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ON REGULAR ANTI-CONGRUENCE
IN ANTI-ORDERED SEMIGROUPS

Daniel Abraham Romano

Abstract. For an anti-congruence q we say that it is regular anti-congruence
on semigroup (S, =, �=, ·, α) ordered under anti-order α if there exists an anti-
order θ on S/q such that the natural epimorphism is a reverse isotone ho-
momorphism of semigroups. Anti-congruence q is regular if there exists a
quasi-antiorder σ on S under α such that q = σ ∪ σ−1. Besides, for regular
anti-congruence q on S, a construction of the maximal quasi-antiorder relation

under α with respect to q is shown.

1. Introduction and preliminaries

This short investigation in Bishop’s Constructive Algebra is a continuation of
[9] and [10]. Bishop’s Constructive Mathematics is developed on Constructive Logic
[11] – logic without the Law of Excluded Middle P ∨ ¬P . Let us note that in the
Constructive Logic the ‘Double Negation Law’ P ⇔ ¬¬P does not hold, but the
following implication P ⇒ ¬¬P holds even in the Minimal Logic. We have to note
that ‘the crazy axiom’ ¬P ⇒ (P ⇒ Q) is included in the Constructive Logic. In the
Constructive Logic ‘Weak Law of Excluded Middle’ ¬P ∨¬¬P does not hold, too.
It is interesting, that in the Constructive Logic the following deduction principle
A ∨ B,A � B holds, but this is impossible to prove without ‘the crazy axiom’.
Bishop’s Constructive Mathematics is consistent with the Classical Mathematics.

Relational structure (S,=, �=), where the relation �= is a binary relation on S,
which satisfies the following properties:

¬(x �= x), x �= y ⇒ y �= x, x �= z ⇒ x �= y ∨ y �= z, x �= y ∧ y = z ⇒ x �= z

we call set. Following Heyting, the relation �= is called apartness. A relation q on S
is a coequality relation on S if and only if it is consistent, symmetric and cotransitive
[6]–[8]: q ⊆ �=, q−1 = q, q ⊆ q ∗ q, where ∗ is the filled product between relations
[5]. Let β be a consistent relation on S. We put 1β = β and (nβ) = β ∗ · · · ∗ β
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(n factors, n ∈ N). Then the relation c(β) =
⋂

n∈N (nβ), the cotransitive fulfillment
of β, is the maximal consistent and cotransitive relation on S under β [5].

Let (S,=, �=, ·) be a semigroup with an apartness [6]–[8]. As in [8], a coequality
relation q on S is anti-congruence if and only if it is compatible with the semigroup
operation in the following sense

(∀x, y, z ∈ S)
((

(xz, yz) ∈ q ⇒ (x, y) ∈ q
) ∧ (

(zx, zy) ∈ q ⇒ (x, y) ∈ q
))

.

A relation α on S is an anti-order [9] on S if and only if α ⊆ �=, α ⊆ α ∗ α,
�= ⊆ α ∪ α−1 (linearity) and

(∀x, y, z ∈ S)
((

(xz, yz) ∈ α ⇒ (x, y) ∈ α
) ∧ (

(zx, zy) ∈ α ⇒ (x, y) ∈ α
))

.

A relation τ on S is a quasi-antiorder [9] on S if τ ⊆ �=, τ ⊆ τ ∗ τ and

(∀x, y, z ∈ S)
((

(xz, yz) ∈ τ ⇒ (x, y) ∈ τ
) ∧ (

(zx, zy) ∈ τ ⇒ (x, y) ∈ τ
))

.

Let x be an element of S and A a subset of S. We denote x �� A if and only if
(∀a ∈ A)(x �= a), and AC = {x ∈ S : x �� A}. If τ is a quasi-antiorder on S,
then the relation q = τ ∪ τ−1 is an anti-congruence on S. Firstly, the relation
qC = {(x, y) ∈ S × S : (x, y) �� q} is a congruence on S compatible with q, in the
following sense

(∀a, b, c ∈ S)
(
(a, b) ∈ qC ∧ (b, c) ∈ q ⇒ (a, c) ∈ q

)
.

We can construct the semigroup S/(qC , q) = {aqC : a ∈ S} with

aqC = bqC ⇔ (a, b) �� q, aqC �= bqC ⇔ (a, b) ∈ q, aqC · bqC = (ab)qC .

We can also construct the semigroup S/q = {aq : a ∈ S} with

aq = bq ⇔ (a, b) �� q, aq �= bq ⇔ (a, b) ∈ q, aq · bq = (ab)q.

It is easy to check that S/(qC , q) ∼= S/q. The mapping π : S → S/q, defined by
π(a) = aq for any a ∈ S, is a strongly extensional epimorphism. Secondly, note
that the relation αC is an order relation on set (S,¬ �=, �=). If the relation ¬α is
an order relation on set (S,=, �=), then, as for example in [1] when the apartness
is tight, ¬ �= ⊆ = [7], the relation α is called excise relation on S. (The notion of
anti-order relation is more general than notion of excise relation.)

For a given anti-ordered semigroup (S,=, �=, ·, α) it is essential to know if there
exists an anti-congruence q on S such that S/q be an anti-ordered semigroup. This
plays an important role for studying the structure of anti-ordered semigroups. The
following question is natural: If (S,=, �=, ·, α) is an anti-ordered semigroup and
q an anti-congruence on S, is then the set S/q an anti-ordered semigroup? A
possible anti-order on S/q could be the relation Θ on S/q defined by the anti-order
α on S, Θ = {(xq, yq) ∈ S/q × S/q : (x, y) ∈ α}. But is not an anti-order, in
general. The following question arises: Is there any anti-congruence q on S for
which S/q is an anti-ordered semigroup? The concept of quasi-antiorder relation
was defined in [9]. According to [9], if (S,=, �=, ·, α) is an anti-ordered semigroup
and σ a quasi-antiorder on S, then the relation q on S, defined by q = σ ∪ σ−1,
is an anti-congruence on S and the set S/q is an anti-ordered semigroup under
anti-order Θ defined by (xq, yq) ∈ Θ ⇔ (x, y) ∈ σ. So, according to the results in
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[9], each quasi-antiorder σ on an ordered semigroup S under anti-order α induces
an anti-congruence q = σ ∪ σ−1 on S such that S/q is an ordered semigroup under
anti-order Θ. In [10] we proved that the converse of this statement also holds.
If (S,=, �=, ·, α) is an anti-ordered semigroup and q anti-congruence on S and if
there exists an anti-order relation Θ1 on S/q such that (S/q,=1, �=1, ◦,Θ1) is an
ordered semigroup under anti-order Θ1, then there exists a quasi-antiorder τ on S
such that q = τ ∪ τ−1 and Θ1 = Θ. So, each anti-congruence q on a semigroup
(S,=, �=, ·, α) such that S/q is an anti-ordered semigroup induces a quasi-antiorder
on S. This was the motivation for introduction of a new notion. For that we need
the following notion: Let f be a strongly extensional mapping of anti-ordered sets
from (X,=, �=, α) into (Y,=, �=, β). For f we say that it is reverse isotone if

(∀a, b ∈ X)
(
(f(a), f(b)) ∈ β ⇒ (a, b) ∈ α

)

holds. An anti-congruence q on S is called regular if there is an anti-order “θ1” on
S/q satisfying the following conditions:

(1) (S/q,=1, �=1, , θ1) is an anti-ordered semigroup;
(2) The mapping π : S � a �→ aq ∈ S/q is an anti-order reverse isotone

epimorphism.

We call the anti-order “θ1” on S/q a regular anti-order with respect to a regular
anti-congruence q on S and the anti-order α.

It is obvious that the regular anti-order on S/q with respect to a regular anti-
congruence q and to the anti-order α on S is in general not unique. The following
questions now naturally arise: Does there exist the maximal regular anti-order on
S/q with respect to a regular anti-congruence q on S? Are all anti-congruences
on anti-ordered semigroups regular? In this note, we give a partial answer on the
questions above. In Theorem 1 and Corollary 2 we give necessary and sufficient
conditions for anti-congruence on an anti-ordered semigroup to be regular. In
Theorem 3 we give a construction of the maximal quasi-antiorder on anti-ordered
semigroup S induced by a regular anti-congruence q on S.

For the necessary undefined notions, the reader is referred to books [2]–[4], [11]
and to papers [5]–[8].

Lemma 0. Let τ be a quasi-antiorder on set (S,=, �=). Then xτ (τx) is a
strongly extensional subset of S, such that x �� xτ (x �� τx), for each x ∈ S. Also,
the implication (x, z) ∈ τ ⇒ xτ ∪ τz = S holds for each x, z of S.

Proof. From τ ⊆�= it follows x �� xτ . Let y ∈ xτ and let z be an arbitrary
element of S. Then, (x, y) ∈ τ and (x, z) ∈ τ∨(z, y) ∈ τ . So, we have z ∈ xτ∨y �= z.
Therefore, xτ is a strongly extensional subset of S such that x �� xτ .

The proof that τx is a strongly extensional subset of S such that x �� τx is
analogous. Besides, the following implication (x, z) ∈ τ ⇒ xτ ∪ τz = S holds
for each x, z of S. Indeed, if (x, z) ∈ τ and y is an arbitrary element of S, then
(∀y ∈ S)

(
(x, y) ∈ τ ∨ (y, z) ∈ τ

)
. Thus, S = xτ ∪ τz. �
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2. Regular anti-congruences

In order to obtain the relationship between regular anti-congruence and quasi-
antiorder on S, the following theorem is essential.

Theorem 1. Let (S,=, �=, ·, α) be an anti-ordered semigroup, q an anti-congru-
ence on S. The following statements are equivalent:

(1) q is regular.
(2) There exists a quasi-antiorder σ on S, such that q = σ ∪ σ−1.

Proof. (2) ⇒ (1). By Lemma 1 in [9], since q = σ ∪ σ−1, we have that the
quotient semigroup (S/q,=1, �=1, ·) is an anti-ordered semigroup with respect to the
anti-order θ defined as (qx, qy) ∈ θ ⇔ (x, y) ∈ σ. If x, y ∈ S and (qx, qy) ∈ θ, then
(x, y) ∈ σ ⊆ α. By definition, q is regular.

(1) ⇒ (2). Let q be a regular anti-congruence. Then there exists an anti-order
relation θ on the quotient semigroup (S/q,=1, �=1, ·) such that (S/q,=1, �=1, ·, θ) is
an anti-ordered semigroup, and π : S → S/q is a strongly extensional reverse isotone
homomorphism of anti-ordered semigroups. Let σ = {(x, y) ∈ S×S : (qx, qy) ∈ θ}.
By [10], σ is a quasi-antiorder on S and it is easy to check that q = σ ∪ σ−1. �

Corollary 2. Let (S,=, �=, ·, α) be an anti-ordered semigroup, q an anti-
congruence on S. The following statements are equivalent:

(1) q is regular;
(2) There exists an anti-ordered semigroup (T,=, �=, ·, θ) and a strongly exten-

sional reverse isotone homomorphism ϕ : S → T such that q = {(a, b) ∈
S × S : ϕ(a) �= ϕ(b)}.

Proof. (1) ⇒ (2). Let q be regular. Then there exists an anti-order relation θ
on the semigroup S/q such that the natural epimorphism π : S → S/q is a reverse
isotone mapping. Then, by [10], there exists a quasi-antiorder σ on S such that
q = σ ∪ σ−1. So, there exists an anti-ordered semigroup T = (S/q,=1, �=1, ·) under
θ and a strongly extensional reverse isotone homomorphism π : S → T such that
σ = {(a, b) ∈ S × S : (π(a), π(b)) ∈ θ}. Further on, we have q = {(a, b) ∈ S × S :
π(a) �=1 π(b)}. In fact,

(a, b) ∈ q ⇔ (a, b) ∈ σ ∨ (a, b) ∈ σ−1 ⇔ (π(a), π(b)) ∈ θ ∨ (π(a), π(b)) ∈ θ−1

(π(a), π(b)) ∈ θ ∪ θ−1 = �=1 ⇔ π(a) �=1 π(b).

(2) ⇒ (1). Let T be an anti-ordered semigroup under an anti-order θ and
ϕ : S → T a strongly extensional reverse isotone homomorphism such that q =
{(a, b) ∈ S × S : ϕ(a) �= ϕ(b)}. Since θ is an anti-order relation on T , then
�= = θ ∪ θ−1 holds. Thus, by Theorem in [10], the relation σ on S, defined by
(a, b) ∈ σ if and only if (ϕ(a), ϕ(b)) ∈ θ, is a quasi-antiorder relation on S. On the
other hand, q = σ ∪ σ−1. In fact, if (a, b) is an arbitrary element of q, then

ϕ(a) �= ϕ(b) ⇔ (ϕ(a), ϕ(b)) ∈ θ ∨ (ϕ(b), ϕ(a)) ∈ θ ⇔ (a, b) ∈ σ ∨ (b, a) ∈ σ

⇔ (a, b) ∈ σ ∪ σ−1 = q
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Let (ϕ(a), ϕ(b)) ∈ θ. Then (a, b) ∈ σ ⊆ α. By Theorem 1, q is regular anti-
congruence on S. �

Recall that, by Lemma 0, any class aq of anti-congruence q, generated by
the element a ∈ S, is a strongly extensional subset of S. Besides, we have the
following assertion, which is crucial in characterization of regular anti-congruences
on an anti-ordered semigroup (S,=, �=, ·, α): If q is a regular anti-congruence on an
anti-ordered semigroup S, then for every q−class aq in S we have

((x, y) �� α ∧ (y, z) �� α ∧ x, z ∈ aq) ⇒ y ∈ aq

for any x, y, z, a ∈ S. If q is a regular anti-congruence on a semigroup S, then
there exists an anti-order relation θ on S/q such that the natural epimorphism
π : S → S/q is a strongly extensive reverse isotone homomorphism. Besides, there
exists a quasi-antiorder σ under α, defined by (x, y) ∈ σ ⇔ (xq, yq) ∈ θ such that
σ ∪ σ−1 = q. Let t be an arbitrary element of aq. Then (a, t) ∈ q = σ ∪ σ−1. Thus
(a, t) ∈ σ or (t, a) ∈ σ. Hence, we have

(a, t) ∈ σ ⇒ (a, x) ∈ σ ⊆ q ∨ (x, y) ∈ σ ⊆ α ∨ (y, t) ∈ σ ⊆ q ⊆ �= ⇒ t �= y;

(t, a) ∈ σ ⇒ (t, y) ∈ σ ⊆ �= ∨(y, z) ∈ σ ⊆ α ∨ (z, a) ∈ σ ⊆ q ⇒ t �= y.

So, in both cases, we have that t ∈ aq ⇒ t �= y. Therefore, y �� aq. We have

((x, y) �� α ∧ (y, z) �� α ∧ y ∈ aq) ⇒ x ∈ aq ∨ z ∈ aq

for any x, y, a ∈ S. Indeed, if x, y, z, a ∈ S such that (x, y) �� α and (y, z) �� α and
x ∈ aq, then (a, y) ∈ q = σ ∪ σ−1 ⇒ ((a, y) ∈ σ ∨ (y, a) ∈ σ). Thus, we have

(
(a, y) ∈ σ ∨ (y, a) ∈ σ

) ⇒(
(a, x)∈σ⊆q ∨ (x, y)∈σ⊆α

) ∨ (
(y, z)∈σ⊆α ∨ (z, a)∈σ⊆q

) ⇒ x ∈ aq ∨ z ∈ aq.

It is not known whether the condition given above on q-classes is sufficient for
regularity of an anti-congruence on an anti-ordered semigroup.

Example. We consider the anti-ordered set S = {a, b, c, d, e, f} under the rela-
tion α = S×S�{(a, a), (a, d), (a, e), (b, b), (b, e), (c, c), (c, b), (c, e), (d, d), (d, e), (e, e),
(f, f), (f, a), (f, b), (f, c), (f, d), (f, e)}. Define a coequality relation q on S by q =
S × S � {(a, a), (b, b), (b, c), (b, d), (c, c), (c, b), (c, d), (d, d), (d, c), (d, b), (e, e), (f, f)}.
Then

S/q =
{
aq = {b, c, d, e, f}, bq = {a, e, f}, cq = {a, e, f},
dq = {a, e, f}, eq = {a, b, c, d, f}, fq = {a, b, c, d, e}}.

The following relation is an anti-order relation on S/q

θ1 = ℘(S) × ℘(S) � {({f}, {f}), ({f}, {a}), ({f}, {b, d, c}), ({f}, {e}), ({a}, {a}),
({a}, {b, d, c}), ({a}, {e}), ({b, d, c}, {b, d, c}), ({b, d, c}, {e}), ({e}, {e})}.

Then (S/q,=1, �=1, θ1) is an anti-ordered set, q is a regular coequality on S. If in S
we define the internal operation by the table below, then the set S is an anti-ordered
semigroup, q is an anti-congruence on S. It is easy to check that q is a regular anti-
congruence on the semigroup S. The proof of these facts is straightforward.
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· a b c d e f
a d d d d d a
b e e e e e b
c d d d d d c
d d d d d d d
e e e e e e e
f d d d d d f

Remark. If σ is a quasi-antiorder on S, then q = σ∪σ−1 is the minimal regular
anti-congruence on S which contains σ. In fact, if ρ is a regular anti-congruence on
S containing σ, then ρ = ρ ∪ ρ−1 ⊇ σ ∪ σ−1 = q.

Let q be a regular anti-congruence on an anti-ordered semigroup (S,=, �=, ·, α).
Then there exists anti-order θ on S/q such that the natural homomorphism π :
S → S/q is reverse isotone. Hence, by [10], there exists a quasi-antiorder σ under α
such that q = σ ∪ σ−1 and θ = {(aq, bq) ∈ S/q × S/q : (a, b) ∈ σ}. In the following
theorem we show that there exists such maximal quasi-antiorder τ under α and we
give a construction of that relation.

Theorem 3. Let q be a regular anti-congruence on an anti-ordered semigroup
(S,=, �=, ·, α). Then there exists the maximal quasi-antiorder relation τ under α
such that q = τ ∪ τ−1 and θ ⊆ {(aq, bq) ∈ S/q × S/q : (a, b) ∈ τ}. This relation is
exactly the following relation c(q ∩ α) =

⋂
n∈N

(
n(q ∩ α)

)
.

Proof. (1) It is clear that c(α ∩ q) ⊆ α ∩ q ⊆ q ⊆ �=, c(q ∩ α) ⊆ α, and that
the relation c(α∩ q) is cotransitive [4]. In fact, for cotransitivness we need to prove
that (a, c) ∈ c(q ∩ α) ⇒ (∀b ∈ S)

(
(a, b) ∈ c(q ∩ α) ∨ (b, c) ∈ c(q ∩ α)

)
, i.e., to prove

that

(a, c) ∈ c(q ∩ α) ⇒
(∀b ∈ S)

(
(∀i ∈ N)

(
(a, b) ∈ (i(q ∩ α))

) ∨ (∀j ∈ N)
(
(b, c) ∈ (j(q ∩ α))

))
.

First, we have

(a, c) ∈ c(q ∩ α) ⇒ (a, c) ∈ (2(q ∩ α)) = (q ∩ α) ∗ (q ∩ α)

⇒ (∀b ∈ S)((a, b) ∈ (q ∩ α) ∨ (b, c) ∈ (q ∩ α)).

Second, suppose that the following implication holds for some n � 2

(a, c) ∈ c(q ∩ α) ⇒ (∀b ∈ S)
(
(a, b) ∈ (

n(q ∩ α)
) ∨ (b, c) ∈ (

n(q ∩ α)
))

.

Thus, since the filled product “∗” is associative, we have

(a, c) ∈ c(q ∩ α) ⇒ (a, c) ∈ (
2(n+1)(q ∩ α)

)
=

(
(n+1)(q ∩ α)

) ∗ (
(n+1)(q ∩ α)

)

⇔ (∀b ∈ S)((a, b) ∈ (
(n+1)(q ∩ α)

) ∨ (b, c) ∈ (
(n+1)(q ∩ α))

)
.

Therefore, for any natural number n, by induction, we have

(a, c) ∈ c(q ∩ α) ⇒
(∀b ∈ S)

(
(∀i � n)

(
(a, b) ∈ (i(q ∩ α))

) ∨ (∀j � n)
(
(b, c) ∈ (j(q ∩ α))

))
.
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Hence (a, c) ∈ c(q ∩ α) ⇒ (∀b ∈ S)
(
(a, b) ∈ c(q ∩ α) ∨ (b, c) ∈ c(q ∩ α)

)
.

(2) Further on, let a, b, x be arbitrary elements of S such that (ax, bx) ∈ c(α∩q).
Then (ax, bx) ∈ q and, by compatibility of α and q in S, we have (a, b) ∈ q. Suppose
that the implication (ax, bx) ∈ c(α ∩ q) ⇒ (a, b) ∈ (

n(α ∩ q)
)
, n ∈ N , holds for any

a, b, x ∈ S. Then, from (ax, bx) ∈ c(α ∩ q) ∈ (
n+1(α ∩ q)

)
=

(
n(α ∩ q)

) ∗ (α ∩ q) it
follows

(ax, bx) ∈ c(α ∩ q) ⊆ (
n+1(α ∩ q)

)
=

(
n(α ∩ q)

) ∗ (α ∩ q)

⇒ (∀y ∈ S)((ax, yx) ∈ (
n(α ∩ q)

) ∨ (yx, bx) ∈ (α ∩ q))

⇒ (∀y ∈ S)((a, y) ∈ (
n(α ∩ q)

) ∨ (y, b) ∈ (α ∩ q))

⇒ (a, b) ∈ (
n+1(α ∩ q)

)
.

So, by induction, we have (ax, bx) ∈ c(α ∩ q) ⇒ (a, b) ∈ c(α ∩ q).
The other implication (xa, xb) ∈ c(α ∩ q) ⇒ (a, b) ∈ c(α ∩ q) can be proved

analogously. Therefore, the relation c(α ∩ q) is compatible with the semigroup
operation in S.

(3) Let σ be a quasi-antiorder relation under α such that q = σ ∪ σ−1 and
θ = {(aq, bq) ∈ S/q × S/q : (a, b) ∈ σ}. Then σ ⊆ α ∩ q and σ = c(σ) ⊆ c(α ∩ q)
because, by Lemma 0.4.2 in [7], the cotransitive fulfillment satisfies the implication
σ ⊆ α ∩ q ⇒ c(σ) ⊆ c(α ∩ q) and, in addition, since σ is a cotransitive relation,
σ = c(σ).

So, the relation τ = c(α ∩ q) is the maximal quasi-antiorder under α such that
q = τ ∪τ−1. Indeed, q = σ∪σ−1 ⊆ τ ∪τ−1 ⊆ q. Besides, it is clear that the relation
Θ = {(aq, bq) ∈ S/q × S/q : (a, b) ∈ τ} is an anti-order relation on S/q such that
θ ⊆ Θ. �

Corollary 4. Let q be a regular anti-congruence on an anti-ordered semigroup
(S,=, �=, ·, α). Then there exists the maximal anti-order relation on S/q. This
relation is exactly the following relation {(aq, bq) ∈ S/q × S/q : (a, b) ∈ c(q ∩ α)}.

Proof. Let θ1 be a regular anti-congruence on S/q with respect to α. Then
there exists a quasi-antiorder σ on S such that q = σ ∪ σ−1 and θ1 = {(aq, bq) ∈
S/q×S/q : (a, b) ∈ σ}. Since c(α∩q) is the maximal quasi-antiorder with respect to
α, then σ ⊆ τ holds. Thus, we have θ1 ⊆ {(aq, bq) ∈ S/q × S/q : (a, b) ∈ c(α ∩ q)}.
So, there exists the maximal regular anti-congruence with respect to α. �
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