CONSTRUCTIONS OF $(2, n)$-VARIETIES OF GROUPOIDS FOR $n=7,8,9$

Lidija Goračinova-Ilieva and Smile Markovski

Dedicated to Prof. Dr. Kazimierz Glazek

Abstract

Given positive integer $n>2$, an algebra is said to be a $(2, n)$ algebra if any of its subalgebras generated by two distinct elements has n elements. A variety is called a $(2, n)$-variety if every algebra in that variety is a $(2, n)$-algebra. There are known only $(2,3)$-, $(2,4)$ - and $(2,5)$-varieties of groupoids, and there is no (2,6)-variety. We present here $(2, n)$-varieties of groupoids for $n=7,8,9$.

1. Introduction

The notion of variety of algebras having the property (k, n) was given in [4] and equationally defined classes of cancellative groupoids having the property $(2,4)$ and $(2,5)$ were considered there. This notion was qeneralized in $[\mathbf{1}]$, where it was shown that the condition of the cancellativity is superfluous, that is, any variety of groupoids with the property $(2, n)$ is a variety of quasigroups.

Let k and n be two positive integers and $k \leqslant n$. An algebra \mathbf{A} is said to have the property (k, n) if every subalgebra of \mathbf{A} generated by k distinct elements has exactly n elements. We also say that \mathbf{A} is a (k, n)-algebra. A class \mathcal{K} of algebras is said to be a (k, n)-class if every algebra in \mathcal{K} is a (k, n)-algebra. A variety is called a (k, n)-variety if it is a (k, n)-class of algebras.

Trivially, the variety of Steiner quasigroups ($x x=x, x y=y x, x \cdot x y=y$) is a $(2,3)$-variety. It is the unique variety of groupoids with the stated property, and the same holds for the $(2,4)$-variety $(x \cdot x y=y x, x y \cdot y x=x)$ given by Padmanabhan in [4]. He has also constructed two (2,5)-varieties. One of them is commutative $(x y=y x, x(y \cdot x y)=y, x(x \cdot x y)=y \cdot x y)$, while the other one $(x \cdot x y=y, x y \cdot y=y x)$ consists of anticommutative quasigroups. These two varieties together with the variety whose defining identities $(x \cdot x y=y x, x y \cdot y=x)$ are dual to the identities of the preceeding variety are the only $(2,5)$-varieties of groupoids. The non-existence

[^0]of a $(2,6)$-variety can be deduced from the correspondence between the (k, n) varieties and Steiner systems $S(k, n, v)$ [$\mathbf{1}]$.

Here we present $(2, n)$-varieties of groupoids for $n=7,8$ and 9 . Their construction is given in Sections 2, 3 and 4 respectively. It is an open problem the existence of $(2, n)$-varieties for $n \geqslant 10$, as well as the answer of the question whether the set of integers $\{n \mid$ There exists a $(2, n)$-variety of groupoids $\}$ is finite.

2. A construction of $(2,7)$-variety of groupoids

We use the fact that any member of a $(2, n)$-variety of groupoids is a quasigroup, i.e., the choosing of the defining identities of the $(2,7)$-variety \mathcal{V}_{7} (as well as the varieties \mathcal{V}_{8} and \mathcal{V}_{9} in the next sections) is made in a manner that enables a variety of quasigroups to be obtained.

THEOREM 2.1. Let \mathcal{V}_{7} be a variety of groupoids, defined by the identities:

$$
\text { (1) } x y=y x, \quad(2) x(x \cdot x y)=y, \quad \text { (3) } x y \cdot(y \cdot x y)=y(x \cdot x y)
$$

Then \mathcal{V}_{7} is a $(2,7)$-variety of quasigroups.
Proof. Let (G, \cdot) be arbitrary groupoid in \mathcal{V}_{7} and $a, b \in G$. Since $a b=a c \Longrightarrow$ $b=a(a \cdot a b)=a(a \cdot a c)=c, x=a \cdot a b$ is the unique solution of the equation $a x=b$. By commutativity $a x=x a$ we have that $(G$,$) is a quasigroup.$

Next we show that the following identities also hold in $(G$,$) . (The commuta-$ tivity will not be pointed out when used.)

$$
\begin{align*}
& \text { (4) } \quad x x=x, \\
& \text { (5) } \quad x \cdot x(y \cdot x y)=y(x \cdot x y) \text {, } \tag{9}\\
& \text { (8) } \quad(x \cdot x y)(y \cdot x y)=x y \\
& \text { (6) } \quad x \cdot y(x \cdot x y)=y \cdot x y \text {, } \\
& \text { (7) } x y \cdot x(y \cdot x y)=x \text {, } \\
& (x \cdot x y) \cdot x(y \cdot x y)=y \cdot x y, \\
& (x \cdot x y) \cdot y(x \cdot x y)=x \tag{10}\\
& x(y \cdot x y) \cdot y(x \cdot x y)=x y .
\end{align*}
$$

Namely, we have the following transformations:

$$
\begin{aligned}
& x x \stackrel{(2)}{=} x(x x \cdot(x x \cdot(x x \cdot x))) \stackrel{(3)}{=} x(x x \cdot x(x \cdot x x)) \stackrel{(2)}{=} x(x x \cdot x) \stackrel{(2)}{=} x ; \\
& x \cdot x(y \cdot x y) \stackrel{(3)}{=} x(x y \cdot(x \cdot x y)) \stackrel{(3)}{=}(x \cdot x y) \cdot x(x \cdot x y) \stackrel{(2)}{=}(x \cdot x y) y \\
& x \cdot y(x \cdot x y) \stackrel{(5)}{=} x(x \cdot x(y \cdot x y)) \stackrel{(2)}{=} y \cdot x y \\
& x y \cdot x(y \cdot x y) \stackrel{(3)}{=} x y \cdot(x y \cdot(x \cdot x y)) \stackrel{(2)}{=} x ; \\
&(x \cdot x y)(y \cdot x y) \stackrel{(2)}{=}(x \cdot x y)(x(x \cdot x y) \cdot x y) \stackrel{(7)}{=} x y \\
&(x \cdot x y) \cdot x(y \cdot x y) \stackrel{(3)}{=}(x \cdot x y)(x y \cdot(x \cdot x y)) \stackrel{(3)}{=} x y \cdot x(x \cdot x y) \stackrel{(2)}{=} x y \cdot y \\
&(x \cdot x y) \cdot y(x \cdot x y) \stackrel{(5)}{=}(x \cdot x y) \cdot x(x(y \cdot x y)) \stackrel{(3)}{=}(x \cdot x y) \cdot x(x y \cdot(x \cdot x y)) \stackrel{(7)}{=} x ; \\
& x(y \cdot x y) \cdot y(x \cdot x y) \stackrel{(3)}{=}(x y \cdot(x \cdot x y))(x y \cdot(y \cdot x y)) \stackrel{(9)}{=} \\
& \stackrel{(9)}{=}(x y \cdot(x \cdot x y))(x y \cdot((x \cdot x y) \cdot x(y \cdot x y))) \stackrel{(3)}{=} \\
& \stackrel{(3)}{=}(x y \cdot(x \cdot x y))(x y \cdot((x \cdot x y)(x y \cdot(x \cdot x y)))) \stackrel{(7)}{=} x y
\end{aligned}
$$

Therefore, the multiplication table of any subquasigroup of a quasigroup in \mathcal{V}_{7}, generated by the elements x and $y(x \neq y)$, is the following one:

	x	y	$x y$	$x \cdot x y$	$y \cdot x y$	$x(y \cdot x y)$	$y(x \cdot x y)$
x	x	$x y$	$x \cdot x y$	y	$x(y \cdot x y)$	$y(x \cdot x y)$	$y \cdot x y$
y	$x y$	y	$y \cdot x y$	$y(x \cdot x y)$	x	$x \cdot x y$	$x(y \cdot x y)$
$x y$	$x \cdot x y$	$y \cdot x y$	$x y$	$x(y \cdot x y)$	$y(x \cdot x y)$	x	y
$x \cdot x y$	y	$y(x \cdot x y)$	$x(y \cdot x y)$	$x \cdot x y$	$x y$	$y \cdot x y$	x
$y \cdot x y$	$x(y \cdot x y)$	x	$y(x \cdot x y)$	$x y$	$y \cdot x y$	y	$x \cdot x y$
$x(y \cdot x y)$	$y(x \cdot x y)$	$x \cdot x y$	x	$y \cdot x y$	y	$x(y \cdot x y)$	$x y$
$y(x \cdot x y)$	$y \cdot x y$	$x(y \cdot x y)$	y	x	$x \cdot x y$	$x y$	$y(x \cdot x y)$

In order to complete the proof, it suffices to show that the elements $x, y, x y$, $x \cdot x y, y \cdot x y, x(y \cdot x y), y(x \cdot x y)$ are distinct:

$$
\begin{aligned}
x=x y & \Longrightarrow x x=x y \Longrightarrow x=y \\
x=x \cdot x y & \Longrightarrow x x=x \cdot x y \Longrightarrow x=x y \\
x=y \cdot x y & \Longrightarrow x y=(y \cdot x y) y \Longrightarrow x y=x \\
x=x(y \cdot x y) & \Longrightarrow x x=x(y \cdot x y) \Longrightarrow x=y \cdot x y \\
x=y(x \cdot x y) & \Longrightarrow y(y \cdot x y)=y(x \cdot x y) \Longrightarrow y \cdot x y=x \cdot x y \Longrightarrow x=y \\
x y=x \cdot x y & \Longrightarrow y=x y \\
x y=x(y \cdot x y) & \Longrightarrow y=y \cdot x y \\
x \cdot x y=y \cdot x y & \Longrightarrow x=y \\
x \cdot x y=x(y \cdot x y) & \Longrightarrow x y=y \cdot x y \\
x \cdot x y=y(x \cdot x y) & \Longrightarrow x(x \cdot x y)=x(y(x \cdot x y)) \Longrightarrow y=y \cdot x y \\
x(y \cdot x y)=y(x \cdot x y) & \Longrightarrow x(y \cdot x y)=x y \cdot(y \cdot x y) \Longrightarrow x=x y .
\end{aligned}
$$

3. A construction of $(2,8)$-variety of groupoids

Theorem 3.1. Let \mathcal{V}_{8} be the variety of groupoids, defined by the identities:
(1) $x \cdot x y=x y \cdot y$,
(2) $x \cdot y x=x y \cdot x$
(3) $x(y \cdot y x)=y$.

Then \mathcal{V}_{8} is a $(2,8)$-variety of quasigroups.
Proof. First we show that the following identities are satisfied by any $\mathcal{V}_{8^{-}}$ groupoid:

(4)	$x(x \cdot x y)=y x$,	(16)	$(x \cdot x y) \cdot x y=y x$,
(5)	$x x=x$,	(17)	$x y \cdot(y x \cdot y)=y x$,
(6)	$x y \cdot y x=x$,	(18)	$(y \cdot y x) \cdot x y=x$,
(7)	$(x y \cdot x) x=y$,	(19)	$(x y \cdot x) \cdot x y=y \cdot y x$,
(8)	$x(x y \cdot x)=y x \cdot y$,	(20)	$(y x \cdot y) \cdot x y=x y \cdot x$,

(9)	$x(y x \cdot y)$	$=y \cdot y x$,	(21)	$(x \cdot x y)(y \cdot y x)$	$=x y \cdot x$,
(10)	$(x \cdot x y) x$	$=y x \cdot y$,	(22)	$(x \cdot x y)(x y \cdot x)$	$=x$,
(11)	$(y \cdot y x) x$	$=x \cdot x y$,	(23)	$(x \cdot x y)(y x \cdot y)$	$=x y$,
(12)	$(y x \cdot y) x$	$=x y$,	(24)	$(y \cdot y x)(x \cdot x y)$	$=y x \cdot y$,
(13)	$x y \cdot(x \cdot x y)$	$=y \cdot y x$,	(25)	$(y x \cdot y)(x \cdot x y)$	$=y$,
$(14) \quad x y \cdot(y \cdot y x)$	$=y x \cdot y$,	(26)	$(x y \cdot x)(y x \cdot y)$	$=x \cdot x y$,	
$(15) \quad x y \cdot(x y \cdot x)$	$=y$.				

Namely, we have:

$$
\begin{aligned}
x(x \cdot x y) & \stackrel{(3)}{=} y(x \cdot x y) \cdot(x \cdot x y) \stackrel{(1)}{=} y \cdot y(x \cdot x y) \stackrel{(3)}{=} y x ; \\
x x & \stackrel{(4)}{=} x(x \cdot x x) \stackrel{(3)}{=} x ; \\
x y \cdot y x & \stackrel{(4)}{=} x y \cdot(x \cdot(x \cdot x y)) \stackrel{(3)}{=} x ; \\
(x y \cdot x) x & \stackrel{(2)}{=}(x \cdot y x) x \stackrel{(2)}{=} x(y x \cdot x) \stackrel{(1)}{=} x(y \cdot y x) \stackrel{(3)}{=} y ; \\
x(x y \cdot x) & \stackrel{(2)}{=} x(x \cdot y x) \stackrel{(1)}{=}(x \cdot y x) \cdot y x \stackrel{(4)}{=} y x \cdot(y x \cdot(y x \cdot(x \cdot y x))) \\
& \stackrel{(2)}{=} y x \cdot(y x \cdot((y x \cdot x) \cdot y x)) \stackrel{(1)}{=} y x \cdot(y x \cdot((y \cdot y x) \cdot y x)) \\
& \stackrel{(2)}{=} y x \cdot((y x \cdot(y \cdot y x)) \cdot y x) \stackrel{(2)}{=} y x \cdot(((y x \cdot y) \cdot y x) \cdot y x) \stackrel{(7)}{=} y x \cdot y ; \\
x(y x \cdot y) & \stackrel{(8)}{=} x \cdot x(x y \cdot x) \stackrel{(2)}{=} x \cdot x(x \cdot y x) \stackrel{(4)}{=} y x \cdot x \stackrel{(1)}{=} y \cdot y x ; \\
(x \cdot x y) x & \stackrel{(2)}{=} x(x y \cdot x) \stackrel{(8)}{=} y x \cdot y ; \\
(y \cdot y x) x & \stackrel{(4)}{=} x(x \cdot x(y \cdot y x)) \stackrel{(3)}{=} x \cdot x y ; \\
(y x \cdot y) x & \stackrel{(4)}{=} x(x \cdot x(y x \cdot y)) \stackrel{(9)}{=} x \cdot x(y \cdot y x) \stackrel{(3)}{=} x y ; \\
x y \cdot(x \cdot x y) & \stackrel{(1)}{=} x y \cdot(x y \cdot y) \stackrel{(1)}{=}(x y \cdot y) y \stackrel{(1)}{=}(x \cdot x y) y \stackrel{(11)}{=} y \cdot y x ; \\
x y \cdot(y \cdot y x) & \stackrel{(4)}{=}(y(y \cdot y x))(y \cdot y x) \stackrel{(1)}{=} y \cdot y(y \cdot y x) \stackrel{(4)}{=} y x \cdot y ; \\
x y \cdot(x y \cdot x) & \stackrel{(1)}{=}(x y \cdot x) x \stackrel{(7)}{=} y ; \\
(x \cdot x y) \cdot x y & \stackrel{(1)}{=} x(x \cdot x y) \stackrel{(4)}{=} y x ; \\
x y \cdot(y x \cdot y) & \stackrel{(2)}{=} x y \cdot(y \cdot x y) \stackrel{(2)}{=}(x y \cdot y) \cdot x y \stackrel{(1)}{=}(x \cdot x y) \cdot x y \stackrel{(16)}{=} y x ; \\
(y \cdot y x) \cdot x y & \stackrel{(13)}{=}(x y \cdot(x \cdot x y)) \cdot x y \stackrel{(2)}{=}((x y \cdot x) \cdot x y) \cdot x y \stackrel{(7)}{=} x ; \\
(x y \cdot x) \cdot x y & \stackrel{(2)}{=} x y \cdot(x \cdot x y) \stackrel{(13)}{=} y \cdot y x ; \\
(y x \cdot y) \cdot x y & \stackrel{(14)}{=}(x y \cdot(y \cdot y x)) \cdot x y \stackrel{(2)}{=} x y \cdot((y \cdot y x) \cdot x y) \stackrel{(18)}{=} x y \cdot x ; \\
x y)(y \cdot y x) & \stackrel{(11)}{=}((y \cdot y x) x)(y \cdot y x) \stackrel{(2)}{=}(y \cdot y x) \cdot x(y \cdot y x) \stackrel{(3)}{=}(y \cdot y x) y \stackrel{(10)}{=} x y \cdot x ;
\end{aligned}
$$

$$
\begin{aligned}
& (x \cdot x y)(x y \cdot x) \stackrel{(6)}{=} x ; \\
& (x \cdot x y)(y x \cdot y) \stackrel{(19)}{=}((y x \cdot y) \cdot y x)(y x \cdot y) \stackrel{(19)}{=} y(y \cdot y x) \stackrel{(4)}{=} x y ; \\
& (y \cdot y x)(x \cdot x y) \stackrel{(13)}{=}(y \cdot y x)(y x \cdot(y \cdot y x)) \stackrel{(2)}{=}(y \cdot y x)((y x \cdot y) \cdot y x) \stackrel{(17)}{=} y x \cdot y ; \\
& (y x \cdot y)(x \cdot x y) \stackrel{(10)}{=}((x \cdot x y) x)(x \cdot x y) \stackrel{(19)}{=} x y \cdot(x y \cdot x) \stackrel{(15)}{=} y ; \\
& (x y \cdot x)(y x \cdot y) \stackrel{(8)}{=}(x y \cdot x)(x(x y \cdot x)) \stackrel{(2)}{=}(x y \cdot x)((x \cdot x y) x) \stackrel{(17)}{=} x \cdot x y .
\end{aligned}
$$

In each groupoid in \mathcal{V}_{8}, the equations $a x=b$ and $y a=b$ have solutions $x=b \cdot b a$ and $y=a b \cdot a$. Moreover, the cancellation laws hold:

$$
\begin{aligned}
& a c=a d \Longrightarrow c=(a c \cdot a) a=(a d \cdot a) a=d, \\
& c a=d a \Longrightarrow c=a(c \cdot c a)=a(c a \cdot a)=a(d a \cdot a)=a(d \cdot d a)=d .
\end{aligned}
$$

Hence, \mathcal{V}_{8} is a variety of quasigroups.
The multiplication table of the subquasigroup of a quasigroup in \mathcal{V}_{8}, generated by the set $\{x, y\}$, is given as follows:

	x	y	$x y$	$y x$	$x \cdot x y$	$y \cdot y x$	$x y \cdot x$	$y x \cdot y$
x	x	$x y$	$x \cdot x y$	$x y \cdot x$	$y x$	y	$y x \cdot y$	$y \cdot y x$
y	$y x$	y	$y x \cdot y$	$y \cdot y x$	x	$x y$	$x \cdot x y$	$x y \cdot x$
$x y$	$x y \cdot x$	$x \cdot x y$	$x y$	x	$y \cdot y x$	$y x \cdot y$	y	$y x$
$y x$	$y \cdot y x$	$y x \cdot y$	y	$y x$	$x y \cdot x$	$x \cdot x y$	$x y$	x
$x \cdot x y$	$y x \cdot y$	$y \cdot y x$	$y x$	y	$x \cdot x y$	$x y \cdot x$	x	$x y$
$y \cdot y x$	$x \cdot x y$	$x y \cdot x$	x	$x y$	$y x \cdot y$	$y \cdot y x$	$y x$	y
$x y \cdot x$	y	$y x$	$y \cdot y x$	$y x \cdot y$	$x y$	x	$x y \cdot x$	$x \cdot x y$
$y x \cdot y$	$x y$	x	$x y \cdot x$	$x \cdot x y$	y	$y x$	$y \cdot y x$	$y x \cdot y$

All of the elements in the multiplication table are distinct:

$$
\begin{aligned}
x=x y & \Longrightarrow x x=x y \Longrightarrow x=y \\
x=x \cdot x y & \Longrightarrow x x=x \cdot x y \Longrightarrow x=x y \\
x=y \cdot y x & \Longrightarrow x x=x(y \cdot y x) \Longrightarrow x=y \\
x=x y \cdot x & \Longrightarrow x x=x y \cdot x \Longrightarrow x=x y \\
x=y x \cdot y & \Longrightarrow x y=(y x \cdot y) y \Longrightarrow x y=x \\
x y=y x & \Longrightarrow x y \cdot y x=y x \cdot y x \Longrightarrow x=y x \\
x y=x \cdot x y & \Longrightarrow y=x y \\
x y=y \cdot y x & \Longrightarrow x \cdot x y=x(y \cdot y x) \Longrightarrow x \cdot x y=y \\
x y=x y \cdot x & \Longrightarrow x y \cdot x y=x y \cdot x \Longrightarrow x y=x \\
x y=y x \cdot y & \Longrightarrow x y \cdot y=(y x \cdot y) y \Longrightarrow x \cdot x y=x \\
x \cdot x y=y \cdot y x & \Longrightarrow x(x \cdot x y)=x(y \cdot y x) \Longrightarrow y x=y \\
x \cdot x y=x y \cdot x & \Longrightarrow x \cdot x y=x \cdot y x \Longrightarrow x y=y x \\
x \cdot x y=y x \cdot y & \Longrightarrow x \cdot x y=y \cdot x y \Longrightarrow x=y \\
x y \cdot x=y x \cdot y & \Longrightarrow(x y \cdot x) x=(y x \cdot y) x \Longrightarrow y=x y
\end{aligned}
$$

4. A construction of (2,9)-variety of groupoids

Theorem 4.1. Let \mathcal{V}_{9} be the variety of groupoids defined by the identities

$$
\text { (1) } x \cdot x y=y x, \quad(2) \quad x y \cdot(y \cdot x y)=x
$$

Then \mathcal{V}_{9} is a $(2,9)$-variety of quasigroups.
Proof. One can check that the identities (3)-(30), given below, are satisfied by any groupoid in \mathcal{V}_{9}. We emphasis the identities that can be applied to the lefthand side of each equality in order to obtain its right-hand side.

Identity	Left-hand side	$=$ Right-hand side	Applyed identities
(3)	$x y \cdot x$	$=x \cdot y x$	$(1),(1)$
(4)	$x x$	$=x$	$(1),(1),(3),(2)$
(5)	$(x \cdot y x) \cdot x y$	$=x y \cdot y x$	$(3),(3),(1)$
(6)	$x y \cdot(x \cdot y x)$	$=y x$	$(3),(1),(1)$
(7)	$(x y \cdot y) \cdot x y$	$=x$	$(3),(2)$
(8)	$(x \cdot y x) \cdot y x$	$=y \cdot x y$	$(1),(2),(3)$
(9)	$(x \cdot y x) y$	$=x$	$(2),(3),(7)$
(10)	$y x \cdot x$	$=x y \cdot y$	$(1),(2),(3),(2)$
(11)	$(x \cdot y x) x$	$=y x \cdot x y$	$(3),(10),(1)$
(12)	$x(x y \cdot y)$	$=y x \cdot x y$	$(10),(3),(11)$
(13)	$x y \cdot(y x \cdot x y)$	$=y$	$(1),(1),(2)$
(14)	$(x y \cdot y x) \cdot y x$	$=x y \cdot y$	$(1),(13),(10)$
(15)	$(x y \cdot y) x$	$=y \cdot x y$	$(10),(10),(8)$
(16)	$(x y \cdot y)(x \cdot y x)$	$=x y \cdot y x$	$(15),(10),(1),(12)$
(17)	$x(y x \cdot x y)$	$=y \cdot x y$	$(12),(1),(15)$
(18)	$x(y \cdot x y)$	$=x y \cdot y x$	$(2),(10),(8),(5)$
(19)	$x(x y \cdot y x)$	$=y$	$(18),(1),(9)$
(20)	$(x y \cdot y x) x$	$=x y$	$(1),(19)$
(21)	$(x \cdot y x)(x y \cdot y x)$	$=y x$	$(5),(1),(6)$
(22)	$(x y \cdot y x)(x \cdot y x)$	$=y \cdot x y$	$(1),(21),(8)$
(23)	$(x y \cdot y x) y$	$=y x \cdot x y$	$(1),(17),(18)$
(24)	$(x y \cdot y x)(y x \cdot x y)$	$=x \cdot y x$	$(23),(1),(17)$
(25)	$(x \cdot y x)(x y \cdot y)$	$=x y$	$(10),(1),(3),(2)$
(26)	$(x y \cdot y x)(y \cdot x y)$	$=y x$	$(11),(3),(2)$
(27)	$(x \cdot y x)(y x \cdot x y)$	$=x y \cdot y$	$(1),(26),(14),(10)$
(28)	$(x y \cdot y)(x y \cdot y x)$	$=x y$	$(16),(1),(25)$
(29)	$(x y \cdot y x)(x y \cdot y)$	$=x$	$(1),(28),(7)$
(30)	$(x \cdot y x)(y \cdot x y)$	$=y$	$(8),(1),(3),(7)$

Next, we show that every groupoid in \mathcal{V}_{9} is a quasigroup.
The equations $a x=b$ and $y a=b$ have solutions $x=a b \cdot b a$ and $y=b \cdot a b$ respectively, and they are unique. Namely, if $a c=b$ and $d a=b$, we have that $c=c a \cdot(a \cdot c a)=(a \cdot a c)(a c \cdot a)=a b \cdot b a$ and $d=d a \cdot(a \cdot d a)=b \cdot a b$.

By the above identities, we have that a subquasigroup generated by two distinct elements x and y is represented by the following table, and one can check that all of the elements are distinct.

	x	y	$x y$	$y x$	$x \cdot y x$	$y \cdot x y$	$x y \cdot y x$	$y x \cdot x y$	$x y \cdot y$
x	x	$x y$	$y x$	$x \cdot y x$	$x y \cdot y$	$x y \cdot y x$	y	$y \cdot x y$	$y x \cdot x y$
y	$y x$	y	$y \cdot x y$	$x y$	$y x \cdot x y$	$x y \cdot y$	$x \cdot y x$	x	$x y \cdot y x$
$x y$	$x \cdot y x$	$x y \cdot y$	$x y$	$x y \cdot y x$	$y x$	x	$y x \cdot x y$	y	$y \cdot x y$
$y x$	$x y \cdot y$	$y \cdot x y$	$y x \cdot x y$	$y x$	y	$x y$	x	$x y \cdot y x$	$x \cdot y x$
$x \cdot y x$	$y x \cdot x y$	x	$x y \cdot y x$	$y \cdot x y$	$x \cdot y x$	y	$y x$	$x y \cdot y$	$x y$
$y \cdot x y$	y	$x y \cdot y x$	$x \cdot y x$	$y x \cdot x y$	x	$y \cdot x y$	$x y \cdot y$	$x y$	$y x$
$x y \cdot y x$	$x y$	$y x \cdot x y$	y	$x y \cdot y$	$y \cdot x y$	$y x$	$x y \cdot y x$	$x \cdot y x$	x
$y x \cdot x y$	$x y \cdot y x$	$y x$	$x y \cdot y$	x	$x y$	$x \cdot y x$	$y \cdot x y$	$y x \cdot x y$	y
$x y \cdot y$	$y \cdot x y$	$x \cdot y x$	x	y	$x y \cdot y x$	$y x \cdot x y$	$x y$	$y x$	$x y \cdot y$

References

[1] L. Goračinova, S. Markovski, $(2, n)$-Quasigroups (preprint)
[2] J. Denes, A. D. Keedwell, Latin Squares and Their Applications, English Universities Press, London, 1974
[3] R. N. McKenzie, W.F. Taylor, G.F. McNulty, Algebras, Lattices, Varieties, Wadsworth and Brooks, Monterey, California, 1987
[4] R. Padmanabhan, Characterization of a class of groupoids, Algebra Universalis 1 (1972), 374-382.

Pedagogical faculty
University "Goce Delčev"
Štip
Republic of Macedonia
lidija.goracinova@ugd.edu.mk
Institute of Informatics
"Ss Cyril and Methodius" University, Faculty of Sciences
Skopje
Republic of Macedonia
smile@ii.edu.mk

[^0]: 2000 Mathematics Subject Classification: 03C05, 20 N05.
 Key words and phrases: ($2, n$)-algebra,quasigroup, variety.

