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Abstract. Given positive integer n > 2, an algebra is said to be a (2, n)-
algebra if any of its subalgebras generated by two distinct elements has n
elements. A variety is called a (2, n)-variety if every algebra in that variety

is a (2, n)-algebra. There are known only (2, 3)-, (2, 4)- and (2, 5)-varieties of
groupoids, and there is no (2, 6)-variety. We present here (2, n)-varieties of
groupoids for n = 7, 8, 9.

1. Introduction

The notion of variety of algebras having the property (k, n) was given in [4]
and equationally defined classes of cancellative groupoids having the property (2, 4)
and (2, 5) were considered there. This notion was qeneralized in [1], where it was
shown that the condition of the cancellativity is superfluous, that is, any variety of
groupoids with the property (2, n) is a variety of quasigroups.

Let k and n be two positive integers and k � n. An algebra A is said to have
the property (k, n) if every subalgebra of A generated by k distinct elements has
exactly n elements. We also say that A is a (k, n)-algebra. A class K of algebras is
said to be a (k, n)-class if every algebra in K is a (k, n)-algebra. A variety is called
a (k, n)-variety if it is a (k, n)-class of algebras.

Trivially, the variety of Steiner quasigroups (xx = x, xy = yx, x ·xy = y) is a
(2, 3)-variety. It is the unique variety of groupoids with the stated property, and
the same holds for the (2, 4)-variety (x·xy = yx, xy·yx = x) given by Padmanabhan
in [4]. He has also constructed two (2, 5)-varieties. One of them is commutative
(xy = yx, x(y·xy) = y, x(x·xy) = y·xy), while the other one (x·xy = y, xy·y = yx)
consists of anticommutative quasigroups. These two varieties together with the
variety whose defining identities (x·xy = yx, xy·y = x) are dual to the identities of
the preceeding variety are the only (2, 5)-varieties of groupoids. The non-existence
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of a (2, 6)-variety can be deduced from the correspondence between the (k, n)-
varieties and Steiner systems S(k, n, v) [1].

Here we present (2, n)-varieties of groupoids for n = 7, 8 and 9. Their construc-
tion is given in Sections 2, 3 and 4 respectively. It is an open problem the existence
of (2, n)-varieties for n � 10, as well as the answer of the question whether the set
of integers {n | There exists a (2, n)-variety of groupoids} is finite.

2. A construction of (2,7)-variety of groupoids

We use the fact that any member of a (2, n)-variety of groupoids is a quasigroup,
i.e., the choosing of the defining identities of the (2, 7)-variety V7 (as well as the
varieties V8 and V9 in the next sections) is made in a manner that enables a variety
of quasigroups to be obtained.

Theorem 2.1. Let V7 be a variety of groupoids, defined by the identities:

(1) xy = yx, (2) x(x·xy) = y, (3) xy ·(y ·xy) = y(x·xy)

Then V7 is a (2, 7)-variety of quasigroups.

Proof. Let (G,·) be arbitrary groupoid in V7 and a, b ∈ G. Since ab = ac =⇒
b = a(a·ab) = a(a·ac) = c, x = a·ab is the unique solution of the equation ax = b.
By commutativity ax = xa we have that (G,·) is a quasigroup.

Next we show that the following identities also hold in (G,·). (The commuta-
tivity will not be pointed out when used.)

(4) xx = x, (8) (x·xy)(y ·xy) = xy,

(5) x·x(y ·xy) = y(x·xy), (9) (x·xy)·x(y ·xy) = y ·xy,

(6) x·y(x·xy) = y ·xy, (10) (x·xy)·y(x·xy) = x,

(7) xy ·x(y ·xy) = x, (11) x(y ·xy)·y(x·xy) = xy.

Namely, we have the following transformations:

xx
(2)
= x(xx·(xx·(xx·x)))

(3)
= x(xx·x(x·xx))

(2)
= x(xx·x)

(2)
= x;

x·x(y ·xy)
(3)
= x(xy ·(x·xy))

(3)
= (x·xy)·x(x·xy)

(2)
= (x·xy)y;

x·y(x·xy)
(5)
= x(x·x(y ·xy))

(2)
= y ·xy;

xy ·x(y ·xy)
(3)
= xy ·(xy ·(x·xy))

(2)
= x;

(x·xy)(y ·xy)
(2)
= (x·xy)(x(x·xy)·xy)

(7)
= xy;

(x·xy)·x(y ·xy)
(3)
= (x·xy)(xy ·(x·xy))

(3)
= xy ·x(x·xy)

(2)
= xy ·y;

(x·xy)·y(x·xy)
(5)
= (x·xy)·x(x(y ·xy))

(3)
= (x·xy)·x(xy ·(x·xy))

(7)
= x;

x(y ·xy)·y(x·xy)
(3)
= (xy ·(x·xy))(xy ·(y ·xy))

(9)
=

(9)
= (xy ·(x·xy))(xy ·((x·xy)·x(y ·xy)))

(3)
=

(3)
= (xy ·(x·xy))(xy ·((x·xy)(xy ·(x·xy))))

(7)
= xy.
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Therefore, the multiplication table of any subquasigroup of a quasigroup in V7,
generated by the elements x and y (x �= y), is the following one:

x y xy x·xy y ·xy x(y ·xy) y(x·xy)
x x xy x·xy y x(y ·xy) y(x·xy) y ·xy
y xy y y ·xy y(x·xy) x x·xy x(y ·xy)
xy x·xy y ·xy xy x(y ·xy) y(x·xy) x y

x·xy y y(x·xy) x(y ·xy) x·xy xy y ·xy x
y ·xy x(y ·xy) x y(x·xy) xy y ·xy y x·xy

x(y ·xy) y(x·xy) x·xy x y ·xy y x(y ·xy) xy
y(x·xy) y ·xy x(y ·xy) y x x·xy xy y(x·xy)

In order to complete the proof, it suffices to show that the elements x, y, xy,
x·xy, y ·xy, x(y ·xy), y(x·xy) are distinct:

x = xy =⇒ xx = xy =⇒ x = y

x = x·xy =⇒ xx = x·xy =⇒ x = xy

x = y ·xy =⇒ xy = (y ·xy)y =⇒ xy = x

x = x(y ·xy) =⇒ xx = x(y ·xy) =⇒ x = y ·xy

x = y(x·xy) =⇒ y(y ·xy) = y(x·xy) =⇒ y ·xy = x·xy =⇒ x = y

xy = x·xy =⇒ y = xy

xy = x(y ·xy) =⇒ y = y ·xy

x·xy = y ·xy =⇒ x = y

x·xy = x(y ·xy) =⇒ xy = y ·xy

x·xy = y(x·xy) =⇒ x(x·xy) = x(y(x·xy)) =⇒ y = y ·xy

x(y ·xy) = y(x·xy) =⇒ x(y ·xy) = xy ·(y ·xy) =⇒ x = xy. �

3. A construction of (2,8)-variety of groupoids

Theorem 3.1. Let V8 be the variety of groupoids, defined by the identities:

(1) x·xy = xy ·y, (2) x·yx = xy ·x, (3) x(y ·yx) = y.

Then V8 is a (2, 8)-variety of quasigroups.

Proof. First we show that the following identities are satisfied by any V8-
groupoid:

(4) x(x·xy) = yx, (16) (x·xy)·xy = yx,

(5) xx = x, (17) xy ·(yx·y) = yx,

(6) xy ·yx = x, (18) (y ·yx)·xy = x,

(7) (xy ·x)x = y, (19) (xy ·x)·xy = y ·yx,

(8) x(xy ·x) = yx·y, (20) (yx·y)·xy = xy ·x,
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(9) x(yx·y) = y ·yx, (21) (x·xy)(y ·yx) = xy ·x,

(10) (x·xy)x = yx·y, (22) (x·xy)(xy ·x) = x,

(11) (y ·yx)x = x·xy, (23) (x·xy)(yx·y) = xy,

(12) (yx·y)x = xy, (24) (y ·yx)(x·xy) = yx·y,

(13) xy ·(x·xy) = y ·yx, (25) (yx·y)(x·xy) = y,

(14) xy ·(y ·yx) = yx·y, (26) (xy ·x)(yx·y) = x·xy,

(15) xy ·(xy ·x) = y.

Namely, we have:

x(x·xy)
(3)
= y(x·xy)·(x·xy)

(1)
= y ·y(x·xy)

(3)
= yx;

xx
(4)
= x(x·xx)

(3)
= x;

xy ·yx
(4)
= xy ·(x·(x·xy))

(3)
= x;

(xy ·x)x
(2)
= (x·yx)x

(2)
= x(yx·x)

(1)
= x(y ·yx)

(3)
= y;

x(xy ·x)
(2)
= x(x·yx)

(1)
= (x·yx)·yx

(4)
= yx·(yx·(yx·(x·yx)))

(2)
= yx·(yx·((yx·x)·yx))

(1)
= yx·(yx·((y ·yx)·yx))

(2)
= yx·((yx·(y ·yx))·yx)

(2)
= yx·(((yx·y)·yx)·yx)

(7)
= yx·y;

x(yx·y)
(8)
= x·x(xy ·x)

(2)
= x·x(x·yx)

(4)
= yx·x (1)

= y ·yx;

(x·xy)x
(2)
= x(xy ·x)

(8)
= yx·y;

(y ·yx)x
(4)
= x(x·x(y ·yx))

(3)
= x·xy;

(yx·y)x
(4)
= x(x·x(yx·y))

(9)
= x·x(y ·yx)

(3)
= xy;

xy ·(x·xy)
(1)
= xy ·(xy ·y)

(1)
= (xy ·y)y

(1)
= (x·xy)y

(11)
= y ·yx;

xy ·(y ·yx)
(4)
= (y(y ·yx))(y ·yx)

(1)
= y ·y(y ·yx)

(4)
= yx·y;

xy ·(xy ·x)
(1)
= (xy ·x)x

(7)
= y;

(x·xy)·xy
(1)
= x(x·xy)

(4)
= yx;

xy ·(yx·y)
(2)
= xy ·(y ·xy)

(2)
= (xy ·y)·xy

(1)
= (x·xy)·xy

(16)
= yx;

(y ·yx)·xy
(13)
= (xy ·(x·xy))·xy

(2)
= ((xy ·x)·xy)·xy

(7)
= x;

(xy ·x)·xy
(2)
= xy ·(x·xy)

(13)
= y ·yx;

(yx·y)·xy
(14)
= (xy ·(y ·yx))·xy

(2)
= xy ·((y ·yx)·xy)

(18)
= xy ·x;

(x·xy)(y ·yx)
(11)
= ((y ·yx)x)(y ·yx)

(2)
= (y ·yx)·x(y ·yx)

(3)
= (y ·yx)y

(10)
= xy ·x;
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(x·xy)(xy ·x)
(6)
= x;

(x·xy)(yx·y)
(19)
= ((yx·y)·yx)(yx·y)

(19)
= y(y ·yx)

(4)
= xy;

(y ·yx)(x·xy)
(13)
= (y ·yx)(yx·(y ·yx))

(2)
= (y ·yx)((yx·y)·yx)

(17)
= yx·y;

(yx·y)(x·xy)
(10)
= ((x·xy)x)(x·xy)

(19)
= xy ·(xy ·x)

(15)
= y;

(xy ·x)(yx·y)
(8)
= (xy ·x)(x(xy ·x))

(2)
= (xy ·x)((x·xy)x)

(17)
= x·xy.

In each groupoid in V8, the equations ax = b and ya = b have solutions x = b·ba
and y = ab·a. Moreover, the cancellation laws hold:

ac = ad =⇒ c = (ac·a)a = (ad·a)a = d,

ca = da =⇒ c = a(c·ca) = a(ca·a) = a(da·a) = a(d·da) = d.

Hence, V8 is a variety of quasigroups.
The multiplication table of the subquasigroup of a quasigroup in V8, generated

by the set {x, y}, is given as follows:

x y xy yx x·xy y ·yx xy ·x yx·y
x x xy x·xy xy ·x yx y yx·y y ·yx
y yx y yx·y y ·yx x xy x·xy xy ·x
xy xy ·x x·xy xy x y ·yx yx·y y yx
yx y ·yx yx·y y yx xy ·x x·xy xy x

x·xy yx·y y ·yx yx y x·xy xy ·x x xy
y ·yx x·xy xy ·x x xy yx·y y ·yx yx y
xy ·x y yx y ·yx yx·y xy x xy ·x x·xy
yx·y xy x xy ·x x·xy y yx y ·yx yx·y

All of the elements in the multiplication table are distinct:

x = xy =⇒ xx = xy =⇒ x = y;
x = x·xy =⇒ xx = x·xy =⇒ x = xy;
x = y ·yx =⇒ xx = x(y ·yx) =⇒ x = y;
x = xy ·x =⇒ xx = xy ·x =⇒ x = xy;
x = yx·y =⇒ xy = (yx·y)y =⇒ xy = x;
xy = yx =⇒ xy ·yx = yx·yx =⇒ x = yx;

xy = x·xy =⇒ y = xy;
xy = y ·yx =⇒ x·xy = x(y ·yx) =⇒ x·xy = y;
xy = xy ·x =⇒ xy ·xy = xy ·x =⇒ xy = x;
xy = yx·y =⇒ xy ·y = (yx·y)y =⇒ x·xy = x;

x·xy = y ·yx =⇒ x(x·xy) = x(y ·yx) =⇒ yx = y;
x·xy = xy ·x =⇒ x·xy = x·yx =⇒ xy = yx;
x·xy = yx·y =⇒ x·xy = y ·xy =⇒ x = y;
xy ·x = yx·y =⇒ (xy ·x)x = (yx·y)x =⇒ y = xy. �
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4. A construction of (2,9)-variety of groupoids

Theorem 4.1. Let V9 be the variety of groupoids defined by the identities

(1) x·xy = yx, (2) xy ·(y ·xy) = x.

Then V9 is a (2, 9)-variety of quasigroups.

Proof. One can check that the identities (3)–(30), given below, are satisfied
by any groupoid in V9. We emphasis the identities that can be applied to the left-
hand side of each equality in order to obtain its right-hand side.

Identity Left-hand side = Right-hand side Applyed identities
(3) xy ·x = x·yx (1), (1)
(4) xx = x (1), (1), (3), (2)
(5) (x·yx)·xy = xy ·yx (3), (3), (1)
(6) xy ·(x·yx) = yx (3), (1), (1)
(7) (xy ·y)·xy = x (3), (2)
(8) (x·yx)·yx = y ·xy (1), (2), (3)
(9) (x·yx)y = x (2), (3), (7)

(10) yx·x = xy ·y (1), (2), (3), (2)
(11) (x·yx)x = yx·xy (3), (10), (1)
(12) x(xy ·y) = yx·xy (10), (3), (11)
(13) xy ·(yx·xy) = y (1), (1), (2)
(14) (xy ·yx)·yx = xy ·y (1), (13), (10)
(15) (xy ·y)x = y ·xy (10), (10), (8)
(16) (xy ·y)(x·yx) = xy ·yx (15), (10), (1), (12)
(17) x(yx·xy) = y ·xy (12), (1), (15)
(18) x(y ·xy) = xy ·yx (2), (10), (8), (5)
(19) x(xy ·yx) = y (18), (1), (9)
(20) (xy ·yx)x = xy (1), (19)
(21) (x·yx)(xy ·yx) = yx (5), (1), (6)
(22) (xy ·yx)(x·yx) = y ·xy (1), (21), (8)
(23) (xy ·yx)y = yx·xy (1), (17), (18)
(24) (xy ·yx)(yx·xy) = x·yx (23), (1), (17)
(25) (x·yx)(xy ·y) = xy (10), (1), (3), (2)
(26) (xy ·yx)(y ·xy) = yx (11), (3), (2)
(27) (x·yx)(yx·xy) = xy ·y (1), (26), (14), (10)
(28) (xy ·y)(xy ·yx) = xy (16), (1), (25)
(29) (xy ·yx)(xy ·y) = x (1), (28), (7)
(30) (x·yx)(y ·xy) = y (8), (1), (3), (7)

Next, we show that every groupoid in V9 is a quasigroup.
The equations ax = b and ya = b have solutions x = ab ·ba and y = b ·ab

respectively, and they are unique. Namely, if ac = b and da = b, we have that
c = ca·(a·ca) = (a·ac)(ac·a) = ab·ba and d = da·(a·da) = b·ab.
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By the above identities, we have that a subquasigroup generated by two distinct
elements x and y is represented by the following table, and one can check that all
of the elements are distinct.

x y xy yx x·yx y ·xy xy ·yx yx·xy xy ·y
x x xy yx x·yx xy ·y xy ·yx y y ·xy yx·xy
y yx y y ·xy xy yx·xy xy ·y x·yx x xy ·yx
xy x·yx xy ·y xy xy ·yx yx x yx·xy y y ·xy
yx xy ·y y ·xy yx·xy yx y xy x xy ·yx x·yx

x·yx yx·xy x xy ·yx y ·xy x·yx y yx xy ·y xy
y ·xy y xy ·yx x·yx yx·xy x y ·xy xy ·y xy yx
xy ·yx xy yx·xy y xy ·y y ·xy yx xy ·yx x·yx x
yx·xy xy ·yx yx xy ·y x xy x·yx y ·xy yx·xy y
xy ·y y ·xy x·yx x y xy ·yx yx·xy xy yx xy ·y

�
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