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AN EQUATION WITH LEFT AND RIGHT
FRACTIONAL DERIVATIVES

B. Stanković

Abstract. We consider an equation with left and right fractional derivatives
and with the boundary condition y(0) = lim

x→0+
y(x) = 0, y(b) = lim

x→b−
y(x) = 0

in the space L1(0, b) and in the subspace of tempered distributions. The
asymptotic behavior of solutions in the end points 0 and b have been specially

analyzed by using Karamata’s regularly varying functions.

1. Introduction

In the last years differential equations of fractional orders have been used in
many branches of mechanics and physics. Many results have been published with
concrete problems solved in classical spaces of functions and in the spaces of gen-
eralized functions. We cite only some of them, recently published or with a new
approach: [2]–[4], [7], [8], [13], [15], [17], [19], [20], [22], [23] and with Karamata’s
regularly varying functions: [11], [24]. In this paper we treat such an equation with
the boundary condition y(0) = y(b) = 0 in the space L1(0, b) and in a subspace
of tempered distributions constructed for this problem. We specially discussed as-
ymptotic behavior of solutions in the end points 0 and b using Karamata’s regularly
varying functions and quasi-asymptotics in the space of tempered distributions.

As far as we are aware the equation treated in this paper has been solved only
in [1] and [18] in some very special cases.

2. Preliminaries

2.1. Regular variation. A positive measurable function f , defined on a
neighborhood (0, ε) is called regularly varying at zero of index r if f(1/x) is regu-
larly varying at infinity of index −r; we write f ∈ Rr. A function f ∈ Rr if and
only if f(x) = xr�(x), x ∈ (0, ε), where � is slowly varying at zero (cf. [5], [12]).

We need to measure the behavior of a function not only at the points zero and
infinity but also at a point b ∈ R+.
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Definition 1. A function f such that f(b − t) ≡ g(t) ∈ Rr is called regularly
varying at the point b ∈ R+ of index r. (g(t) = tr�(t), t ∈ (0, ε) and f(t) =
(b − t)r�(b − x), for an ε > 0).

Definition 2. [5, p. 436]. Let I be an interval in R. The class BVlocI is
the class of all right-continuous functions f : I → R that are locally of bounded
variation on I, i.e., V (f ;J) < ∞ for each compact set J ⊆ I.

Definition 3. [5, p. 104]. Let f ∈ BVloc([0,∞)) be positive; f is quasi-
monotone if for some δ > 0

x∫
0

tδ|df(t)| = O(xδf(x)), x → ∞.

2.2. Fractional integrals and derivatives on the interval (0, b), 0 < b <
∞. Let ϕ ∈ L1(0, b) and α ∈ (0, 1). The integrals

(Iαϕ)(t) =
1

Γ(α)

t∫
0

ϕ(τ)
(t − τ)1−α

dτ ,

(Iαϕ)(t) =
1

Γ(α)

b∫
t

ϕ(τ)
(τ − t)1−α

dτ ,

are called fractional integrals of order α (Riemann–Liouville fractional integrals).
The fractional derivatives of order α are defined as:

(Dαϕ)(t) =
1

Γ(1 − α)
d

dt

t∫
0

ϕ(τ)
(t − τ)α

dτ ,

(Dαϕ)(t) =
−1

Γ(1 − α)
d

dt

b∫
t

ϕ(τ)
(τ − t)α

dτ .

For any function ϕ ∈ L1(0, b) we have Dα ◦ Iαϕ = ϕ and Dα ◦ Iα = ϕ.
This follows from Theorem 2.4, p. 44 in [21] and the connection: (Iαϕ)(b − t) =
(Iαϕ(b − τ))(t).

3. Behavior of fractional integrals at 0 and b

3.1. Elementary access. The asymptotic expansions of the fractional inte-
grals Iαϕ as x → 0 or x → ∞ are known only in the case the expansions involved
the power, logarithmic and exponential terms (cf. [21]).

In [11] the following is proved.

Theorem A. Let f : R → R be a continuous and bounded function with
lim
x→0

f(x) = f(0) �= 0 and let 0 < α < 1. Then lim
x→0

(Iαf)(λx)/(Iαf)(x) = λα.
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We use here the asymptotic behavior not only of Iαϕ, but also of Iαϕ and
not only at x = 0 but also at x = b > 0. Also, the Karamata regularly varying
functions contribute to the preciseness of the asymptotic behavior found.

Proposition 1. Let α ∈ (0, 1).
1) If g ∈ L1(0, b), then Iαg ∈ L1(0, b).
2) If g ∈ L1(0, b), g ∈ Rγ and g(t) = tγ�1(t), t ∈ (0, ε), ε > 0, γ + α > 0, then

lim
t→0+

(Iαg)(t) =
1

Γ(α)

b∫
0

g(τ)
τ1−α

dτ .

3) If g ∈ L1(0, b), g is regularly varying at b and g(b − t) = tβ�2(t), t ∈ (0, ε),
β > −1, where �2(1/t) is slowly varying quasi-monotone at infinity, then (Iαg)(t)
is regularly varying at b,

(Iαg)(b − t) = tα+β Γ(1 + β)
Γ(α + β + 1)

�2(t), t ∈ (0, ε/2) .

Proof. 1) follows from the property that the set {Iαg, α > 0} is a semigroup
(cf. [21], p. 48).

2) Let t ∈ (0, ε/2). Then:

(1)

b∫
t

g(τ)
(τ − t)1−α

dτ =

ε∫
t

+

b∫
ε

g(τ)
(τ − t)1−α

dτ .

For the first integral, where ε is fixed so that g(t) = tγ�1(t) we have:
∣∣∣∣

ε∫
t

g(τ)
(τ − t)1−α

dτ

∣∣∣∣ =
∣∣∣∣

ε∫
t

τγ�1(τ)
(τ − t)1−α

∣∣∣∣ �
ε∫

t

τγ−η

(τ − t)1−α
dτ

� εγ−η

ε∫
t

dτ

(τ − t)1−α
� εγ−η (τ − t)α

α

∣∣∣ε
t

� εγ+α−η

α
, 0 � t � ε/2,(2)

where η is a positive number such that α + γ − η > 0.
For the second integral in (1) the following properties hold:

(3)
∣∣∣ g(τ)
(τ − t)1−α

∣∣∣ � |g(τ)
(τ − ε/2)1−α

, ε � τ � b, t ∈ (0, ε/2)

and

(4) lim
t→0+

g(τ)
(τ − t)1−α

=
g(τ)
τ1−α

, ε � τ � b .

With the properties (3) and (4) we can use Lebesgue’s theorem:

lim
t→0+

b∫
ε

g(τ)
(τ − t)1−α

dτ =

b∫
ε

g(τ)
τ1−α

.



262 STANKOVIĆ

Hence for every ε > 0 we have:
b∫

ε

g(τ)
(τ − t)1−α

dτ =

b∫
ε

g(τ)
τ1−α

dτ + O(εγ+α−η), t → 0+ .

Since by (2) ∣∣∣∣
ε∫

0

g(τ)
τ1−α

dτ

∣∣∣∣ = O(εα+γ−η) .

we have:
b∫

ε

g(τ)
(τ − y)1−α

dτ =

b∫
0

g(τ)
τ1−α

dτ + O(εα+γ−η), ε → 0 ,

which proves assertion 2).
3) Let us consider now (Iαg)(b − t).

(Iαg)(b − t) =
1

Γ(α)

b∫
b−t

g(τ)
(τ − b + t)1−α

dτ =
1

Γ(α)

b∫
b−t

(b − τ)β�2(b − τ)
(τ − b + t)1−α

dτ

=
1

Γ(α)

t∫
0

xβ�2(x)
(t − x)1−α

dx, t ∈ (0, ε/2).

Hence

(Iαg)
(
b − 1

y

)
=

1
Γ(α)

1/y∫
0

xβ�2(x)
(1/y − x)1−α

dx,
1
y
∈ (0, ε/2)

=
y1−α

Γ(α)

∞∫
y

u−1−(β+α)�2(1/u)

(u − y)1−α
du =

y−(β+α)

Γ(α)

∞∫
1

v−1−(β+α)�2(1/vy)
(v − 1)1−α

dv .

It only remains to apply Theorem 4.1.5 in [5] (cf. also [6]), which gives

(Iαg)
(
b − 1

y

)
= y−(β+α) Γ(1 + β)

Γ(α + β + 1)
�2

(1
y

)
,

1
y
∈ (0, ε/2) ,

or

(Iαg)(b − t) = tα+β Γ(1 + β)
Γ(α + β + 1)

�2(t), t ∈ (0, ε/2) .

This proves assertion 3). �

Proposition 2. Let α ∈ (0, 1).
1) If h ∈ L1(0, b), then Iαh ∈ L1(0, b).
2) If h ∈ L1(0, b) and h is regularly varying at b, h(b − t) = tγ�1(t), t ∈ (0, ε),

ε > 0, then
lim

t→0+
(Iαh)(b − t) = (Iαh)(b) .
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3) If h ∈ L1(0, b) and h ∈ Rβ, h(t) = tβ�2(t), t ∈ (0, ε), β > −1, where �2(1/t)
is quasi-monotone regularly varying, then

(Iαh)(t) = tα+β Γ(β + 1)
Γ(α + β + 1)

�2(t) .

4) If h ∈ L1(0, b) and additionally lim
t→0+

h(t) = A, then

(Iαh)(t) =
A

Γ(α + 1)
tα + o(1), t → 0.

Proof. The proof for 1) is the same as the proof for 1) in Proposition 1.
2) We have

(Iαh)(b − t) =
1

Γ(α)

b−t∫
0

h(τ)
(b − t − τ)1−α

dτ =
1

Γ(α)

b∫
t

h(b − x)
(x − t)1−α

dx .

We denote by g(t) = h(b − t). Then g satisfies condition 2) in Proposition 1.
Therefore

lim
t→0+

(Iαh)(b − t) =
1

Γ(α)

b∫
0

h(b − x)
x1−α

dx =
1

Γ(α)

b∫
0

h(τ)
(b − τ)1−α

dτ = (Iαh)(b),

which proves 2).
3) Let t ∈ (0, ε/2). Then

(Iαh)(t) =
1

Γ(α)

t∫
0

τβ�2(τ)
(t − τ)1−α

dτ .

Introducing t = 1/y, we have:

(Iαh)
(1

y

)
=

y1−α

Γ(α)

1/y∫
0

τβ�2(τ)
(1 − yτ)1−α

dτ =
y−α−β

Γ(α)

1∫
0

xβ�2(x/y)
(1 − x)1−α

dx .

Hence, by Theorem 4.1.5 in [5] and by [6]

Iα(h)
(1

y

)
=

1
Γ(α)

y−α−β�2

(1
y

) 1∫
0

xβ

(1 − x)1−α
dx = y−α−β Γ(β + 1)

Γ(α + β + 1)
�2

(1
y

)
.

Thus

(Iαh)(t) = tα+β Γ(β + 1)
Γ(α + β + 1)

�2(t) .
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It only remains to prove 4). For t ∈ (0, ε/2), h(t) = A + r(t), r(t) → 0, t → 0.
Then∣∣∣(Iαh)(t) − A

Γ(α + 1)
tα

∣∣∣

=
∣∣∣∣ 1
Γ(α)

t∫
0

A + r(τ)
(t − τ)1−α

dτ − 1
Γ(α)

t∫
0

A

(t − τ)1−α

∣∣∣∣ =
∣∣∣∣ 1
Γ(α)

t∫
0

r(τ)
(t − τ)1−α

dτ

∣∣∣∣ .

We fix ε in such a way that |r(t)| < δ, t ∈ (0, ε/2), then for any δ > 0 there is ε > 0
such that ∣∣∣(Iαh)(t) − A

tα

Γ(α + 1)

∣∣∣ � 1
Γ(α + 1)

δ(ε/2)α, 0 < t < ε/2 .

This concludes the proof of Proposition 2. �

Remark. The quoted Theorem A is a consequence of Proposition 2.4).

3.2. Application of Abel–Tauberian type theorems. We point at the
possibility to use Abel–Tauberian type theorems to find asymptotic behavior of
fractional integrals.

If the function g ∈ L1(0, b), then it can be always extended by a function
g ∈ L1(0,∞), g(x) = g(x), x ∈ (0, b). Then the Laplace transform of g exists and
of Iαg, too. Let L denote the Laplace transform; then

(LIαg)(s) =
1
sα

(Lg)(s) .

If we suppose: 1) g(t) ∼ tγ�1(t), t → 0, then by Karamata’s Tauberian theorem
(cf. [5, p. 233])

(Lg)(s) ∼ Γ(γ + 1)
sγ+1

�1

(1
s

)
, s → ∞ (s real).

Consequently

(5) (LIαg)(s) =
1
sα

(Lg)(s) ∼ Γ(γ + 1)
sα+γ+1

�1

(1
s

)
s → ∞.

If in addition we suppose: 2) for some σ ∈ (−1, γ) t−σg(t) is bounded on every
[a,∞) and g(t)/tγ�(t) is slowly decreasing, then from (5) if follows that

g(t) ∼ tγ�1(t), t → 0 .

Using Tauberian type theorem we introduce an additional Tauberian condition.
However this approach can be useful if we look for conditions on the function f to
make sure the existence of a solution to equation

(Iαg)(t) = f(t), t ∈ [0,∞) .

As it is shown above, if f has it Laplace transform (Lf)(s), s > s0 � 0, g can
belong to the class of functions which have g(t) ∼ tγ�1(t), t → 0 only if

(Lf)(s) ∼ Γ(γ + 1)
sα+γ+1

�1(s), s → ∞.
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Conversely, if

(Lf)(s) ∼ Γ(γ + 1)
sα+γ+1

�1(t)

and g satisfies the additional condition 2), then g(t) ∼ tγ�1(t), t → 0.

4. Behavior of solutions to equation (DαDαy)(t) = g(t), 0 < t < b

Theorem 1. Let α ∈ (0, 1) and g ∈ L1(0, b), then the family of functions

(6) f(t) = (IαIαg)(t) + C1(Iα(b − τ)α−1)(t) + C2t
α−1, t ∈ (0, b)

satisfies the equation

(7) (DαDαf)(t) = g(t), t ∈ (0, b) ,

and belongs to L1(0, b).
If in addition α ∈ (1/2, 1) and the function g has the properties:
1) g(t) = tγ�1(t), t ∈ (0, ε), ε > 0,
2) g(b − t) = tβ�2(t), t ∈ (0, ε), β > −1,

where �2(1/y) is quasi-monotone slowly varying at infinity, then there exists f0(t)
belonging to the family f(t), given by (6) which satisfies boundary condition

(8) f0(0) = f0(b) = 0

and with the properties
1) f0(t) ∈ L1(0, b),

2) f0(t) = Btα + o(1), t → 0+; B =
1

Γ(α)

b∫
0

g(τ)
τ1−α

dτ +
bα−1

Γ(α + 1)
,

3) lim
t→0+

f0(b − t) = (IαIαg)(b) +
b2α−1

Γ(α)Γ(2α − 1)
def= f0(b),

4) f0(t) = (IαIαg)(t) + C1(Iα(b − τ)α−1)(t), where C1 =
(IαIαg)(b)

(Iα(b − τ)α−1)(b)
.

Proof. By the properties of Dα, Dα, Iα and Iα, we cited in the Preliminaries,
it is easily seen that f ∈ L1(0, b) and:

DαDα(IαIαg) = Dα(DαIα)Iαg = DαIαg = g .

It is well known (cf. [21, p. 36]) that (Dαh)(t) = 0 if and only if h(t) = Ctα−1

and (Dαh)(t) = 0 if and only if h(t) = C(b − t)α−1. Hence, it follows that the
family f , given by (6) is a solution to (7).

We can take that f0(t) has the analytical form

f0(t) = (IαIαg)(t) + C1(Iα(b − τ)α−1)(t), t ∈ (0, b).

We took that C2 = 0 in f(t) because of the boundary condition (8). Since f ∈
L1(0, b) (cf. Propositions 1 and 2), then f0 ∈ L1(0, b), as well. This proves the
property 1) of f0.

With the supposed properties of g, by Proposition 1 we have

lim
t→0+

(Iαg)(t) =
1

Γ(α)

b∫
0

g(τ)
τ1−α

dτ
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(9) (Iαg)(b − t) =
tα+β

Γ(α + β + 1)
�2(t), t ∈ (0, ε/2) .

If we apply Proposition 2 to h = Iαg, then we obtain from (9)

(10) (IαIαg)(t) = A
tα

Γ(α + 1)
+ o(1), t → 0 ,

where

A =
1

Γ(α)

b∫
0

g(τ)
τ1−α

dτ

and

(11) lim
t→0+

(IαIαg)(b − t) = (IαIαg)(b) =
1

Γ2(α)

b∫
0

dτ

(b − τ)1−α

b∫
τ

g(u)
(u − τ)1−α

.

With regard to the function (Iα(b− τ)α−1)(t) which appears in f0(t), we have
by Proposition 2:

(12) (Iα(b − τ)α−1)(t) =
bα−1

Γ(α + 1)
tα + o(1), t → 0.

and

(13) (Iα(b−τ)α−1)(b) =
1

Γ(α)

b∫
0

dτ

(b − τ)2(1−α)
=

−1
Γ(α)

b2α−1

2α − 1

∣∣∣∣
b

0

=
b2α−1

Γ(α)(2α − 1)
.

From (10)–(13) it follows 2) and 3) in Theorem 1. Now it is easy to satisfy the
boundary condition taking that

C1 = (IαIαg)(b)/(Iα(b − τ)α−1)(b).

The proof of Theorem 1 is complete. �

5. Equation (7) in the subspace of tempered distributions D′
b

5.1. Preliminaries. We use the following notation: S ′ = S ′(R) for the space
of tempered distributions, S ′

+ = {T ∈ S ′, suppT ⊂ [0,∞)}.
The following class of distributions {fβ ; β ∈ R}:

(14) fβ(t) =
{

H(t)tβ−1/Γ(β), β > 0,

f
(m)
β+m(t), β � 0, β + m > 0, m ∈ N ,

belonging to S ′
+, has an important role in definition of the asymptotic behavior

of distributions; f (m) is the m-th derivative in the distributional sense and H is
Heaviside’s function. By f (−β) for f ∈ S ′

+ we denote fβ ∗ f , where ∗ is the sign
for the convolution and β ∈ R. If β > 0, f (−β) is called the operator of fractional
integral of order β, but if β < 0, f (−β) is operator of fractional derivative of order
−β (cf. [26, p. 36]).

The class {fβ ; β ∈ R} with the operation convolution form an Abelian group:
fβ1 ∗ fβ2 = fβ1+β2 , f0 = δ (cf. [26, p. 36]).
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If T ∈ S ′
+ is regular distribution defined by the function f , then we write

T = [f ].
To measure the asymptotic behavior in S ′

+ we use the quasi-asymptotics.
(cf. [9], [10], [16]).

Definition 4. Let f ∈ S ′
+ and c(x), x ∈ (0, a), a > 0, be a measurable positive

function. It is said that f has the quasi-asymptotics at 0+ related to c(1/k) if there
is a g ∈ S ′

+, g �= 0 such that

lim
k→∞

〈f(x/k)
c(1/k)

, ϕ(x)
〉

=
〈
g(x), ϕ(x)

〉
, ϕ ∈ S .

We write for short f
q∼ g at 0+ related to c(1/k).

It has been proved (cf. [9], [16]) that c(x) = xβ�(x), x ∈ (0, ε), ε > 0, β ∈ R, �
is slowly varying at zero and g = Cfβ+1.

Let f(b−x) denote the distribution which is obtained after exchange of variables
in f ∈ S ′. If

lim
k→∞

〈 f(b − x/k)
(1/k)β�(1/k)

, ϕ(x)
〉

=
〈
g(x), ϕ(x)

〉
, β ∈ R, φ ∈ S ,

we say that f has quasi-asymptotics at b related to (1/k)β�(1/k) and write for short
f(b − t)

q∼ g at b related to (1/k)β�(1/k).
The quasi-asymptotics at b describes the distribution f in a neighborhood of

the point b.
If β = 0, � = 1 and:
a) f(b − t)

q∼ C < ∞, C � 0, at b we say that the distribution f has C as its
value at the point b. In this sense we write f(b) = C;

b) f ∈ S ′
+, f(t)

q∼ C < ∞, C � 0, at 0+, we write f(0) = C (cf. [14]).
The quasi-asymptotics at 0+ is a local property.

Lemma 1. Let f ∈ S ′
+. Then f

q∼ Cfα+1 at 0+ related to c(1/k) = (1/k)α�(1/k)
if and only if there exists γ ∈ R such that fγ ∗ f

q∼ Cfα+γ+1 at 0+ related to
(1/k)γc(1/k).

For the proof cf. [9], [26]. For the applications of the quasi-asymptotics it is
important to know:

Lemma 2. Let f ∈ S ′
+ be regular distribution defined by the function f(x) which

is locally integrable on [0, b), 0 < b, β > −1.
1) If f(t) ∼ Ctβ�(t), t → 0, then f

q∼ Ctβ at 0+ related to tβ�(t).
2) If f(t)

q∼ Ctβ at 0+ related to (1/k)β�(1/k) and tmf(t) is monotone for
some m ∈ N on (0, ε), ε > 0, then f(t) ∼ tβ�(t), t → 0.

For the proof cf. [9].
We need a special space of generalized functions and we are going to construct

it. Let A be the subspace of S ′
+:

A = {T ∈ S ′
+; supp T ⊂ [b,∞)}.
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In S ′
+ we define the following equivalence relation: f ∼ g ⇔ f − g ∈ A. Let B

denote the quotient space B = S ′
+/A. An element of B is a class defined by a

T ∈ S ′
+.

Definition 5. By D′
b we denote the space:

D′
b = {Tb ∈ D′([0, b)); ∃T ∈ S ′

+, T |(−∞,b) = Tb}.
(T |(−∞,b) is the restriction of T on (−∞, b)).

Lemma 3. D′
b is algebraically isomorphic to B.

Proof. Let Tb ∈ D′
b; then there exists T ∈ S ′

+ such that T |(−∞,b) = Tb.
The distribution T defines the class c�(T ) ∈ B. Then to Tb ∈ D′

b it corresponds
c�(T ) ∈ B. Conversely, to the class c�(T ) ∈ B there corresponds Tb = T |(−∞,b),
Tb ∈ D′

b. Both correspondences are unique. �
In D′

b we can define convolution. Let Tb and Sb belong to D′
b and let c�(T ) and

c�(S) be the elements from B corresponding to Tb and Sb respectively. Then by
definition

Tb ∗ Sb = (T ∗ S)|(−∞,b) ,

where T ∈ c�(T ) and S ∈ c�(S). It is easily seen that this convolution does not
depend on the elements we choose from c�(T ) and c�(S). Let T1 = Tb +A1 ∈ c�(T )
and T2 = Tb+A2 ∈ c�(T ). Also, let S1 = Sb+A3 ∈ c�(S) and S2 = Sb+A4 ∈ c�(S),
A1, A2, A3 and A4 belong to A. Then

T1 ∗ S1 − T2 ∗ S2 = T1 ∗ S1 − T1 ∗ S2 + T1 ∗ S2 − T2 ∗ S2

= T1 ∗ (S1 − S2) + (T1 − T2) ∗ S2

= T1 ∗ (A3 − A4) + (A1 − A2) ∗ S2 ∈ A,

by the properties of convolution in S ′
+. Hence, (T1 ∗ S1)|(−∞,b) = (T2 ∗ S2)|(−∞,b).

We introduce another operator denoted by Q.

Definition 6. Let Tb ∈ D′
b such that there exists Tb(b) or Tb is regular distri-

bution Tb = [f ], f ∈ L1(0, b). Then QTb(t) = Tb(b − t) (Tb(b − t) is obtained by
change of variable in Tb).

Now we can extend the operators Dβ and Dβ into D′
b, β > 0.

Definition 7. Let Tb ∈ D′
b for which there exists Tb(b) or Tb = [f ], f ∈

L1(0, b). Then

(15) DβTb = (f−β ∗ T )|(−∞,b), β > 0 ,

where c�(T ) ∈ B and T corresponds to Tb;

(16) DβTb = Q(f−β ∗ QTb)|(−∞,b)), β > 0.

Remark. If Tb = [f ], and if Dβf and Dβf exist, then DβTb = Dβ [f ] = [Dβf ]
and DβTb = Dβ [f ] = [Dβf ], which means that with Definition 7 we extended the
operators Dβ and Dβ on D′

b.
By Lemma 2 it is easy to obtain the quasi-asymptotic behavior of DβTb if we

know the quasi-asymptotic behavior of Tb. The same is with the fractional integral.
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Also we can use Abel–Tauberian-type theorems in the space S ′
+ (cf. [26, p. 132])

or in the space of Modified Fourier Hyperfunctions (cf. [25]) to find the quasi-
asymptotic behavior of f if we know the quasi-asymptotic behavior of f (−β) for
β > 0 and β < 0.

5.2. The solution to equation (7) in D′
b with the initial condition

f(0) = 0. To equation (7) there corresponds in D′
b the following equation (cf. (15)

and (16)):

(17) Q(f−α ∗ Q((f−α ∗ f)|(−∞,b)))|(−∞,b) = g, g ∈ D′
b and c�(f) ∈ B.

If for g ∈ D′
b there exists G ∈ S ′

+, G|(−∞,b) = g such that there is G(b), then
g(b) = G(b).

Theorem 2. Suppose: 1) g ∈ D′
b, 2) there exists g(b), and 3) 0 < α < 1. The

general solution to equation (17) in D′
b is the restriction of f on (−∞, b), where

(18) f = fα ∗ (Q(fα ∗ (Qg))|(−∞,b)) + C1fα ∗ (Qfα) + C2fα .

If:
1) Q(fα ∗ (Qg))

q∼ Cfβ+1 at 0 related to (1/k)β�(1/k),
2) β + α > 0, C2 = 0 and γ = min(β + α, α),

then f has the quasi-asymptotics at zero related to (1/k)γ�(1/k) and f(0) = 0. (For
the meaning of f(0) see 5.1).

3) If in addition 1
2 < α < 1 and the first summand in the sum which defines f

has its value in b, then C1 can be found in such a way that f(b) = 0.

Proof. Since {fβ , β ∈ R} form an Abelian group with δ as the unit element,
it is easy to construct a solution to (17) applying one after the other the inverse
operators to those appearing in (17). In such a way we find as a solution to (17):

(19) f1 = (fα ∗ (Q(fα ∗ (Qg))(−∞,b)))|(−∞,b) .

To find a solution f2 of the homogeneous part of (17) we start with

(20) Q((f−α ∗ f2)|(−∞,b)) = 0, or (f−α ∗ f2)|(−∞,b) = 0

which is equivalent to

(f1−α ∗ f2)(1)|(−∞,b) = 0, or f1−α ∗ f2|(−∞,b) = C2 .

This gives the solution f2 to the homogeneous part of (17):

(21) f2 = fα−1 ∗ C2|(−∞,b) = C2fα|(−∞,b) .

But if for f3:
(f−α ∗ Q(f−α ∗ f3)|(−∞,b))|(−∞,b) = 0,

then by (20) f−α ∗ f3|(−∞,b) = C1Qfα|(−∞,b) and f3 is the restriction on (−∞, b)
of the distribution:
(22)

C1fα∗Qfα = C1fα∗
[
H(b−x)H(x)

(b − x)α−1

Γ(α)

]
= C1

[
H(x)

1
Γ2(α)

x∫
0

(b − t)α−1

(x − t)1−α
dt

]
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f3 is another solution to the homogeneous part of (17).
The general solution f to (17) is f = f1 +f2 +f3, where f1, f2 and f3 are given

by (19), (20) and (22) respectively.
It remains to prove that f satisfies the boundary conditions f(0) = f(b) = 0.
The first summand f1 in the sum which determined f , because of Lemma 1 and

suppositions 1) and 2), has the quasi-asymptotics at zero related to (1/k)α+β�(1/k).
Since Qfα = [H(x)H(b − x)fα(b − x)], then (Qfα)(0) = fα(b). By Lemma 1,

the second summand f3 of the mentioned sum has the quasi-asymptotics at zero
related to (1/k)α. Now, it is easily seen that f has the quasi-asymptotics at zero
related to (1/k)γ�(1/k) and consequently f(0) = 0.

We have only to prove that f(b) = 0. Let us consider first the summand f3 in
the sum which defines f . It is easily seen that

Q((fα ∗ [Qf ])|(−∞,b)) =
[
H(x)H(b − x)

1
Γ2(α)

b−t∫
0

(b − τ)α−1

(b − t − τ)1−α
dτ

]
.

Since

lim
t→0+

b−t∫
0

(b − τ)α−1

(b − t − τ)1−α
dτ =

b2α−1

2α − 1
,

1
2

< α < 1,

there exists (fα ∗Qfα)(b) =
b2α−1

(2α − 1)Γ2(α)
. Now by supposition 3) we can find C1

in such a way that f(b) = 0. This completes the proof of Theorem 2. �

Example. Let g(x) = δ(x − h), 0 < h < b. Then by the property of δ-
distribution: δ(−x) = δ(x) we have (Qδ(x − h)) = δ(b − x − h) = δ(x − (b − h))
and

fα ∗ (Qδ(x − h)) = fα ∗ δ(x − (b − h)) = fα(x − (b − h)).

Hence

(fα ∗ (Qδ(x − h)))|(−∞,b) = [H(b − x)H(x − (b − h))fα(x − (b − h))],

Q(fα ∗ (Qδ(x − h)))|(−∞,b) = [H(x)H(b − x − (b − h))fα(b − x − (b − h))]

= [H(x)H(h − x)fα(h − x)] .

fα ∗ (Qfα ∗ (Qδ(x − h)))|(−∞,b) = fα ∗ H(x)H(h − x)fα(h − x)

=
H(x)
Γ2(α)

x∫
0

H(h − t)(h − t)α−1

(x − t)1−α
dt .(23)

Hence, f1 is the regular distribution defined by the function (23).
For f3 we have

(24) C1fα ∗ Qf = C1fα ∗ H(x)H(b − x)fα(b − x) = C1
H(x)
Γ2(α)

x∫
0

(b − t)α−1

(x − t)1−α
dt .
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Consequently, f3 is also the regular distribution defined by the function (24). By
(23) and (24) f is the regular distribution defined by the function

(25)
H(x)
Γ2(α)

x∫
0

H(h − t)(h − t)α−1

(x − t)1−α
dt + C1

H(x)
Γ2(α)

x∫
0

(b − t)α−1

(x − t)1−α
dt.

To find the asymptotic behavior of such an f at the end points, we analyze
first

x/k∫
0

(b − t)α−1

(x/k − t)1−α
dt = k1−α

x/k∫
0

(b − t)α−1

(x − kt)1−α
dt = k−α

x∫
0

(b − u/k)α−1

(x − u)1−α
du

→ k−αbα−1 xα

α
, k → ∞.

This says that

f3
q∼ C1

bα−1

Γ(α)Γ(α + 1)
at 0 related to (1/k)α.

Since the quasi-asymptotics is a local property, we have that

f1
q∼ bα−1

Γ(α)Γ(α + 1)
fα+1 at zero related to (1/k)α.

Consequently,

f
q∼ bα−1

Γ(α)Γ(α + 1)
(1 + C1)fα+1 at 0 related to (1/k)α.

Finally f(b) satisfies the condition f(b) = 0 if C1 is defined by
h∫

0

(h − t)α−1

(b − t)1−α
dt + C1

b2α−1

(2α − 1)
= 0 .
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[2] T. M. Atanacković and B. Stanković, Dynamics of a viscoelastic rod of fractional derivative
type, Z. Angew, Math. Mech. 82, (2002), 377–386.
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