CONSTRUCTIONS OF (2, n)-VARIETIES OF GROUPOIDS FOR n = 7, 8, 9

Lidija Goračinova-Ilieva and Smile Markovski

Dedicated to Prof. Dr. Kazimierz Glazek

ABSTRACT. Given positive integer n > 2, an algebra is said to be a (2, n)algebra if any of its subalgebras generated by two distinct elements has nelements. A variety is called a (2, n)-variety if every algebra in that variety is a (2, n)-algebra. There are known only (2, 3)-, (2, 4)- and (2, 5)-varieties of groupoids, and there is no (2, 6)-variety. We present here (2, n)-varieties of groupoids for n = 7, 8, 9.

1. Introduction

The notion of variety of algebras having the property (k, n) was given in [4] and equationally defined classes of cancellative groupoids having the property (2, 4) and (2, 5) were considered there. This notion was generalized in [1], where it was shown that the condition of the cancellativity is superfluous, that is, any variety of groupoids with the property (2, n) is a variety of quasigroups.

Let k and n be two positive integers and $k \leq n$. An algebra **A** is said to have the property (k, n) if every subalgebra of **A** generated by k distinct elements has exactly n elements. We also say that **A** is a (k, n)-algebra. A class \mathcal{K} of algebras is said to be a (k, n)-class if every algebra in \mathcal{K} is a (k, n)-algebra. A variety is called a (k, n)-variety if it is a (k, n)-class of algebras.

Trivially, the variety of Steiner quasigroups $(xx = x, xy = yx, x \cdot xy = y)$ is a (2,3)-variety. It is the unique variety of groupoids with the stated property, and the same holds for the (2, 4)-variety $(x \cdot xy = yx, xy \cdot yx = x)$ given by Padmanabhan in [4]. He has also constructed two (2,5)-varieties. One of them is commutative $(xy = yx, x(y \cdot xy) = y, x(x \cdot xy) = y \cdot xy)$, while the other one $(x \cdot xy = y, xy \cdot y = yx)$ consists of anticommutative quasigroups. These two varieties together with the variety whose defining identities $(x \cdot xy = yx, xy \cdot y = x)$ are dual to the identities of the preceeding variety are the only (2,5)-varieties of groupoids. The non-existence

 $^{2000\} Mathematics\ Subject\ Classification:\ 03C05,\ 20N05.$

Key words and phrases: (2, n)-algebra, quasigroup, variety.

¹¹¹

of a (2, 6)-variety can be deduced from the correspondence between the (k, n)-varieties and Steiner systems S(k, n, v) [1].

Here we present (2, n)-varieties of groupoids for n = 7, 8 and 9. Their construction is given in Sections 2, 3 and 4 respectively. It is an open problem the existence of (2, n)-varieties for $n \ge 10$, as well as the answer of the question whether the set of integers $\{n \mid \text{There exists a } (2, n)$ -variety of groupoids $\}$ is finite.

2. A construction of (2,7)-variety of groupoids

We use the fact that any member of a (2, n)-variety of groupoids is a quasigroup, i.e., the choosing of the defining identities of the (2, 7)-variety \mathcal{V}_7 (as well as the varieties \mathcal{V}_8 and \mathcal{V}_9 in the next sections) is made in a manner that enables a variety of quasigroups to be obtained.

THEOREM 2.1. Let \mathcal{V}_7 be a variety of groupoids, defined by the identities:

(1) xy = yx, (2) $x(x \cdot xy) = y$, (3) $xy \cdot (y \cdot xy) = y(x \cdot xy)$

Then \mathcal{V}_7 is a (2,7)-variety of quasigroups.

PROOF. Let (G, \cdot) be arbitrary groupoid in \mathcal{V}_7 and $a, b \in G$. Since $ab = ac \implies b = a(a \cdot ab) = a(a \cdot ac) = c$, $x = a \cdot ab$ is the unique solution of the equation ax = b. By commutativity ax = xa we have that (G, \cdot) is a quasigroup.

Next we show that the following identities also hold in (G, \cdot) . (The commutativity will not be pointed out when used.)

Namely, we have the following transformations:

$$\begin{aligned} xx \stackrel{(2)}{=} x(xx \cdot (xx \cdot (xx \cdot x))) \stackrel{(3)}{=} x(xx \cdot x(x \cdot xx)) \stackrel{(2)}{=} x(xx \cdot x) \stackrel{(2)}{=} x; \\ x \cdot x(y \cdot xy) \stackrel{(3)}{=} x(xy \cdot (x \cdot xy)) \stackrel{(3)}{=} (x \cdot xy) \cdot x(x \cdot xy) \stackrel{(2)}{=} (x \cdot xy)y; \\ x \cdot y(x \cdot xy) \stackrel{(5)}{=} x(x \cdot x(y \cdot xy)) \stackrel{(2)}{=} y \cdot xy; \\ xy \cdot x(y \cdot xy) \stackrel{(3)}{=} xy \cdot (xy \cdot (x \cdot xy)) \stackrel{(2)}{=} x; \\ (x \cdot xy)(y \cdot xy) \stackrel{(2)}{=} (x \cdot xy)(x(x \cdot xy) \cdot xy) \stackrel{(7)}{=} xy; \\ (x \cdot xy) \cdot x(y \cdot xy) \stackrel{(3)}{=} (x \cdot xy)(xy \cdot (x \cdot xy)) \stackrel{(3)}{=} xy \cdot x(x \cdot xy) \stackrel{(2)}{=} xy \cdot y; \\ (x \cdot xy) \cdot y(x \cdot xy) \stackrel{(5)}{=} (x \cdot xy) \cdot x(x(y \cdot xy)) \stackrel{(3)}{=} (x \cdot xy) \cdot x(xy \cdot (x \cdot xy)) \stackrel{(7)}{=} x; \\ x(y \cdot xy) \cdot y(x \cdot xy) \stackrel{(3)}{=} (xy \cdot (x \cdot xy))(xy \cdot ((x \cdot xy) \cdot x(y \cdot xy))) \stackrel{(3)}{=} \\ \stackrel{(9)}{=} (xy \cdot (x \cdot xy))(xy \cdot ((x \cdot xy) \cdot x(y \cdot xy))) \stackrel{(3)}{=} \\ \stackrel{(3)}{=} (xy \cdot (x \cdot xy))(xy \cdot ((x \cdot xy)(xy \cdot (x \cdot xy)))) \stackrel{(7)}{=} xy. \end{aligned}$$

	x	y	xy	$x \cdot xy$	$y \cdot xy$	$x(y \cdot xy)$	$y(x \cdot xy)$
x	x	xy	$x \cdot xy$	y	$x(y \cdot xy)$	$y(x \cdot xy)$	$y \cdot xy$
y	xy	y	$y \cdot xy$	$y(x \cdot xy)$	x	$x \cdot xy$	$x(y \cdot xy)$
xy	$x \cdot xy$	$y \cdot xy$	xy	$x(y \cdot xy)$	$y(x \cdot xy)$	x	y
$x \cdot xy$	y	$y(x \cdot xy)$	$x(y \cdot xy)$	$x \cdot xy$	xy	$y \cdot xy$	x
$y \cdot xy$	$x(y \cdot xy)$	x	$y(x \cdot xy)$	xy	$y \cdot xy$	y	$x \cdot xy$
$x(y \cdot xy)$	$y(x \cdot xy)$	$x \cdot xy$	x	$y \cdot xy$	y	$x(y \cdot xy)$	xy
$y(x \cdot xy)$	$y \cdot xy$	$x(y \cdot xy)$	y	x	$x \cdot xy$	xy	$y(x \cdot xy)$

Therefore, the multiplication table of any subquasigroup of a quasigroup in \mathcal{V}_7 , generated by the elements x and y $(x \neq y)$, is the following one:

In order to complete the proof, it suffices to show that the elements x, y, xy, $x \cdot xy, y \cdot xy, x(y \cdot xy), y(x \cdot xy)$ are distinct:

$$\begin{array}{c} x = xy \implies xx = xy \implies x = y \\ x = x \cdot xy \implies xx = x \cdot xy \implies x = xy \\ x = y \cdot xy \implies xy = (y \cdot xy)y \implies xy = x \\ x = x(y \cdot xy) \implies xx = x(y \cdot xy) \implies x = y \cdot xy \\ x = y(x \cdot xy) \implies y(y \cdot xy) = y(x \cdot xy) \implies y \cdot xy = x \cdot xy \implies x = y \\ xy = x \cdot xy \implies y = xy \\ xy = x(y \cdot xy) \implies y = y \cdot xy \\ x \cdot xy = y(x \cdot xy) \implies xy = y \cdot xy \\ x \cdot xy = x(y \cdot xy) \implies xy = y \cdot xy \\ x \cdot xy = y(x \cdot xy) \implies x(x \cdot xy) = x(y(x \cdot xy)) \implies y = y \cdot xy \\ x(y \cdot xy) = y(x \cdot xy) \implies x(y \cdot xy) = xy \cdot (y \cdot xy) \implies x = xy. \qquad \Box$$

3. A construction of (2,8)-variety of groupoids

THEOREM 3.1. Let \mathcal{V}_8 be the variety of groupoids, defined by the identities:

(1) $x \cdot xy = xy \cdot y$, (2) $x \cdot yx = xy \cdot x$, (3) $x(y \cdot yx) = y$.

Then \mathcal{V}_8 is a (2,8)-variety of quasigroups.

Proof. First we show that the following identities are satisfied by any $\mathcal{V}_{8}\text{-}$ groupoid:

(4) $x(x \cdot xy) = yx,$ $(x \cdot xy) \cdot xy = yx,$ (16) $xy \cdot (yx \cdot y) = yx,$ (5)xx = x, (17) $(y \cdot yx) \cdot xy = x,$ (6) $xy \cdot yx = x,$ (18) $(xy \cdot x)x = y,$ $(xy \cdot x) \cdot xy = y \cdot yx,$ (7)(19) $x(xy \cdot x) = yx \cdot y,$ (8)(20) $(yx \cdot y) \cdot xy = xy \cdot x,$

Namely, we have:

$$\begin{split} x(x \cdot xy) \stackrel{(3)}{=} y(x \cdot xy) \cdot (x \cdot xy) \stackrel{(1)}{=} y \cdot y(x \cdot xy) \stackrel{(3)}{=} yx; \\ xx \stackrel{(4)}{=} x(x \cdot xx) \stackrel{(3)}{=} x; \\ xy \cdot yx \stackrel{(4)}{=} xy \cdot (x \cdot (x \cdot xy)) \stackrel{(3)}{=} x; \\ (xy \cdot x)x \stackrel{(2)}{=} (x \cdot yx)x \stackrel{(2)}{=} x(y \cdot x) \stackrel{(1)}{=} x(y \cdot yx) \stackrel{(3)}{=} y; \\ x(xy \cdot x) \stackrel{(2)}{=} x(x \cdot yx) \stackrel{(1)}{=} (x \cdot yx) \cdot yx \stackrel{(4)}{=} yx \cdot (yx \cdot (yx \cdot (x \cdot yx)))) \\ \stackrel{(2)}{=} yx \cdot (yx \cdot ((y \cdot x) \cdot yx)) \stackrel{(1)}{=} yx \cdot (yx \cdot ((y \cdot y \cdot y \cdot yx))) \\ \stackrel{(2)}{=} yx \cdot ((yx \cdot (y \cdot yx)) \cdot yx) \stackrel{(2)}{=} yx \cdot (((yx \cdot y) \cdot yx) \cdot yx) \stackrel{(7)}{=} yx \cdot y; \\ x(y \cdot y) \stackrel{(8)}{=} x \cdot x(xy \cdot x) \stackrel{(2)}{=} x \cdot x(x \cdot yx) \stackrel{(4)}{=} yx \cdot x \stackrel{(1)}{=} y \cdot yx; \\ (x \cdot xy)x \stackrel{(2)}{=} x(xy \cdot x) \stackrel{(8)}{=} yx \cdot y; \\ (y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot yx)) \stackrel{(3)}{=} x \cdot xy; \\ (y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot yx)) \stackrel{(3)}{=} x \cdot xy; \\ (y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot yx)) \stackrel{(3)}{=} x \cdot xy; \\ (y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot y \cdot y)) \stackrel{(1)}{=} (x \cdot y)y \stackrel{(1)}{=} y \cdot yx; \\ xy \cdot (x \cdot xy) \stackrel{(1)}{=} xy \cdot (x \cdot y) \stackrel{(1)}{=} (y \cdot y \cdot y) \stackrel{(1)}{=} (x \cdot xy) y \stackrel{(1)}{=} y \cdot yx; \\ xy \cdot (y \cdot yx) \stackrel{(1)}{=} (xy \cdot (y \cdot y)) \stackrel{(2)}{=} (xy \cdot y) \cdot xy \stackrel{(1)}{=} (x \cdot xy) \cdot xy \stackrel{(1)}{=} yx; \\ (y \cdot yx) \cdot xy \stackrel{(1)}{=} (xy \cdot (x \cdot xy)) \cdot xy \stackrel{(2)}{=} ((xy \cdot x) \cdot xy) \cdot xy \stackrel{(1)}{=} yx; \\ (y \cdot yx) \cdot xy \stackrel{(1)}{=} (xy \cdot (x \cdot xy)) \cdot xy \stackrel{(2)}{=} (xy \cdot (y \cdot x) \cdot xy) \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot xy)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot ((y \cdot yx) \cdot xy) \stackrel{(1)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot (y \cdot yx) \stackrel{(3)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot (y \cdot yx) \stackrel{(3)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot (y \cdot yx) \stackrel{(3)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot (y \cdot yx) \stackrel{(3)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx))(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot (y \cdot yx) \stackrel{(3)}{=} (y \cdot yx)y \stackrel{(1)}{=} xy \cdot x; \\ (x \cdot y)(y \cdot yx) \stackrel{(1)}{=} (y \cdot yx$$

$$\begin{aligned} (x \cdot xy)(xy \cdot x) &\stackrel{(6)}{=} x; \\ (x \cdot xy)(yx \cdot y) &\stackrel{(19)}{=} ((yx \cdot y) \cdot yx)(yx \cdot y) \stackrel{(19)}{=} y(y \cdot yx) \stackrel{(4)}{=} xy; \\ (y \cdot yx)(x \cdot xy) &\stackrel{(13)}{=} (y \cdot yx)(yx \cdot (y \cdot yx)) \stackrel{(2)}{=} (y \cdot yx)((yx \cdot y) \cdot yx) \stackrel{(17)}{=} yx \cdot y; \\ (yx \cdot y)(x \cdot xy) \stackrel{(10)}{=} ((x \cdot xy)x)(x \cdot xy) \stackrel{(19)}{=} xy \cdot (xy \cdot x) \stackrel{(15)}{=} y; \\ (xy \cdot x)(yx \cdot y) \stackrel{(8)}{=} (xy \cdot x)(x(xy \cdot x)) \stackrel{(2)}{=} (xy \cdot x)((x \cdot xy)x) \stackrel{(17)}{=} x \cdot xy. \end{aligned}$$

In each groupoid in \mathcal{V}_8 , the equations ax = b and ya = b have solutions x = bba and $y = ab \cdot a$. Moreover, the cancellation laws hold:

$$\begin{aligned} ac &= ad \implies c = (ac \cdot a)a = (ad \cdot a)a = d, \\ ca &= da \implies c = a(c \cdot ca) = a(ca \cdot a) = a(da \cdot a) = a(d \cdot da) = d. \end{aligned}$$

Hence, \mathcal{V}_8 is a variety of quasigroups.

The multiplication table of the subquasigroup of a quasigroup in \mathcal{V}_8 , generated by the set $\{x, y\}$, is given as follows:

	x	y	xy	yx	$x \cdot xy$	$y \cdot yx$	$xy \cdot x$	$yx \cdot y$
x	x	xy	$x \cdot xy$	$xy \cdot x$	yx	y	$yx \cdot y$	$y \cdot yx$
y	yx	y	$yx \cdot y$	$y \cdot yx$	x	xy	$x \cdot xy$	$xy \cdot x$
xy	$xy \cdot x$	$x \cdot xy$	xy	x	$y \cdot yx$	$yx \cdot y$	y	yx
yx	$y \cdot yx$	$yx \cdot y$	y	yx	$xy \cdot x$	$x \cdot xy$	xy	x
$x \cdot xy$	$yx \cdot y$	$y \cdot yx$	yx	y	$x \cdot xy$	$xy \cdot x$	x	xy
$y \cdot yx$	$x \cdot xy$	$xy \cdot x$	x	xy	$yx \cdot y$	$y \cdot yx$	yx	y
$xy \cdot x$	y	yx	$y \cdot yx$	$yx \cdot y$	xy	x	$xy \cdot x$	$x \cdot xy$
$yx \cdot y$	xy	x	$xy \cdot x$	$x \cdot xy$	y	yx	$y \cdot yx$	$yx \cdot y$

All of the elements in the multiplication table are distinct:

$$\begin{array}{c} x = xy \implies xx = xy \implies x = y; \\ x = x \cdot xy \implies xx = x \cdot xy \implies x = xy; \\ x = y \cdot yx \implies xx = x(y \cdot yx) \implies x = y; \\ x = xy \cdot x \implies xx = xy \cdot x \implies x = xy; \\ x = xy \cdot x \implies xx = xy \cdot x \implies x = xy; \\ xy = yx \implies xy = (yx \cdot y)y \implies xy = x; \\ xy = yx \implies xy \cdot yx = yx \cdot yx \implies x = yx; \\ xy = x \cdot xy \implies y = xy; \\ xy = x \cdot xy \implies y = xy; \\ xy = y \cdot yx \implies x \cdot xy = x(y \cdot yx) \implies x \cdot xy = y; \\ xy = yy \cdot x \implies xy \cdot xy = x(y \cdot yx) \implies x \cdot xy = y; \\ xy = yy \cdot x \implies xy \cdot xy = x(y \cdot y) \implies x \cdot xy = x; \\ xy = yx \cdot x \implies xy \cdot xy = xy \cdot x \implies xy = x; \\ xy = yx \cdot y \implies xy \cdot y = (yx \cdot y)y \implies x \cdot xy = x; \\ x \cdot xy = y \cdot yx \implies x \cdot xy = x \cdot yx \implies xy = y; \\ x \cdot xy = yx \cdot y \implies x \cdot xy = x \cdot yx \implies xy = y; \\ x \cdot xy = yx \cdot y \implies x \cdot xy = y \cdot xy \implies x = y; \\ xy \cdot x = yx \cdot y \implies (xy \cdot x)x = (yx \cdot y)x \implies y = xy. \end{array}$$

4. A construction of (2,9)-variety of groupoids

THEOREM 4.1. Let \mathcal{V}_9 be the variety of groupoids defined by the identities

(1) $x \cdot xy = yx$, (2) $xy \cdot (y \cdot xy) = x$.

Then \mathcal{V}_9 is a (2,9)-variety of quasigroups.

PROOF. One can check that the identities (3)–(30), given below, are satisfied by any groupoid in \mathcal{V}_9 . We emphasis the identities that can be applied to the lefthand side of each equality in order to obtain its right-hand side.

Identity	Left-hand side $=$ Right-hand side	Applyed identities
(3)	$xy \cdot x = x \cdot yx$	(1), (1)
(4)	xx = x	(1), (1), (3), (2)
(5)	$(x \cdot yx) \cdot xy = xy \cdot yx$	(3), (3), (1)
(6)	$xy \cdot (x \cdot yx) = yx$	(3), (1), (1)
(7)	$(xy \cdot y) \cdot xy = x$	(3), (2)
(8)	$(x \cdot yx) \cdot yx = y \cdot xy$	(1), (2), (3)
(9)	$(x \cdot yx)y = x$	(2), (3), (7)
(10)	$yx \cdot x = xy \cdot y$	(1), (2), (3), (2)
(11)	$(x \cdot yx)x = yx \cdot xy$	(3), (10), (1)
(12)	$x(xy\!\cdot\!y)=yx\!\cdot\!xy$	(10), (3), (11)
(13)	$xy \cdot (yx \cdot xy) = y$	(1), (1), (2)
(14)	$(xy \cdot yx) \cdot yx = xy \cdot y$	(1), (13), (10)
(15)	$(xy \cdot y)x = y \cdot xy$	(10), (10), (8)
(16)	$(xy\!\cdot\!y)(x\!\cdot\!yx)=xy\!\cdot\!yx$	(15), (10), (1), (12)
(17)	$x(yx\!\cdot\! xy)=y\!\cdot\! xy$	(12), (1), (15)
(18)	$x(y\!\cdot\! xy)=xy\!\cdot\! yx$	(2), (10), (8), (5)
(19)	$x(xy \cdot yx) = y$	(18), (1), (9)
(20)	$(xy \cdot yx)x = xy$	(1), (19)
(21)	$(x \cdot yx)(xy \cdot yx) = yx$	(5), (1), (6)
(22)	$(xy \cdot yx)(x \cdot yx) = y \cdot xy$	(1), (21), (8)
(23)	$(xy \cdot yx)y = yx \cdot xy$	(1), (17), (18)
(24)	$(xy \cdot yx)(yx \cdot xy) = x \cdot yx$	(23), (1), (17)
(25)	$(x \cdot yx)(xy \cdot y) = xy$	(10), (1), (3), (2)
(26)	$(xy \cdot yx)(y \cdot xy) = yx$	(11), (3), (2)
(27)	$(x \cdot yx)(yx \cdot xy) = xy \cdot y$	(1), (26), (14), (10)
(28)	$(xy \cdot y)(xy \cdot yx) = xy$	(16), (1), (25)
(29)	$(xy \cdot yx)(xy \cdot y) = x$	(1), (28), (7)
(30)	$(x \cdot yx)(y \cdot xy) = y$	(8), (1), (3), (7)

Next, we show that every groupoid in \mathcal{V}_9 is a quasigroup.

The equations ax = b and ya = b have solutions $x = ab \cdot ba$ and $y = b \cdot ab$ respectively, and they are unique. Namely, if ac = b and da = b, we have that $c = ca \cdot (a \cdot ca) = (a \cdot ac)(ac \cdot a) = ab \cdot ba$ and $d = da \cdot (a \cdot da) = b \cdot ab$.

_

By the above identities, we have that a subquasigroup generated by two distinct elements x and y is represented by the following table, and one can check that all of the elements are distinct.

	x	y	xy	yx	$x \cdot yx$	$y \cdot xy$	$xy \cdot yx$	$yx \cdot xy$	$xy \cdot y$
x	x	xy	yx	$x \cdot yx$	$xy \cdot y$	$xy \cdot yx$	y	$y \cdot xy$	$yx \cdot xy$
y	yx	y	$y \cdot xy$	xy	$yx \cdot xy$	$xy \cdot y$	$x \cdot yx$	x	$xy \cdot yx$
xy	$x \cdot yx$	$xy \cdot y$	xy	$xy \cdot yx$	yx	x	$yx \cdot xy$	y	$y \cdot xy$
yx	$xy \cdot y$	$y \cdot xy$	$yx \cdot xy$	yx	y	xy	x	$xy \cdot yx$	$x \cdot yx$
$x \cdot yx$	$yx \cdot xy$	x	$xy \cdot yx$	$y \cdot xy$	$x \cdot yx$	y	yx	$xy \cdot y$	xy
$y \cdot xy$	y	$xy \cdot yx$	$x \cdot yx$	$yx \cdot xy$	x	$y \cdot xy$	$xy \cdot y$	xy	yx
$xy \cdot yx$	xy	$yx \cdot xy$	y	$xy \cdot y$	$y \cdot xy$	yx	$xy \cdot yx$	$x \cdot yx$	x
$yx \cdot xy$	$xy \cdot yx$	yx	$xy \cdot y$	x	xy	$x \cdot yx$	$y \cdot xy$	$yx \cdot xy$	y
$xy \cdot y$	$y \cdot xy$	$x \cdot yx$	x	y	$xy \cdot yx$	$yx \cdot xy$	xy	yx	$xy \cdot y$

References

- [1] L. Goračinova, S. Markovski, $(2,n)\mathchar`-Quasigroups$ (preprint)
- [2] J. Denes, A.D. Keedwell, *Latin Squares and Their Applications*, English Universities Press, London, 1974
- [3] R.N. McKenzie, W.F. Taylor, G.F. McNulty, Algebras, Lattices, Varieties, Wadsworth and Brooks, Monterey, California, 1987
- [4] R. Padmanabhan, Characterization of a class of groupoids, Algebra Universalis 1 (1972), 374–382.

Pedagogical faculty University "Goce Delčev" Štip Republic of Macedonia lidija.goracinova@ugd.edu.mk

Institute of Informatics "Ss Cyril and Methodius" University, Faculty of Sciences Skopje Republic of Macedonia smile@ii.edu.mk