(a) = 0 and, for n = 0, 1, 2, . . . ,

f(x) = f(x2n) + L(k−1)(x) − L(k−1)(x2n), x ∈ [x2n, x2n+1]

g(x) = g(x2n), x ∈ [x2n, x2n+1]

f(x) = f(x2n+1), x ∈ [x2n+1, x2n+2]

g(x) = g(x2n+1) + L(k−1)(x) − L(k−1)(x2n+1), x ∈ [x2n+1, x2n+2].

Functions f and g defined above are nonnegative, nondecreasing and they sat-
isfy f(x) + g(x) = L(k−1)(x) − L(k−1)(a). Put

F (x) = L(a) +
L′(a)

1!
(x − a) + · · · + L(k−1)(a)

(k − 1)!
(x − a)k−1 +

∫ x

a

(x − t)k−2

(k − 2)!
f(t) dt,

G(x) =
∫ x

a

(x − t)k−2

(k − 2)!
g(t) dt.

We have

F (x) + G(x) = L(a) +
L′(a)

1!
(x − a) + · · · + L(k−1)(a)

(k − 1)!
(x − a)k−1

+
∫ x

a

(x − t)k−2

(k − 2)!

(
L(k−1)(x) − L(k−1)(a)

)
dt = L(x).
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Functions F and G obviously belong to Fk−1; it remains to prove that they are not
additively slowly varying. We have that

Rk−1
h F (x2n) =

∫ h

0

(h − t)k−2

(k − 2)!

(
F (k−1)(x2n + t) − F (k−1)(x2n)

)
dt

=
∫ h

0

(h − t)k−2

(k − 2)!

(
L(k−1)(x2n + t) − L(k−1)(x2n)

)
dt = Rk−1

h L(x2n).

We obtain that

(4.7) F (x2n + h) − F (x2n) � Rk−1
h F (x2n) = Rk−1

h L(x2n).

On the other hand, using (2.1) and (2.2), we have

(4.8) F (x2n) = F (x2n−1) +
F ′(x2n−1)

1!
(x2n − x2n−1)

+
F ′′(x2n−1)

2!
(x2n − x2n−1)2 + · · · + F (k−1)(x2n−1)

(k − 1)!
(x2n − x2n−1)k−1

+
∫ x2n

x2n−1

(x2n−t)k−2

(k − 2)!

(
F (k−1)(t) − F (k−1)(x2n−1)

)
dt.

From the construction of F it follows that, for t ∈ [x2n−1, x2n], F (k−1)(t) −
F (k−1)(x2n−1) = 0, so that the integral in the formula (4.8) is equal to zero. Since
F (i)(x) � L(i)(x), for i = 0, 1, . . . , k − 1, we have

(4.9) F (x2n) � L(x2n−1) +
L′(x2n−1)

1!
(x2n − x2n−1)

+
L′′(x2n−1)

2!
(x2n − x2n−1)2 + · · · + L(k−1)(x2n−1)

(k − 1)!
(x2n − x2n−1)k−1.

From (4.7) and (4.9) and by (4.6) we have

F (x2n + h) − F (x2n)
F (x2n)

> 1,

which proves that F is not additively slowly varying. By similar argument on
intervals of the form [x2n+1, x2n+2] it can be proved that G is not additively slowly
varying either. �
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