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Nouvelle série, tome 80(94) (2006), 253–258 DOI:10.2298/PIM0694253S

ON REGULARLY VARYING MOMENTS
FOR POWER SERIES DISTRIBUTIONS

Slavko Simić

Abstract. For the power series distribution, generated by an entire function
of finite order, we obtain the asymptotic behavior of its regularly varying
moments. Namely, we prove that EwXα�(X) ∼ (EwX)α�(EwX), α > 0
(w → ∞), where �(·) is an arbitrary slowly varying function.

0. Introduction

0.1. Denote by Aρ the class of transcendental entire functions with positive
Taylor coefficients and of finite order ρ, 0 � ρ < ∞.

Definition 1. Let f(w) =
∑

anwn, f ∈ Aρ. A power series distribution with
parameter w > 0, generated by f , is defined by (cf. [2])

P (X = n) := anwn/f(w), n = 0, 1, 2, · · ·
Our aim is to obtain the asymptotic behavior of the k-th moment EwXk when

w → ∞, where

EwXk :=
∑

nkP (X = n) =
∑

nkanwn/f(w), k = 1, 2, · · ·
Note that the expectation EwX is equal to

(1) EwX :=
∑

nanwn/f(w) = wf ′(w)/f(w).

For any k, consider the sequence of functions fk(w) defined recursively by

fk(w) = wf ′
k−1(w), k = 1, 2, · · · ; f0(w) = f(w) =

∑
anwn.

Then fk(w) =
∑

nkanwn ∈ Aρ and

(2) EwXk = fk(w)/f(w), k = 1, 2, · · ·
We shall derive the asymptotic behavior of EwXk for large w by applying our
following recent result:
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Theorem 1. [5] For an arbitrary f ∈ Aρ, we have

f(w)f ′′(w)
(f ′(w))2

→ 1 (w → ∞).

independently of the order ρ.

0.2. Further generalization leads to the concept of regularly varying moments
EwXα�(X) (cf. [1, p. 335]),

(3) EwXα�(X) :=
∑

nα�(n)anwn/f(w),

where α is a positive real number and �(·) is a slowly varying function.

Definition 2. A positive continuous function �(·), defined on [x0,∞), is slowly
varying if the asymptotic equivalence �(tx) ∼ �(x), (x → ∞), holds for each t > 0.

For x ∈ [0, x0) we can take f(x) := f(x0). Some examples of slowly varying
functions are

loga x; logb(log x); exp(logc x); exp(log x/ log log x); a, b ∈ R, 0 < c < 1.

Functions g(·) of the form g(x) = xµ�(x) are regularly varying with index µ ∈ R
(cf. [1, p.18]). Each regularly varying function xµ�(x) generates a regularly varying
sequence of the form {nµ�(n)}∞n=1.

The main tool for asymptotic estimation of regularly varying moments is the
following theorem on matrix transforms with slowly varying sequences (cf. [4]).

Theorem 2. For a given complex-valued matrix (Ank)∞n,k=1 define tn(ρ) :=∑
kρ|Ank|. Suppose that for some positive constants a,A, tn(ρ) exists for −a �

ρ � 1 and, for sufficiently large n,

(i)
∣∣∣∑ Ank

∣∣∣ � A; (ii) tn(0) → 1; (iii) tn(1) → ∞; (iv) tn(−a) = O((tn(1))−a).

Then the asymptotic relation∑
Ank�(k) = �(tn(1))

(∑
Ank

)
(1 + o(1)) (n → ∞),

holds for all slowly varying sequences {�(k)}∞k=1.

0.3. Here we quote some well-known assertions we shall need in the sequel.

Lemma 1. If a(x) ∼ b(x) → ∞, then �(a(x)) ∼ �(b(x)) (x → ∞).

Lemma 2. [3, Vol. I, p. 36]. Let g(x) =
∑

anxn, h(x) =
∑

bnxn, g, h ∈ Aρ. If
an ∼ bn (n → ∞), then g(x) ∼ h(x) (x → ∞).

Lemma 3. Jensen’s inequality: EXt � (EX)t, t > 1, and vice versa for
0 < t < 1.

Lemma 4. Lyapunov moments inequality asserts that, for r > s > t > 0,

(EXs)r−t � (EXr)s−t(EXt)r−s.
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1. Results

1.1. The above Theorem 2 has many applications in real or complex analysis
(cf. [4]). We shall apply it here to derive the following theorem on regularly varying
moments for discrete laws.

Theorem 3. Let a discrete law G be given by P (Xn = k) = pnk � 0,
∑

k pnk =
1. If EXn → ∞ and EXβ

n ∼ Cβ(EXn)β (n → ∞) for β ∈ (0, B], B > 1, Cβ > 0
then, for an arbitrary slowly varying function �(·), the asymptotic relation

EXβ
n�(Xn) ∼ Cβ(EXn)β�(EXn) (n → ∞),

holds
a. for each β ∈ (0, B − 1];
b. for each β ∈ (B − 1, B], if EXB+1

n exists and EXB+1
n = O((EXn)B+1)

(n → ∞).

Proof. Putting Ank := pnkkβ/Cβ(EXn)β , we find out that conditions (i) and
(ii) of Theorem 2 are satisfied. For β ∈ (0, B − 1], we obtain

tn(1) = EXβ+1
n /Cβ(EXn)β ∼ (Cβ+1/Cβ)EXn → ∞ (n → ∞).

Also,

tn(−β/2) = EXβ/2
n /Cβ(EXn)β ∼ (Cβ/2/Cβ)(EXn)−β/2 = O(tn(1))−β/2 (n → ∞).

Therefore, the conditions of Theorem 2 are satisfied with A = 1, a = β/2 and the
result for β ∈ (0, B − 1] follows. �

For the case β ∈ (B − 1, B], we need the following

Lemma 5. Under the condition b of Theorem 3, we have

(4) EXβ+1
n = O((EXn)β+1) (n → ∞),

for each β ∈ (B − 1, B].

Proof. Indeed, applying Lyapunov moments inequality (Lemma 4) with r =
B + 1, s = β + 1, t = B, we get

EXβ+1
n � (EXB

n )B−β(EXB+1
n )β+1−B

= O((EXn)B(B−β)(EXn)(B+1)(β+1−B)) = O((EXn)β+1).

Now, by Jensen’s inequality EXβ+1
n � (EXn)β+1 i.e., tn(1) � EXn/Cβ → ∞

(n → ∞).
Also, by (4),

tn(−β/2) ∼ (Cβ/2/Cβ)(EXn)−β/2 = O((EXβ+1
n /(EXn)β)−β/2) = O((tn(1))−β/2).

Therefore, the conditions of Theorem 2 are satisfied and we get

EXβ
n�(Xn) ∼ Cβ(EXn)β�(EXβ+1

n /Cβ(EXn)β) (n → ∞),

for each β ∈ (B − 1, B].
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But, since

EXn/Cβ � EXβ+1
n

Cβ(EXn)β
= O(EXn) (n → ∞),

it follows by the uniform convergence theorem for slowly varying functions (cf. [1,
p.6]), that

�

(
EXβ+1

n

Cβ(EXn)β

)
∼ �(EXn) (n → ∞). �

1.2. We turn back now to the asymptotic evaluation of regularly varying
moments for power series distributions. Using Theorem 3 above, it will be shown
that this evaluation is equivalent to the following theorem on moments of power
series distributions.

Theorem 4. For each α > 0, we have EwXα ∼ (EwX)α (w → ∞).

For the generating entire function f(w) =
∑

akwk ∈ Aρ, recall (1) and (2):

EwX =
∑

kakwk/f(w) = wf ′(w)/f(w);

EwXm =
∑

kmakwk/f(w) = fm(w)/f(w).

The proof of Theorem 4 requires some preliminary lemmas.

Lemma 6. The expectation EwX is a monotone increasing and unbounded
function in w.

Proof. Since

w
d

dw
(EwX) = EwX2 − (EwX)2 > 0,

we conclude that EwX is a monotone increasing function in w. If it is bounded,
then there exists a d > 0 such that EwX < d for each w > 0. By (1) we get
f ′(w)/f(w) < d/w, and integrating we find f(w) = O(wd). Hence in this case f is
a polynomial, which contradicts our assumption that f is a transcendental entire
function. �

Lemma 7. For m ∈ N, fm(w) ∼ wmf (m)(w) (w → ∞).

Proof. Note that f ∈ Aρ implies f (m), fm ∈ Aρ, m = 1, 2, · · · . Since, for
fixed m ∈ N ,

fm(w) =
∑

kmakwk; wmf (m)(w) =
∑
k�m

k(k − 1) · · · (k − m + 1)akwk;

k(k − 1) · · · (k − m + 1) ∼ km (k → ∞),

the result follows by Lemma 2. �

Lemma 8. For each m ∈ N we have EwXm+1/EwXm ∼ EwX (w → ∞).
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Proof. Applying Theorem 1, we obtain

EwX2

(EwX)2
→ 1 (w → ∞), (5)

because
EwX2

(EwX)2
− 1

EwX
=

f(w)f ′′(w)
(f ′(w))2

→ 1 (w → ∞),

and, by Lemma 6, 1/EwX → 0.
Since Theorem 1 is valid for each f ∈ Aρ and f (m) ∈ Aρ, m = 1, 2, · · · ,

replacing f by f (m), we get

(6)
f (m+1)(w)f (m−1)(w)

(f (m)(w))2
→ 1 i.e.

f (m+1)(w)
f (m)(w)

∼ f (m)(w)
f (m−1)(w)

(w → ∞).

Hence by Lemma 7 and (6),

EwXm+1

EwXm
=

fm+1(w)
fm(w)

∼ wm+1f (m+1)(w)
wmf (m)(w)

∼ wmf (m)(w)
wm−1f (m−1)(w)

∼ fm(w)
fm−1(w)

=
EwXm

EwXm−1
, n ∈ N.

Therefore,

EwXm+1(w)
EwXm

∼ EwXm

EwXm−1
∼ · · · ∼ EwX2

EwX
∼ EwX (w → ∞). �

A simple consequence of the previous lemma is the following:

Lemma 9. For each m ∈ N , we have EwXm ∼ (EwX)m (w → ∞).

Proof. Indeed,

EwXm = (EwX)
m−1∏
k=1

(EwXk+1/EwXk) ∼ (EwX)m (w → ∞).

For the rest of the proof of Theorem 4 we apply Lemma 4.
Let m > α > m − 1, m ∈ N . Then Lyapunov’s inequality and Lemma 9 give

EwXα � (EwXm)α−m+1(EwXm−1)n−α ∼ (EwX)m(α−m+1)(EwX)(m−1)(m−α)

= (EwX)α.

Hence

lim sup
w→∞

EwXα

(EwX)α
� 1.

Now, let r = m+1, s = m, t = α. We get (EwXm)m+1−α � (EwXα)(EwXm+1)n−α,
i.e.,

EwXα � (EwXm)m+1−α(EwXm+1)α−m ∼ (EwX)m(m+1−α)(EwX)(m+1)(α−m)

= (EwX)α.
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Therefore,

lim inf
w→∞

EwXα

(EwX)α
� 1,

and this concludes the proof of Theorem 4. �
1.3. Combining the last two theorems, we finally obtain a theorem on regu-

larly varying moments for power series distributions.

Theorem 5. For a power series distribution generated by an entire function
f(w) =

∑
akwk ∈ Aρ, we have

EwXα�(X) ∼ (EwX)α�(Ewx), α > 0 (w → ∞),

i.e., ∑
kα�(k)akwk/f(w) ∼ (wf ′(w)/f(w))α�(wf ′(w)/f(w)) (w → ∞),

where �(·) is an arbitrary slowly varying function .

As an example we take the well-known Poisson distribution. Applying Theorem
5, we obtain

Theorem 6. For the Poisson law defined by P (X = k) = λk

k! e
−λ, λ > 0, k =

0, 1, 2, · · · , we have

EXα�(X) :=
∑

kα�(k)
λk

k!
e−λ ∼ λα�(λ), α > 0 (λ → ∞).
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