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DISJUNCTION IN MODAL
DESCRIPTION LOGICS

Milenko Mosurović

Abstract. We investigate the complexity of satisfaction problems in modal
description logics without disjunction between formulae. It is shown that
simulation of disjunction in the class of all models of these logics is possible,
so that the complexity remains same no matter the logics is with or without
disjunction of formulae. However, the omission of disjunction, in the class of
the models based on the universal relation, “turns down” the complexity of
satisfaction problem i.e., if P �= NP, it is not possible to simulate disjunction.

1. Introduction

Description logics are invented for knowledge representation and reasoning in
systems of artificial intelligence (see e.g. [6, 5, 1] and [8] for more references).
An apparent general requirement to such logics is “to be sufficiently expressive
and effective.” However, the concrete balance between their expressive power and
complexity depends on the application domain the logic is designed for. There
is a wide spectrum of description logics, from relatively weak ones, like ALER,
the (un)satisfaction problem for concepts in which is NP-complete, more complex
ALC which is PSPACE-complete (see [7]), to very expressive ones, like CIQ of De
Giacomo and Lenzerini [10] and De Giacomo [9].

The conventional description logics were designed to represent knowledge about
static application domains only. To capture various dynamic features, for instance,
intensional knowledge (in multi-agent systems), dependence on time or actions
(in distributed systems), description logics are combined with suitable “modal”
(propositional) logics, say epistemic, temporal, or dynamic. Again, there is a variety
of possible combinations (see e.g [15, 12, 2, 3]). Some of them are rather simple
and do not increase substantially the complexity of the combined logic (for example,
the temporal description logic of Schild [15] is EXPTIME-complete); others are too
expressive and undecidable (e.g. the multi-dimensional description logic of Baader
and Ohlbach [3]).
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Various kinds of balances between the expressive power and decidability have
been found in the series of papers [16, 17, 18, 19], where expressive and yet decid-
able description logics with epistemic, temporal, and dynamic operators were con-
structed. However, the complexity of the satisfaction problem in almost all of these
logics is NEXPTIME-hard [14](some of these logics are NEXPTIME-complete e.g.
[17] and some EXPSPACE-complete e.g. [18]).

The disjunction is usually source of non-determinism, and we recall that in
modal description logics it can arise between concepts and between formulae. It is
possible that the presence of disjunction of formulae cause such levels of complexity.
The syntax of logics ALCM of Baader and Laux does not have disjunction of
formulae, so that we can expect the lower complexity for them.

In this paper we show that disjunction of ALCM -formulae of Wolter and Za-
kharyaschev can be simulated in ALCM -formulae of Baader and Laux in the class
K and the satisfiability problem for ALCM -formulae of Baader and Laux in the
class K is NEXPTIME-hard. On the other hand, ALCM -formulae of Baader and
Laux in the class S5 is EXPTIME-complete (i.e. assuming P �= NP, the disjunction
of ALCM -formulae of Wolter and Zakharyaschev can not be simulated in ALCM -
formulae of Baader and Laux in the class S5).

2. Syntax and Semantics

We begin by defining the modal concept description language ALCM and its
semantics. The primitive symbols of ALCM are:

concept names C0, C1, . . . ,
role names R0, R1, . . . , and
object names a0, a1, . . . .
Starting from primitive symbols, we can form compound concepts and formulae

using the following constructs. Suppose R is a role name and C, D are concepts
(for the basis of our inductive definition we assume concept names to be atomic
concepts). Then �, C ∧D, ¬C, ∃R.C, and ♦C are concepts.

Atomic formulae are expressions of the form �, C = D, a : C, and aRb, where
a, b are object names. If ϕ and ψ are formulae, then so are ϕ ∧ ψ, ¬ϕ, and ♦ϕ.

The corresponding modal description language is denoted by ALCM .
Other standard logical connectives are defined in the usual way. For instance,

C ∨D is an abbreviation for ¬(¬C ∧¬D), ⊥ for ¬�,C → D for ¬(C ∧¬D), C ⊆ D
for C ∧D = C, and � for ¬♦¬.

Note that, in the definition above, we did not impose any restriction on the
form of conceptual assertional axioms. Baader and Laux [2] consider only atomic
formulae prefixed by sequences of modal operators.

We recall to the syntax of ALCMB introduced by Baader and Laux [2].
Terminological axioms of ALCMB are of the form m(C = D) where C and D

are concepts of ALCM and m is a (possibly empty) sequence of modal operators.
Assertional axioms of ALCMB are of the formm(aRb) orm(a : C) where a and b are
object names, R is a role name, C is a concept, andm is a (possibly empty) sequence
of modal operators (♦ and �). An ALCMB -formula is either a terminological or
an assertional axiom.
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A model of ALCM based on a frame F = 〈W,�〉 is a pair M = 〈F, I〉 in which
I is a function associating with each w ∈W a structure

I(w) =
〈
∆I,w, RI,w

0 , . . . , CI,w
0 , . . . , aI,w

0 , . . .
〉
,

where ∆I,w is a nonempty set of objects, the domain of w, RI,w
i are binary relations

on ∆I,w, CI,w
i are subsets of ∆I,w, and aI,w

i are objects in ∆I,w such that aI,w
i =

aI,v
i , for any v, w ∈W .

One can distinguish between three types of models: those with constant, ex-
panding, and varying domains. In models with constant domains ∆I,v = ∆I,w, for
all v, w ∈ W . In models with expanding domains ∆I,v ⊆ ∆I,w whenever v � w.
And models with varying domains are just arbitrary models.

Given a model M and a world w in it, we define the value CI,w of a concept C in
w and the satisfaction relation (M, w) |= ϕ (or simply w |= ϕ, if M is understood)
by taking:

�I,w = ∆I,w and

CI,w = CI,w
i , for C = Ci;

(C ∧D)I,w = CI,w ∩DI,w;

(¬C)I,w = ∆I,w − CI,w;

x ∈ (♦C)I,w iff ∃v � w x ∈ CI,v;

x ∈ (∃R.C)I,w iff ∃y ∈ CI,w xRI,wy;

w |= C = D iff CI,w = DI,w;

w |= a : C iff aI,w ∈ CI,w;

w |= aRb iff aI,wRI,wbI,w;

w |= ♦ϕ iff ∃v � w v |= ϕ;

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ;

w |= ¬ϕ iff w �|= ϕ.

A formula ϕ is satisfiable in a class of models M if there is a model M ∈M and a
world w in M such that w |= ϕ. Usually, we consider following classes of models:

K the class of all models;
S5 the class of models based on frames with the universal relations, i.e., u�v

for all u and v;
KD45 the class of transitive, serial (∀u∃v u� v) and Euclidean (u� v∧u�w →

v � w) models;
S4 the class of all quasi-ordered models;
K4 the class of transitive models;
GL the class of transitive Noetherian models (i.e., containing no infinite as-

cending chains);
N the class of models based on 〈N, <〉.

It is obvious that finite conjunction of ALCMB -formulae is a ALCM -formula.
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A set {F1, . . . , Fn} of ALCMB -formulae is satisfiable in a class of models M if
there is a model M ∈M and a world w in M such that w |= Fi, for i = 1, . . . , n.

3. Complexity in the class K

Lower bounds of the satisfaction problem for some modal description logics
with constant domain assumption follows from [14] and [13]. For instance, the
satisfaction problem for ALCM -formulae free from role names in each of the classes
K, S4, and K4 is NEXPTIME-hard.

Now we will establish the lower bound for the satisfaction problem in the class
K with expanding domain assumption.

Theorem 3.1. Testing satisfiability of a finite set {F1, . . . , Fn} of ALCMB -
formulas in a class K with expanding domains is NEXPTIME-hard.

The key step in the proof of Theorem 3.1 lies in showing that disjunction of
ALCM -formulae can be simulated in ALCMB in class K.

Proposition 3.1. Let M = (W,<, I) be a model of ALCM , let w be a world
in W , and let E,F are concept names. If M, w |= (F = ♦E) ∧ �(E = �), then
M, w |= (F = �) ∨ (F = ⊥).

Proof. Let M, w |= (F = ♦E) ∧ �(E = �). If ∃v ∈ Ww < v, then F I,w =
(♦E)I,w = �I,w (i.e., M, w |= F = �), else F I,w = (♦E)I,w = ∅ (i.e., M, w |= F =
⊥). �

Proof. (Theorem 3.1) We will show here the lower bound for the testing
satisfiability of a finite set of ALCMB -formulae in a classK with expanding domains
by reducing to it the n× n tiling problem, n given in binary, which is known to be
NEXPTIME-complete [4]. Namely, for a set T = {t1, . . . , ts} of tiles and n < ω,
we construct a finite set of ALCMB -formulae F = {ϕ1, . . . , ϕm} such that F is
satisfied in an ALCM -model from K iff T tiles 2n × 2n.

To encode the 2n × 2n grid, we define 22n concepts Bij , 0 � i, j < 2n, using 2n
concept names C0, . . . , C2n−1, a role name R, and an object name a.

Let F1 be the set of the following formulae (that are similar to those of [11,
p. 371] and [14]):

∃R.� = �, a : ¬C0 ∧ · · · ∧ ¬C2n−1,

i−1∧
j=0

Cj → (Ci → ∀R.¬Ci) ∧ (¬Ci → ∀R.Ci) = �, for i = 0, . . . , 2n− 1,

i−1∨
j=0

¬Cj → (Ci → ∀R.Ci) ∧ (¬Ci → ∀R.¬Ci) = �, for i = 0, . . . , 2n− 1.

For any i, j ∈ {0, . . . , 2n−1} written in binary as (d2n−1, . . . , dn) and (dn−1, . . . , d0),
respectively, we put Bij = Cd0

0 ∧ · · · ∧ C
d2n−1
2n−1 , where Cd is C if d = 1 and ¬C

otherwise. If F1 is satisfied in a world w in an ALC-model, then the sets Bij in
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this model are nonempty, pairwise disjoint and cover the domain �I,w of the world
w of the model.

For each tile ti ∈ T we introduce a concept name Ti. Its intended meaning
is as follows: we will say that tk covers an element (i, j) in the grid iff Bij ⊆ Tk

(i.e., Bij → Tk = �). The problem now is to guarantee that every element of the
grid is covered by precisely one tile and that the colours of adjacent tiles match
without using too many formulae. To this end we require 2n new concept names
Q0, . . . , Q2n−1; they will encode 22n worlds wij , 0 � i, j < 2n.

Precisely we will describe a binary tree of depth 2n, using 2n concept names
Q0, . . . , Q2n−1. This will provide us with 22n nodes (on the level 2n) each encoding
a world wij , 0 � i, j < 2n.

Let F2 be the set of the following formulae (that are similar to those of [11],
p. 354 and [14]):

�i♦(Qi = �),�i♦(Qi = ⊥), for i = 0, . . . , 2n− 1

�i(Qj = �Qj),�i(Qj = ♦Qj), for i = 1, . . . , 2n; j = 0, . . . , i− 1,

�2n♦(Qi = ♦Ai),�2n+2(Ai = �), for i = 0, . . . , 2n− 1 (see Proposition 3.1).

Let F3 be the set of formulae

Ci = �2nCi, Ci = ♦2nCi, for i = 0, . . . , 2n− 1,

Ti = �2nTi, Ti = ♦2nTi, for i = 1, . . . , s.

The meaning of the set F3 is that each Ci (Tj) contains the same objects of domain
�I,w (w is root of tree) in every world (on the level 2n) wij (i.e., CI,w

k ⊆ C
I,wij

k ).
Let B, Br, Bu are three other concept names. B will coincide with Bij , Br

with Bi,j+1, and Bu with Bi+1,j in the world wij determined by the condition
wij |= Qd0

0 ∧ · · · ∧Qd2n−1
2n−1 = �, where (d2n−1, . . . , dn) and (dn−1, . . . , d0) are binary

representations of i and j, respectively. This will be ensured by the set of formulae
F4:

♦2nB = �,�2n

(
B =

2n−1∧
i=0

(
(Ci ∧Qi) ∨ (¬Ci ∧ ¬Qi)

))
.

�2n

(
Br =

n−1∨
k=0

(
¬Qk ∧

k−1∧
j=0

Qj ∧
k−1∧
i=0

¬Ci ∧Ck ∧
2n−1∧
i=k+1

(
(Ci ∧Qi)∨ (¬Ci ∧¬Qi)

)))
,

�2n

(
Bu =

2n−1∨
k=n

(
¬Qk∧

k−1∧
j=n

Qj∧
k−1∧
i=n

¬Ci∧Ck∧
∧

i/∈{n,...,k}

(
(Ci∧Qi)∨(¬Ci∧¬Qi)

)))
.

Let F5 be the set of formulae

�2n(Fi ∧ Fj = ⊥), for i �= j,

�2n(Fi = ♦Fi), �2n(Fi = �Fi), for i = 1, . . . , s,

�2n♦(Fi = ♦Ei), �2n+2(Ei = �), for i = 1, . . . , s (see Proposition 3.1).

This means that ∃�1i ∈ {1, . . . , s}Fi = � and Fj = ⊥ for all j �= i.
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Let F6 be the set of formulae

�2n

( s∨
j=1

Tj = �
)
,

�2n
(
B ∧ Ti = B ∧ Fi

)
, for i = 1, . . . , s.

This means that ∃!i ∈ {1, . . . , s}B ⊆ Ti and B ∧ Tj = ⊥ for all j �= i.
Now we are in a position to write down the set F7 of formulae which says that

the colors of adjacent tiles match:

�2n

(
Br ⊆

(n−1∧
i=0

Qi

)
∨

( s∨
i=1

∨
right(i)=left(j)

Fi ∧ Tj

))
,

�2n

(
Bu ⊆

(2n−1∧
i=n

Qi

)
∨

( s∨
i=1

∨
up(i)=down(j)

Fi ∧ Tj

))
.

We remark that if B ⊆ Tk than Fk = � and Fi = ⊥ for all i �= k, so we have

Bu ⊆
( s∨

i=1

∨
up(i)=down(j)

Fi ∧ Tj

)
≡

s∨
i=1

(
Fi ∧

( ∨
up(i)=down(j)

Tj

))
≡

Fk ∧
( ∨

up(k)=down(j)

Tj

)
≡

∨
up(k)=down(j)

Tj .

One can show that F = F1

⋃ · · ·⋃F7 is as required. �

Corollary 3.1. The satisfaction problem for ALCM -formulae in the class
K,with the expanding domain assumption, is NEXPTIME-hard.

Corollary 3.2. Testing satisfiability of a finite set {F1, . . . , Fn} of ALCMB -
formulas in a class K with expanding domains is NEXPTIME-complete.

Proof. The upper bound follows from [2] and the lower from Theorem 3.1. �

Also, from the Theorem 3.1 follows that the satisfaction problem for ALCM -
formulae in each of the classes K, N , GL, S4, and K4, with the expanding domain
assumption, is NEXPTIME-hard.

Theorem 3.2. The satisfaction problem for ALCM - and ALCMB -formulae in
the class K is NEXPTIME-complete (no matter whether the models have constant
or expanding domains).

Proof. The upper bound follows from [2] and [17] and the lower bound from
the Theorem 3.1 (Corollary 3.1). �
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4. Complexity in the class S5

In the proof of the Theorem 3.1 we have used only one assertional axiom of
the form (a : C). The usage of (a : C) enabled us to claim that at least one of the
concepts is not empty. All other formulae were terminological axioms.

Now we will consider satisfaction problem for ALCMB -formulae in the class
S5, supposing that we have at most one assertional axiom of the form (a : C) (let
us call them ALCMB− -formulae).

Using rules �(C1 = �) ∧ �(C2 = �) ≡ �(C1 ∧ C2 = �), ��ϕ ≡ �ϕ,
♦�ϕ ≡ �ϕ, �♦ϕ ≡ ♦ϕ and ♦♦ϕ ≡ ♦ϕ, every set of formulae can be transformed
into the equivalent set of formulae of the following form:

�(C0 = �), (C1 = �), (a : C
′
1), ♦(C2 = �), . . . , ♦(Cs = �).

Now we define s-quasimodel (simple quasimodel) for finite sets of formulae. We
fix a finite set F of ALCMB -formulas in the class S5 such that

F = {�(C0 = �), (C1 = �), (a : C
′
1),♦(C2 = �), . . . ,♦(Cs = �)}

i.e., ALCM formula

ϕF = �(C0 = �) ∧ (C1 = �) ∧ (a : C
′
1) ∧ ♦(C2 = �) ∧ · · · ∧ ♦(Cs = �).

With conϕF we denote the closure under negation of the set of all concepts
in ϕF . Without loss of generality we may identify C and ¬¬C, for every concept
C; so the set conϕF is finite and | conϕF | < 2‖ϕF ‖, where ‖ϕF ‖ is the number
of symbols in the formula ϕF . We also suppose that ♦D1, ♦D2,. . . , ♦Dm are all
concepts from conϕF of the form ♦C.

Definition 4.1. A concept type t for ϕF is a subset of conϕF such that
1) C ∧D ∈ t iff C,D ∈ t, for every C ∧D ∈ conϕF ,
2) ¬C ∈ t iff C �∈ t, for every C ∈ conϕF .

Let TF be a set of all concept types for ϕF . For t ∈ TF we will denote
t|R = {C ∈ conϕF | ∀R.C ∈ t} and t|♦ = {D ∈ conϕF | ♦D ∈ t}.

Definition 4.2. A set of s-quasiworld for ϕF is a set T = {T0, T1, . . . , Ts} such
that

3) Ti ⊂ TF , for every i ∈ {0, 1, · · · , s},
4) Ti �= ∅ , for every i ∈ {0, 1, · · · , s},
5) (∀t ∈ Ti)Ci ∈ t , for every i ∈ {0, 1, · · · , s},
6) (∀t ∈ Ti)(∀(∃R.C) ∈ conϕF )(∃R.C ∈ t iff (∃t′ ∈ Ti)t|R ⊂ t′ ∧ C ∈ t′), for

every i ∈ {0, 1, · · · , s},
7) (∃t = ta ∈ T1)C

′
1 ∈ t, for (a : C

′
1) ∈ F ,

Definition 4.3. A run in T = {T0, T1, . . . , Ts} is a function
r : {−m, . . . ,−1, 0, 1, . . . , s} → ⋃s

i=1 Ti such that
8) r(i) ∈ Ti, for every i ∈ {0, 1, . . . , s} and r(−k) ∈ T0, for every k ∈

{1, . . . ,m},
9) r(i)|♦ = r(j)|♦, for every i, j ∈ {−m, . . . , 1, 0, 1, . . . , s}
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10) For every k ∈ {1, · · · ,m}, if Dk ∈ r(0)|♦, then Dk ∈ r(−k).
Definition 4.4. Let T = {T0, . . . , Ts} be a set of s-quasiworld for ϕF and ρ

set of run in it. The pair (T, ρ) is called a s-quasimodel for ϕF if the following
holds:

11) (∀Ti ∈ T )(∀t ∈ Ti)(∃r ∈ ρ)r(i) = t.

Lemma 4.1. If the set of formulae F is satisfiable, then there exists s-quasimodel
for ϕF .

Proof. If the set of formulae F is satisfiable, then there exists at least one
model for F . Let us consider arbitrary non-empty family of models MC = {Mc =
(Wc,Wc ×Wc, Ic) | Mc |= F and c ∈ C}, where C = |MC| � 1. We will construct
s-quasimodel for ϕF which corresponds to the family MC.

For every model Mc = (Wc,Wc × Wc, Ic) ∈ MC, for every world w ∈ Wc

and for every object x ∈ ∆Ic,w, let us define the concept type tIc,w(x) = {C ∈
conϕF | x ∈ CIc,w}.

Let Ti =
⋃

c∈C{tIc,w(x) | w ∈ Wc, w |= (Ci = �), x ∈ ∆Ic,w}. For arbitrary
t ∈ Ti, i = 0, . . . , s, let us construct the run r = rt such that r(i) = t. It follows
that, for every t ∈ Ti, there exists a model M = (W,W × W, I) ∈ MC and
there exists a world w ∈ W and there exists an objects x ∈ ∆I,w, such that
w |= (Ci = �) ∧ t = tI,w(x). Since M |= F , it follows that (∀j ∈ {0, . . . , s})(∃wj ∈
W )wj |= (Cj = �). Let tj = tI,wj (x). Obviously tj ∈ Tj . If ♦Dk �∈ t, put t−k = t0.
Now suppose that ♦Dk ∈ t. Since ♦Dk ∈ t iff ♦Dk ∈ tI,w(x) iff x ∈ (♦Dk)I,w iff
(∃vk ∈ W )x ∈ (Dk)I,vk , we can define t−k = tI,vk(x). Since vk |= (C0 = �), it
follows that t−k ∈ T0. Now, we put r(j) = tj for every j ∈ {−m, . . . , s}. Let ρ
be the set of all runs constructed in that way. Then, by construction, the tuple
({T0, T1, . . . , Ts}, ρ) is a s-quasimodel for ϕF . �

Lemma 4.2. If there exists a s-quasimodel for ϕF , then the set of formulae F
is satisfiable.

Proof. Let Q = ({T0, T1, . . . , Ts}, ρ) be a s-quasimodel for ϕF . Based on Q,
we will construct the model for F as follows. Let ρ′ = {r′ = r′(r, k) | r ∈ ρ, k ∈
{0, . . . ,m} }, where

r′(r, 0) = r,
r′(r, k)(i) = r′(i) = r(i) for k �= 0 and i �∈ {0,−k},
r′(r, k)(0) = r′(0) = r(−k) for k �= 0 and i = 0,
r′(r, k)(−k) = r′(−k) = r(0) for k �= 0 and i = −k.

From the set of all runs ρ′ that goes through ta we extract one run which we denote
by ra. Now we construct the model for the set F . Let

V = {v−m, . . . , v−1, v0, v1, . . . , vs} be the set of worlds,
let � = V × V be the relation,
let I(vj) =

〈
∆I,vj , R

I,vj

0 , . . . , A
I,vj

0 , . . . , aI,vj

〉
be the interpretation, where

∆I,w = ∆I = {r | r ∈ ρ′}, AI,vj = {r ∈ ∆I | A ∈ r(j)} (for atomic concepts
A), RI,vj = {(r′, r′′) ∈ (∆I)2 | r′(j)|R ⊆ r′′(j)} and aI,vj = ra,
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so that the model for the set F is M = (V,�, I).
It still remains to prove, by the induction on concept complexity, that C ∈ r(i)

iff r ∈ CI,vi . The most important cases are C ≡ ♦Dk and C ≡ (∃R.D):
In the first case we have: ♦Dk ∈ r(i) iff Dk ∈ r(−k) (if i = −k take simetrically

r′(i)) iff r ∈ D
I,v−k

k iff (∃v−k)(vi � v−k)(r ∈ D
I,v−k

k ) iff r ∈ (♦Dk)I,vi

In the second case we have: (∃R.D) ∈ r(i) iff (∃t′ ∈ Ti)r(i)|R ⊆ t′ ∧ D ∈ t′

(notice that (∃r′ ∈ ρ)r′(i) = t′) iff (∃r′(i) ∈ Ti)r(i)|R ⊆ r′(i) ∧ D ∈ r′(i) iff
(∃r′ ∈ ∆I)(r, r′) ∈ RI,vi ∧ r′ ∈ DI,vi iff r ∈ (∃R.D)I,vi

Finally we notice that, for arbitrary i ∈ {0, . . . , s}, we have (∀t ∈ Ti)Ci ∈ t iff
(∀r ∈ ρ′)Ci ∈ r(i) ∈ Ti iff r ∈ CI,vi

i iff CI,vi

i = ∆I iff vi |= (Ci = �). It is now
obvious that in the model M we have v1 |= F . �

We now give the algorithm of satisfiability: Starting from the set F , construct
the sets conϕF and TF . Let T0 = {t ∈ TF | C0 ∈ t} and Ti = {t ∈ T0 | Ci ∈ t},
i = 1, . . . , s.

Repeat steps (a)-(c) as many times as it is possible:
(a) If there exists Ti = ∅ or C ′

1 �∈ t for all t ∈ T1, then the algorithm returns
the answer “NO”.

(b) If there exists t ∈ Ti, for which condition 6) of the definition 4.2 fails, then
exclude t from Ti.

(c) If t ∈ Ti is such that we can not construct a run through it, then exclude
t from Ti.

If none of the rules (a)-(c) can be applied, then the algorithm returns the answer
“YES”.

Lemma 4.3. If the algorithm for the set F returns “YES”, then there exists a
s-quasimodel for ϕF i.e. the set of formulae F is satisfiable.

Proof. The algorithm constructs set T = {T0, T1, . . . , Ts}. The conditions
3) and 5) of definition 4.2 are fulfilled by construction. Since the rule (a) of the
algorithm was not applied, the conditions 4) and 7) of definition 4.2 are met, and
since we can not apply the rule (b) of the algorithm, it follows that condition 6) of
definition 4.2 is fulfilled. Hence, T is set of s-quasiworld.

For each t ∈ Ti, there exists a run r = rt which goes through it, since otherwise,
we would be able to apply rule (c) of algorithm. If ρ is the set of all runs, the pair
(T, ρ) is s-quasimodel for ϕF . �

Lemma 4.4. If the algorithm for the set F returns “NO”, then s-quasimodel
for ϕF does not exist, so the set of formulae F is not satisfiable.

Proof. Assume the opposite, let (T ′, ρ′) be s-quasimodel for ϕF , where T ′ =
{T ′

0, T
′
1, . . . , T

′
s}. In the very beginning, the algorithm constructs sets T0, T1, . . . , Ts

such that T ′
i ⊆ Ti. Applying the rules (b) and (c) of the algorithm, we can not

exclude elements from Ti which belong to T ′
i , so that rule (a) can never be applied.

�

Corollary 4.1. The algorithm is correct.
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Lemma 4.5. The algorithm stops in at most exponential number of steps, ac-
cording to the size of the input.

Proof. Since |TF | � 2| con ϕF | and Ti ⊂ T , for i = 0, 1, . . . , s, it is clear that the
construction of TF and Ti requires EXPTIME. Hence, we have at most exponential
number of concept types to which rules (a)-(c) can be applied. Also, after each step,
there is one type less, so that the rules (b) and (c) of the algorithm can be applied
at most exponential number of times. To check whether we can apply some rule,
we need at most exponential time. Hence, the algorithm will return the answer
after at most exponential number of steps. �

Note that the satisfaction problem for ALCM -formulae without modal opera-
tors is EXPTIME-hard (see e.g [13]), so that we have the following theorem.

Theorem 4.1. The satisfaction problem for ALCMB− -formulae in the class
S5 is EXPTIME-complete

Lemma 4.6. The satisfaction problem for ALCM -formulae in the class S5 is
NEXPTIME-complete

Proof. See [14] and [13]. �

If the simulation of disjunction between formulae in description logics with
modal operators based on the class S5 had been possible, then the complexity
of satisfaction problems in ALCM and ALCMB− -formulae would have been the
same. These means that, assuming P �= NP (i.e. EXPTIME �= NEXPTIME), the
Theorem 4.1 and the Lemma 4.6 tells us that the simulation of disjunction is not
possible in ALCMB− .
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