
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 82(96) (2007), 55–78 DOI 102298/PIM0796055I

THEOREM PROVERS FOR
SUBSTRUCTURAL LOGICS

Mirjana Isaković Ilić

Abstract. We describe theorem provers for some decidable propositional sub-
structural logics.

1. Introduction

Sequent systems for intuitionistic and classical predicate logic, namely LJ and
LK, were introduced by Gentzen in [2]. The basic expression of those systems
is a ‘sequent’ Γ � ∆, where Γ and ∆ are finite sequences of formulae. Γ is the
antecedent and ∆ is the succedent of Γ � ∆. If ∆ is a single or an empty sequence,
then Γ � ∆ is a single-conclusion sequent, otherwise, it is a multiple-conclusion
sequent.

Each rule in LJ and LK is either an operational rule or a structural rule.
Operational rules introduce new logical connectives to the left-, or to the right-hand
side of the turnstile �. On the other hand, structural rules refer to the structure of
the sequents and they do not involve any logical symbol, of the language to which
belong sequent-formulae, in their formulation. Gentzen’s structural rules are:

Weakening: Contraction:

Γ � ∆

α, Γ � ∆
,

Γ � ∆

Γ � ∆, α
;

α, α, Γ � ∆

α, Γ � ∆
,

Γ � ∆, α, α

Γ � ∆, α
;

Permutation: Cut:

Γ1, α, β, Γ2 � ∆

Γ1, β, α, Γ2 � ∆
,

Γ � ∆1, α, β, ∆2

Γ � ∆1, β, α, ∆2

;
Γ1 � ∆1, α α, Γ2 � ∆2

Γ1, Γ2 � ∆1, ∆2

.

Substructural logics are logics whose sequent formulations can be obtained from
Gentzen’s system LK by rejecting or restricting some of Gentzen’s structural rules.

2000 Mathematics Subject Classification: Primary 03F05; Secondary 03F52.
Key words and phrases: Substructural logics; Automated deduction.

55

56 ISAKOVIĆ ILIĆ

We shall consider both, single- and multiple-conclusion sequent systems1 for
BCK, relevant2, linear3, Lambek and Lambek logic with weakening. Furthermore,
we shall mention sequent systems for intuitionistic logic4 and classical logic.

A sequent system for BCK logic can be obtained from the sequent system for
classical logic by rejecting contraction, for relevant logic, by rejecting thinning and,
for linear logic, by rejecting both thinning and contraction. Since in the presence of
permutation, the position of a formula within Γ and within ∆ in Γ � ∆ is irrelevant,
we use multisets Γ and ∆, to define a sequent Γ � ∆, in the above systems.

A sequent system for Lambek logic is without any structural rules, other than
cut.5 We use sequences of formulae Γ and ∆ to define Γ � ∆ in sequent systems
for both Lambek logic and Lambek logic with weakening.

In sequent systems for intuitionistic and classical logics (i.e., in the presence of
all Gentzen’s structural rules), Γ and ∆ in Γ � ∆ are sets of formulae.

In the absence of some (or all) of Gentzen’s structural rules, classically equiv-
alent connectives and constants split into nonequivalent dual pairs. Therefore, the
rejection of contraction and/or weakening, produces two conjunctions: additive
(∧) and multiplicative one (·). (We may have two implications, also: multiplicative
(→) and additive (↪→) one; however, in our sequent systems additive implication
is definable, therefore it is not considered.) Only in multiple-conclusion sequent
systems, we also have two disjunctions: additive (∨) and multiplicative one (+).
Furthermore, in the absence of permutation, we have two multiplicative implica-
tions: → and ← (and accordingly, two definable negations: ∼α = α → 0 and
¬α = 0← α).

In sequent systems without weakening, we have two units, 1 and � (1 replaces
the empty collection of formulae on the left-hand side of �) and two zeros, also, 0
and ⊥ (0 replaces the empty collection of formulae on the right-hand side of �).
Algebraically, 1 and 0 behave like units for the multiplicatives · and +, respectively;
� and ⊥ behave like greatest and least element in a lattice.

Cut is the only rule of Gentzen-like systems, that allows a formula which ap-
pears in premisses to disappear in a conclusion. The formula that disappears (the
formula α in the formulation of cut) is called the ‘cut formula’. If the cut is an
admissible rule in a sequent system (can be added to the system without increasing
the stock of provable sequents) and if the application of contraction is controlled, a

1We shall say that a logic is a single-conclusion logic, if in its sequent formulation, start-
ing with single-conclusion sequents, only single-conclusion sequents can be derived; a logic is
a multiple-conclusion logic, if in its sequent formulation, multiple-conclusion sequents can be
derived.

2By relevant logic we mean relevant logic without distribution.
3By linear logic we mean pure (i.e., without exponentials) linear logic.
4Intuitionistic logic may be considered as substructural logic, also: its sequent formulation

may be obtained from LK by restricting thinning on the right, see [4]. Gentzen formulated a
sequent system for intuitionistic logic, namely LJ , by restricting the language to single-conclusion
sequents.

5Abrusci [1] investigated Lambek logic from the point of view of linear logic: Lambek logic
is pure (i.e., without exponentials), non-commutative linear propositional logic.

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 57

decision procedure for deciding of a sequent, whether or not it is provable, can be
formulated.

Therefore, the cut-elimination theorem is the fundamental theorem of sequent
systems.

Theorem 0 (Cut-Elimination Theorem). Every derivation in a sequent system
GS, can be transformed into a derivation in GS, with the same endsequent and in
which no cut occurs.

Unfortunately it does not hold for multiple-conclusion sequent system for both
Lambek logic and Lambek logic with weakening. This means that there are se-
quents, which are derivable with, but not without cut. However, applications of
cut in these two systems can be controlled, enabling the establishing of the decision
procedure (see [3]).

We shall illustrate our tableau-based proof procedure for linear, BCK and rele-
vant logic. First we give their sequent systems and prove soundness and complete-
ness results with respect to corresponding algebraic structures (Section 2).

Tableau systems make the third section. In Section 4, we give the algorithm
for automated theorem proving.

2. Sequent systems for linear, BCK and relevat logic

Let L be the language of the propositional calculus with the propositional
constants ⊥, �, 1 and 0 and binary connectives →, ←, ·, +, ∧ and ∨. Formulae
of L are defined inductively, as usual. We use α, β, γ, ϕ, . . . , α1, . . . as schematic
letters for formulae of L. As usual, ∼ α is defined as an abbreviation of α→ 0 and
¬α as an abbreviation of 0 ← α. The vocabulary of L plus the comma and the
turnstile �, makes the vocabulary of the sequent language G. Our sequent systems
will be formulated in G.

CBC is the multiple-conclusion sequent system for linear logic, with the fol-
lowing postulates (on the left- and on the right-hand side of � are multisets of
formulae):

axioms : structural rule (cut):

α � α (Id)

� 1 (1 r) Γ � �,∆ (�)

0 � (0 l) Γ,⊥ � ∆ (⊥)

Γ1 � ∆1, α,∆2 Γ2, α,Γ3 � ∆3

Γ2,Γ1,Γ3 � ∆1,∆3,∆2

(cut)

rules for propositional constants and connectives:

Γ � ∆

Γ, 1 � ∆
(1 l)

Γ � ∆

Γ � 0, ∆
(0 r)

Γ1 � α, ∆1 Γ2, β � ∆2

Γ1, Γ2, α → β � ∆1, ∆2

(→ l)
Γ, α � β, ∆

Γ � α → β, ∆
(→ r)

58 ISAKOVIĆ ILIĆ

Γ, α, β � ∆

Γ, α · β � ∆
(· l)

Γ1 � α, ∆1 Γ2 � β, ∆2

Γ1, Γ2 � α · β, ∆1, ∆2

(· r)

Γ1, α � ∆1 Γ2, β � ∆2

Γ1, Γ2, α + β � ∆1, ∆2

(+ l)
Γ � α, β, ∆

Γ � α + β, ∆
(+ r)

Γ, α � ∆

Γ, α ∧ β � ∆

Γ, β � ∆

Γ, α ∧ β � ∆
(∧ l)

Γ � α, ∆ Γ � β, ∆

Γ � α ∧ β, ∆
(∧ r)

Γ, α � ∆ Γ, β � ∆

Γ, α ∨ β � ∆
(∨ l)

Γ � α, ∆

Γ � α ∨ β, ∆

Γ � β, ∆

Γ � α ∨ β, ∆
(∨ r)

The postulates of CBCKc , which is the multiple-conclusion sequent system for
BCK logic, is obtained when we add the structural rules of weakening, i.e., the rules

from the set Kc =
{

Γ � ∆

Γ, α � ∆
(k l),

Γ � ∆

Γ � α, ∆
(k r)

}
to CBC. However, in the presence

of weakening, 1 � �, � � 1, 0 � ⊥ and ⊥ � 0 are derivable sequents, therefore �
and ⊥, together with the axioms (�) and (⊥), may be omitted in CBCKc .

The postulates of CBCW c , which is the multiple-conclusion sequent system for
relevant logic, is obtained when we add the structural rules of contraction, i.e., the

rules from the set W c =
{

Γ, α, α � ∆

Γ, α � ∆
(w l),

Γ � α, α, ∆

Γ � α, ∆
(w r)

}
to CBC.

Single-conclusion sequent systems for linear, BCK and relevant logic are ob-
tained from the above sequent systems by the restriction to at most one formula in
the succedent (note that these systems are without the connective +).

We shall prove the completeness and soundness results with respect to following
algebras.

Definition 1. A structure A = 〈A,→, ·,+,∧,∨, 1, 0,�,⊥〉 is a CBC-algebra
iff the set A is closed under the binary operation → and:

1. 〈A,∧,∨,�,⊥〉 is a lattice with the least element ⊥ and the greatest element
� for which � = ⊥ → ⊥,

2. 〈A, ·, 1〉 and 〈A,+, 0〉 are commutative monoids with the identities 1 and 0,
respectively,

3. x · (y ∨ z) = x · y ∨ x · z, x + (y ∧ z) = x + y ∧ x + z,
(x ∨ y) · z = x · z ∨ y · z, (x ∧ y) + z = x + z ∧ y + z, for every x, y, z∈A,

4. y · x � z + t iff x � y → z + t, for every x, y, z, t ∈ A, where a � b is an
abbreviation for a = a ∧ b.

A CBC-algebra A satisfying x · y � x, y · x � x, x � x + y, and y � x + y,
for every x, y ∈ A, is a CBCKc -algebra. A CBC-algebra A satisfying x � x · x and
x + x � x, for every x ∈ A, is a CBCW c -algebra.

It is easy to show that � is a partial order on A.
Algebraic models are defined as follows.

Definition 2. Let V be the set of propositional variables of L and let F be
the set of formulae of L. For a CBC-algebra A = 〈A,→, ·,+,∧,∨, 1, 0,�,⊥〉 and a
basic valuation v0 : V → A, we define the valuation v, as follows:

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 59

1. for every α ∈ F , we define v(α) ∈ A, as follows:

v(p) = v0(p), p ∈ V v(α→ β) = v(α)→ v(β)

v(α · β) = v(α) · v(β) v(α + β) = v(α) + v(β)

v(α ∨ β) = v(α) ∨ v(β) v(α ∧ β) = v(α) ∧ v(β)

v(1) = 1 v(0) = 0

v(�) = � v(⊥) = ⊥
2. for every Γ � ∆, we define v(Γ � ∆) as follows (n � 1, m � 1):

v(γ1, . . . , γn � δ1, . . . , δm) is v(γ1 · . . . · γn) � v(δ1 + · · ·+ δm)

v(γ1, . . . , γn �) is v(γ1 · . . . · γn) � 0

v(� δ1, . . . , δm) is 1 � v(δ1 + · · ·+ δm)

v(�) is 1 � 0.

Definition 3. A CBC-model is 〈A, v〉, where A is a CBC-algebra and v is a
valuation.

By induction on the length of proof of Γ � ∆ in CBC, we can prove the following
soundness lemma for CBC:

Lemma 1. If Γ � ∆ is provable in CBC, then v(Γ � ∆) holds in every CBC-
model.

Proof. Let 〈A, v〉 be a CBC-model and let the length of proof of Γ � ∆ in
CBC be 1. Then Γ � ∆ is an axiom. If it is of the form γ1, . . . , γn,⊥ � δ1, . . . , δm,
where n � 1 and m � 1, and if v(γi) = ai, for every i ∈ {1, . . . , n}, and v(δj) = bj ,
for every j ∈ {1, . . . , m}, then we wish to show that a1 · . . . · an · ⊥ � b1 + · · ·+ bm

holds in A. However, for a1 · . . . · an = a ∈ A and b1 + · · ·+ bm = b ∈ A we have
a � ⊥ → ⊥, i.e., ⊥ · a � ⊥ and a · ⊥ � ⊥ (since · is commutative) and ⊥ � b,
therefore a · ⊥ � b (since � is transitive). We proceed analogously when n = 0
and/or m = 0 and also, when Γ � ∆ is any other axiom in CBC.

Suppose the length of proof of Γ � ∆ in CBC is greater than 1. Then Γ � ∆
is the lower sequent of an inference rule, in our proof. If Γ � ∆ is the lower

sequent of the rule (1 l):
Γ1 � ∆

Γ1, 1 � ∆
(1 l), then, for Γ1 = γ1, . . . , γn, n � 1 and

∆ = δ1, . . . , δm, m � 1, and v(γi) = ai, for every i ∈ {1, . . . , n}, and v(δj) = bj , for
every j ∈ {1, . . . , m}, we wish to show that a1 · . . . ·an ·1 � b1 + · · ·+ bm. However,
by the induction hypothesis it follows that a1 · . . . · an � b1 + · · ·+ bm. Now, since
〈A, ·, 1〉 is a commutative monoid and a1 · . . . ·an = a ∈ A and b1+· · ·+bm = b ∈ A,
we have a · 1 � b. We proceed analogously when n = 0 and/or m = 0 and also,
when, in our proof, Γ � ∆ is the lower sequent of any other inference rule. �

The completeness result for CBC will be proved with respect to the Lindenbaum
algebra of CBC, as follows. Let |α| = {β : α � β and β � α are provable in CBC}
and let |α| ∗ |β| = |α ∗ β|, for every ∗ ∈ {→, ·,+,∨,∧}. Note that the set |α ∗ β|,
where ∗ ∈ {→, ·,+,∨,∧}, does not depend on the representatives of |α| and |β|.
We define |α| � |β| as |α| = |α| ∧ |β|.

60 ISAKOVIĆ ILIĆ

Let £C = {|α| : α ∈ F}. The set £C is closed under the set operations →, ·,
+, ∨ and ∧ (|α| ∗ |β| = |α ∗ β| ∈ £C, for every ∗ ∈ {→, ·,+,∨,∧}).

Lemma 2. α � β is provable in CBC iff |α| � |β| in £C.

Proof. α � β iff

1. α � α ∧ β and α ∧ β � α (applications of (∧ l), (∧ r) and cut)

2. |α| = |α ∧ β| (1)

3. |α ∧ β| = |α| ∧ |β| (definition)

4. |α| = |α| ∧ |β| (2 and 3)

5. |α| � |β| (4, definition) �

Definition 4. LindC = 〈£C,→, ·,+,∨,∧, |1|, |0|, |�|, |⊥|〉 is the Lindenbaum
algebra of CBC.

Lemma 3. The Lindenbaum algebra of CBC is a CBC-algebra.

Proof. The set £C is closed under →, ·, +, ∨ and ∧, |1| ∈ £C and |0| ∈ £C,
therefore it is sufficient to prove that LindC satisfies the axioms of a CBC-algebra.
For example:

|α| � |β| → |γ|+ |δ| iff 1. |α| � |β → γ + δ| (definition)

2. α � β → γ + δ (1, Lemma 2)

3. β · α � γ + δ (2, definition)

4. |β · α| � |γ + δ| (3, Lemma 2)

5. |β| · |α| � |γ|+ |δ| (4, definition).

We proceed analogously for all other axioms of a CBC-algebra. �

Now, we can prove the completeness lemma for CBC.

Lemma 4. If v(Γ � ∆) is valid in every CBC-model, then Γ � ∆ is provable in
CBC.

Proof. Let v(Γ � ∆) be valid in every CBC-model. Noting that a Lindenbaum
algebra of CBC is a CBC-algebra, we define the mapping v as follows:

v(α) = |α|, for every α ∈ F

v(γ1, . . . , γn � δ1, . . . , δm) is |γ1 · . . . · γn| � |δ1 + · · ·+ δm|
v(γ1, . . . , γn �) is |γ1 · . . . · γn| � |0|
v(� δ1, . . . , δm) is |1| � |δ1 + · · ·+ δm|

v(�) is |1| � |0|.
The mapping v is well defined and it is a valuation, since it satisfies every

condition from the definition of the valuation. Therefore, 〈LindC, v〉 is a CBC-
model.

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 61

We show that if v(γ1, . . . , γn � δ1, . . . , δm), for n � 1 and m � 1, is valid in
〈LindC, v〉, then γ1, . . . , γn � δ1, . . . , δm is provable in CBC.

Suppose that v(γ1, . . . , γn � δ1, . . . , δm) is valid in 〈LindC, v〉. Then:

1. |γ1 · . . . · γn| � |δ1 + · · ·+ δm| (definition)
2. |γ1 · . . . · γn| = |γ1 · . . . · γn| ∧ |δ1 + · · ·+ δm| (1)
3. |γ1 · . . . · γn| = |(γ1 · . . . · γn) ∧ (δ1 + · · ·+ δm)| (2)
4. γ1 · . . . · γn � (γ1 · . . . · γn) ∧ (δ1 + · · ·+ δm) and

(γ1 · . . . · γn) ∧ (δ1 + · · ·+ δm) � γ1 · . . . · γn (3, Lemma 2)
5. γ1 · . . . · γn � δ1 + · · ·+ δm (4)
6. γ1, . . . , γn � δ1, . . . , δm (5, cut).

We proceed analogously when v(Γ �) is valid in 〈LindC, v〉, where Γ is a non-
empty multiset, or when v(� ∆) is valid in 〈LindC, v〉, where ∆ is a non-empty
multiset (note that v(�) is not valid in 〈LindC, v〉). �

We prove the soundness and completeness results for any other sequent system
in a perfectly analogous way.

Cut is an admissible rule in CBC, CBCKc , CBCW c and in their single-conclu-
sion variants. (In the absence of contraction, to show that every proof with a single
cut, which is the last rule of the proof, can be transformed, in the same system, to
a proof with the same endsequent without cuts, we proceed by induction on 〈d, ρ〉,
lexicographically ordered, where d is the degree and ρ is the rank of our cut; in
CBCW c , instead of cut, we eliminate mix, as above, similarly as in [2].) Therefore,
in our systems, every sequent which is derivable with, is also derivable without cut.
We shall use this fact in formulating corresponding tableau systems.

Permutation is only implicit rule in CBC, CBCKc , CBCW c and in their single-
conclusion variants. Next, we shall define the system CBCK (and its single conclu-
sion variant) which is equivalent to CBCKc , where weakening is implicit, too.

First we shall prove the following lemma.

Lemma 5. Every proof in CBCKc can be transformed into a proof with the
same endsequent in CBCKc , where the upper sequent of every weakening is either
an axiom or the lower sequent of another weakening.

Proof. Let S be the initial segment of a proof in CBCKc , with the single
application of weakening, which is the last rule in S. By a straightforward induction
on the length of S we can prove that S can be transformed into the proof with the
same endsequent in CBCKc , where none application of weakening is immediately
preceded either by a rule for a connective or by a rule for a constant. For example,
if weakening is immediately preceded by a rule (→ r) in S, we shall use the following
reduction step:

π

α, Γ � β, ∆

Γ � α → β, ∆
(→ r)

Γ � α → β, ∆, ϕ
(k r) �→

π

α, Γ � β, ∆

α, Γ � β, ∆, ϕ
(k r)

Γ � α → β, ∆, ϕ
(→ r)

We proceed similarly when the upper sequent of weakening is the lower sequent
of either any other rule for a connective or a rule for a constant in CBCKc . �

62 ISAKOVIĆ ILIĆ

Definition 5. CBCK is the multiple-conclusion sequent system for BCK logic,
whose postulates are the following axioms:

Γ, α � α, ∆ (Id)

Γ � 1, ∆ (1 r)

Γ, 0 � ∆ (0 l)

together with the rules for constants and the rules for connectives of the system
CBC.

Directly from Lemma 5 and the Cut-Elimination Theorem for CBCKc it fol-
lows that CBCKc and CBCK are equivalent systems (and their single conclusion
variants, also). Furthermore we note that every upward derivation of Γ � ∆ (where
we start from Γ � ∆ and apply the rules of the sequent system from the bottom up)
is finite and the total number of them is finite. Therefore CBCK, CBC and their
single-conclusion variants, are decidable systems: Γ � ∆ is provable iff at least one
of the attempted upward derivations is the proof. We should note that the same
decision procedure can be applied to every cut-free, contractionless sequent system,
à la Gentzen, which is either without permutation or the permutation is implicit
in it.

Now we shall define the system CBCW, which is equivalent to CBCW c , where
contraction is implicit (as well as permutation) and we shall show that CBCW is
decidable. First, we shall limit applications of contraction (preserving soundness
and completeness of CBCW c) according to Kripke’s idea [5] to allow a contraction
of the conclusion of a rule, only if the same sequent could not be obtained by
contracting the premises only.

We shall use limCBCW c to denote the system CBCW c , where contraction is
limited as above. To show that limCBCW c is decidable system, we shall use tech-
niques from [6], where the Kripke’s idea has been exploited in formulating the
decision procedure for a single-conclusion sequent system for relevant logic.

It is easy to show that every sequent which is derivable in CBCW c is also
derivable in limCBCW c , and vice versa. Therefore these two systems are equivalent.

It will be illustrative to see how some (upward) derivations in limCBCW c look
like. For example, we construct the proof of α→ (α→ β) � α→ β in limCBCW c ,
as follows:

α � α

α � α β � β

α, α → β � β
(→ l)

α, α, α → (α → β) � β

α, α → (α → β) � β
(w l)

α → (α → β) � α → β
(→ r)

(→ l)

On the other hand, we can prove (using only a finite number of steps in every
upward derivation) that α · α � α ∧ α is not provable in limCBCW c .

α · α � α ∧ α may be:

1. the conclusion of the rule (· l), of the form:
α, α � α ∧ α

α · α � α ∧ α
(· l)

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 63

2. the conclusion of the contraction of the form:
α · α, α, α � α ∧ α

α · α, α · α � α ∧ α

α · α � α ∧ α
(w l)

(· l)

3. the conclusion of the rule (∧ r), of the form:
α · α � α α · α � α

α · α � α ∧ α
(∧ r)

4. the conclusion of the contraction of the form:
α · α � α, α ∧ α α · α � α, α ∧ α

α · α � α ∧ α, α ∧ α

α · α � α ∧ α
(w r)

(∧ r).

The derivation 1, may be continued as follows:

1.1.
α, α � α α, α � α

α, α � α ∧ α

α · α � α ∧ α
(· l)

(∧ r) 1.2.
α, α � α, α ∧ α α, α � α, α ∧ α

α, α � α ∧ α, α ∧ α

α, α � α ∧ α

α · α � α ∧ α
(· l)

(w r)

(∧ r)

Since α, α � α in 1.1, cannot be the lower sequent of either any rule for a
constant or any rule for a connective in limCBCW c (for α = 1) and since it is not
an axiom, the derivation at 1.1 is finished. α · α � α ∧ α is not proved.

In the derivation 1.2, α, α � α, α ∧ α can only be the lower sequent of the

rule (∧ r), of the form:
α, α � α, α α, α � α, α

α, α � α, α ∧ α
(∧ r) (in limCBCW c it cannot be the

endsequent of the derivation:
α, α � α, α, α ∧ α α, α � α, α, α ∧ α

α, α � α, α ∧ α, α ∧ α

α, α � α, α ∧ α
(w r)

(∧ r)), therefore the

derivation 1.2 cannot be the endsegment of any proof.
We saw that every derivation in limCBCW c which begins like 1, finishes (after

the finite number of steps) without giving the proof. We proceed analogously in all
other cases.

Now we shall show that every cut-free derivation in limCBCW c finishes after
the finite number of steps, and that there is only the finite number of them, i.e.,
we shall show that limCBCW c is decidable.

We shall say that Γ′ � ∆′ and Γ � ∆, where Γ′, ∆′, Γ and ∆ are multisets of
formulae, are cognate iff exactly the same formulae occur in Γ and Γ′, and exactly
the same formulae occur in ∆ and ∆′ (for example, α � β, α, α � β and α � β, β
are three different, cognate sequents). We shall call the class of all sequents cognate
with a given sequent, a cognation class.

First we note that limCBCW c has the subformula property, saying that for any
provable sequent Γ � ∆, there is a proof of Γ � ∆ in limCBCW c (a cut-free proof),
such that all formulae occurring in this proof are subformulae of formulae from
Γ � ∆. Therefore, for every provable sequent, there is a proof (at least one cut-free
proof) where only the finite number of cognation classes occur. Now it is clear that
if we want to show that every upward derivation in limCBCW c is finite, it is enough
to show that only the finite number of sequents from each cognation class, can be
derived in every branch. Therefore, it is enough to prove the following lemma.

Lemma 6. Let σ = S0, S1, . . . be the sequence of cognate sequents. If σ is
W -normal in the sense: for no i < j, Si is the contraction of Sj, then σ is finite.

64 ISAKOVIĆ ILIĆ

Proof. Let σ = S0, S1, . . . be the W -normal sequence of cognate sequents,
and let γ1, γ2, . . . , γs be all formulae which occur in σ. Let σ′ = S′

0, S
′
1, . . . be the

sequence of sequents, which is obtained when we rename the formulae from σ, as
follows: every appearance of γ1, in the antecedent of a sequent, is substituted for
α1, and in the succedent of a sequent, for β1; we proceed similarly for γ2, . . . , γs. We
note that all formulae, which occur in σ′ are α1, . . . αl, β1, . . . , βd, l + d = n � 2s.

σ′ is the W -normal sequence of cognate sequents. We wish to prove that σ′ is
finite. We proceed by the induction on n (n is the number of different formulae
occurring in σ′). Let n = 1. Then the claim is immediate, since the number of
sequents, which belong to a W -normal sequence and which are built of repeated
occurrences of only one formula, is finite.

Let n > 1 and let ϕ be any formula from σ′. Let σ′′(ϕ) = D0,D2, . . . be the
sequence of sequents from σ′, which is defined as follows. Let S′

k be the first sequent
from the left in σ′ that contains ϕ. Then D0 = S′

k; if Dm is defined and if Dm = S′
j ,

then Dm+1 is the first sequent from the left in S′
j+1, S

′
j+2, . . . , in which the number

of occurrences of ϕ is greater than or equal to the number of occurrences of ϕ in Dm.
(For example, if σ′ is the sequence of sequents: α1, α1, α2 � β1, β2, β2, α1, α2, α2 �
β1, β1, β2, α1, α2, α2 � β1, β2, β2, then σ′′(α1) = α1, α1, α2 � β1, β2, β2; σ′′(α2) =
σ′.)

We wish to prove that σ′′(ϕ) is finite. Let σ′′
ϕ be the sequence of sequents

which is obtained by deleting all occurrences of ϕ in σ′′(ϕ). Since σ′′
ϕ is the W -

normal sequence of cognate sequents (σ′ is W -normal), by the induction hypothesis
it follows that σ′′

ϕ is finite. Therefore, σ′′(ϕ) is finite, and so is σ′. �

We should note that this algorithm could not be applied to sequent systems
with contraction in the absence of permutation, since the subformula property does
not hold there (cut is not an admissible rule there).

Now we give the postulates of the system CBCW, whose derivations are defined
from the bottom up. We shall use Θ1 to denote the multiset of formulae from Θ,
which appear exactly once in Θ.

Axioms of CBCW are the axioms of the system CBC.
Rules for propositional constants and connectives in CBCW are:

Γ � ∆

Γ, 1 � ∆
(1 l)

Γ � ∆

Γ � 0, ∆
(0 r)

Θ1 � α, Λ1 Θ2, β � Λ2

Θ, α → β � Λ
(→ l)

Γ, α � β, Ω1

Γ � α → β, Ω
(→ r)

Ω1, α, β � ∆

Ω, α · β � ∆
(· l)

Λ1 � α, Θ1 Λ2 � β, Θ2

Λ � α · β, Θ
(· r)

Θ1, α � Λ1 Θ2, β � Λ2

Θ, α + β � Λ
(+ l)

Γ � α, β, Ω1

Γ � α + β, Ω
(+ r)

Ω1, α � ∆

Ω, α ∧ β � ∆

Ω1, β � ∆

Ω, α ∧ β � ∆
(∧ l)

Γ � α, Ω1 Γ � β, Ω1

Γ � α ∧ β, Ω
(∧ r)

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 65

Ω1, α � ∆ Ω1, β � ∆

Ω, α ∨ β � ∆
(∨ l)

Γ � α, Ω1

Γ � α ∨ β, Ω

Γ � β, Ω1

Γ � α ∨ β, Ω
(∨ r)

− Θ1, Θ2 = Θ
− Θ1 = Σ, Θ′, Θ2 = Σ, Θ′′,

Θ = Σ, Θ′, Θ′′, Σ ⊆ Θ1

− Θ1, Θ2 = Θ, α ∗ β,
provided that α ∗ β doesn’t appear in Θ

− Θ1 = Σ, Θ′, Θ2 = Σ, Θ′′,
Θ, α ∗ β = Σ, Θ′, Θ′′, Σ ⊆ Θ1,
provided that α ∗ β doesn’t appear in Θ

− Θ1 = α ∗ β, Σ, Θ′, Θ2 = α ∗ β, Σ, Θ′′,
Θ = Σ, Θ′, Θ′′, Σ ⊆ Θ1,
provided that α ∗ β doesn’t appear in Θ

− Λ1, Λ2 = Λ
− Λ1 = Σ, Λ′, Λ2 = Σ, Λ′′,

Λ = Σ, Λ′, Λ′′, Σ ⊆ Λ1

− Ω1 = Ω
− Ω1 = Ω, α ∗ β, provided that

α ∗ β doesn’t appear in Ω

∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

→, in (→ l) and (→ r)

·, in (· l) and (· r)

+, in (+ l) and (+ r)

∧, in (∧ l) and (∧ r)

∨, in (∨ l) and (∨ r)

A derivation in CBCW is called W -normal if every branch of that derivation
contains no Γ � ∆ below Γ′ � ∆′, such that Γ � ∆ is a contraction of Γ′ � ∆′.

Directly from the above consideration it follows that every W -normal derivation
in CBCW is finite. Furthermore, the total number of them for any sequent Γ � ∆,
is finite. Therefore, CBCW is decidable.

We should mention that in every upward derivation of any contractionless sys-
tem, every (appearance of a) formula is allowed to be used at most once. From
this point of view, contractionless logics can be looked upon as resource sensitive
logics.

3. Tableaux for linear, BCK and relevant logic

For determining provability, we also formulate tableau systems for linear, BCK
and relevant logic. The basic configuration of our tableau systems will be a finite
tree whose nodes, which are not leaves, have either one or two successor nodes.
Each tree will have exactly one root, which we call the initial node of a tree and
at least one leaf, which we call the end node of a tree. The nodes of a tree which
have exactly two successor nodes, will be called the branching nodes.

A complete branch of a tree is the sequence of tree-nodes whose initial node is
the initial node of a tree, whose end node is the end node of a tree and whose every
node (with the exception of exactly one: the end node of a branch) immediately
precedes the tree-node which is the next node in the branch. Furthermore, we
say that a sequence of tree-nodes is a branch, if it is the initial segment of some
complete branch.

The section of a tree is the sequence of tree-nodes N1, . . . , Ns, such that:
1. N1, . . . , Ns are consecutive nodes from a branch of a tree,
2. N1 is either the root of the tree or an immediate successor node of a branch-

ing node,
3. Ns is either the end node of a tree or a branching node,
4. N1, . . . , Ns−1 are non-branching nodes.
Let τ be a tree. The initial section of τ , begins with the root of τ ; its end

section, ends with a leaf of τ .

66 ISAKOVIĆ ILIĆ

Every section of a tree is associated with an o-sequence, which consists of
(possible several) occurrences of 1 and/or 2, as follows:

1. 1 is the o-sequence of the initial section of a tree;
2. if o1o2 . . . on is an o-sequence of a section, which is not the end section of a

tree (the end node of our section is a branching node, then), then its left successor
section is associated with o1o2 . . . on1 (obtained by concatenating o1o2 . . . on and 1)
and its right successor section is associated with o1o2 . . . on2.

Let τ be a tree and let S be a section in τ . Since there exists only one branch
in τ , whose end section is S, every branch in τ is uniquely determined by its end
section. Therefore, with every branch of a tree, we associate the o-sequence of its
end section. Furthermore, with every subtree of a tree, we associate the o-sequence
of its initial section. An empty branch and an empty tree are associated with ∅.

We also define a part of a tree as follows. Let t be an o-sequence of a section
in τ . Then a part t of τ is the tree which is obtained when the initial segment of a
subtree t is substituted for the branch t.

For example, in the following tree (o-sequences of corresponding sections are
given within parentheses):

N1

N2

(1)

��

(11)
N3

N4

N5 (12)

��

(111) N6 N7

N8

(112)

the section 11 consists of the nodes N3 and N4, the branch 11 consists of N1, N2,
N3 and N4, the subtree 11 consists of N3, N4, N6, N7 and N8 and the part 11
consists of N1, N2, N3, N4, N6, N7 and N8.

Let ϕ be a propositional formula. Then sϕ, where s ∈ {+,−} is a signed
formula: +ϕ is positive and −ϕ is negative.

Tableaux will be defined as trees to whose nodes t-formulae have been assigned.
A t-formula of a tableau τ is of the form sϕz, where sϕ is a signed formula and z is
either an o-sequence of a section in τ or ∅, with the following meaning: the signed
formula sϕ is not allowed to be developed in the part z of τ .

We shall use Σ, Σ1, . . . , Π, . . . , Φ, . . . , to denote finite sequences of t-formulae.
A sequence Σ,Π is obtained by concatenating Σ and Π.

We say that a sequence of signed formulae s1α1, . . . , snαn corresponds to a se-
quence of t-formulae F1, . . . , Fn, and vice versa, iff Fi = siαizi, for every
i ∈ {1, . . . , n}. We shall use S(Σ) to denote a sequence of signed formulae which
corresponds to Σ.

Let S be a sequence of signed formulae. We shall use Perm(S) to denote a
sequence of signed formulae which is obtained by permuting the elements of S.

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 67

Furthermore, we shall use Perm(Σ) to denote a sequence of t-formulae which is
obtained by permuting the elements of Σ.

Tableau systems consist of tableau rules. Every tableau rule is either a branch

closure rule, which is of the form
Σ

− (used) or an expansion rule (which is either a

rule for a constant or a rule for a connective), which has one of the following forms:
Σ

− (used), when the rule generates no new nodes, or
Σ

Σ1
(used), when the rule

generates some new nodes, enlarging the end section of some complete branch with

Σ1, or
Σ

Σ1|Σ2
(used), when the rule generates some new nodes, branching some

complete branch, such that Σ1 belongs to its left successor section and Σ2 belongs
to its right successor section. The meaning of ‘used’ will be given later.

Now we define tableaux as follows.

Definition 6. Let TS be a tableau system and let S = s1 α1, . . . , sn αn be a
sequence of signed formulae. Let t be either an o-sequence or ∅. We define a tableau
of S in TS as follows.

s1 α1 z1

...
sn αn zn

where zi = in(t) for at least one i ∈ {1, . . . , n}, is a tableau of S in TS. If zi = ∅,
for every i ∈ {1, · · · , n}, then we call it the initial tableau of S.

If τ is a tableau of S in TS, then another tableau of S in TS is generated when
a rule of TS is applied at the end node N of a complete branch in τ , to some
node(s) from the same branch (to N or/and to some node(s) above N). We apply
rules of TS until either a branch closure rule has been applied to every complete
branch of our tableau, or until a tableau, where none of the rules from TS can be
applied, has been derived. (It should be emphasized that after the application of a
branch closure rule no further construction can take place in that branch.)

Instead of a ‘node’, above, we may also say a t-formula.

A node at which we apply a rule is called the marked node. Remember that
we always apply a rule at the end node of a complete branch. We note that after

the application of a rule which is of the form
Σ

− (used), no new nodes have been

generated, therefore some nodes may be marked more than once.
Let t be a complete branch of a tableau τ . We shall say that t is finished in a

tableau system TS, if none of the rules from TS can be applied to any node from t.
If a branch closure rule has been applied to some node(s) in a complete branch

t, then t is closed. If every complete branch of a tableau τ is closed, then τ is closed.
Let t be an o-sequence of a section in a tableau τ . We shall say that a branch

t (which is not necessary complete) in τ closes if:
1. t is a closed complete branch in τ , or
2. every complete branch of the part t of τ is closed, or

68 ISAKOVIĆ ILIĆ

3. there is a derivation from τ to a tableau τ ′, such that every complete branch
of the part t of τ ′ is closed.

A closed tableau of a sequence of signed formulae S in TS is the proof of S in
TS. We shall say that a tableau τ closes in TS if either τ is closed in TS or there
is a derivation in TS from τ to a closed tableau.

The leftmost complete branch of a tableau, which is not closed, will be called
the current branch of a tableau derivation. In our tableau derivations, we shall
always apply the rule at the end node of the current branch of a tableau.

A node (a t-formula) to which we apply a rule, is called the principal node (the
principal t-formula) of that rule. When a rule is applied to a t-formula F from a
complete branch t of a tableau τ , we say that the signed formula of F is used in the
branch t. Since linear and BCK are resource sensitive logics, this signed formula is
not allowed to be used again, either in the branch t, or in every subtree t, which
could be generated in a further derivation (i.e., it cannot be used in the part t of τ
and in the part t of any other tableau generated from τ in any further derivation).
Therefore, when we apply a rule to a t-formula F = sϕ z from a complete branch
t, we set z to t (and possible zi of some other t-formulae si ϕi zi from the branch
t), to denote that the signed formula of F cannot be used again in the part t of
the current and any further tableau of that derivation. Settings are given in ‘used’,
(see above) which is either empty or is of one of the following forms (t and g are
o-sequences):

– t, which means: set z of the principal t-formula(e) to t,
– tg, which means: set zi of every t-formulae si ϕi zi from the branch g to t.
We shall say that a t-formula is unused in a tableau τ if it is of the form sϕ ∅.
Let p be an o-sequence. We shall use in(p) to denote the initial subsequence of

p (note that ∅ is not the initial subsequence of any o-sequence).
A t-formula F = sϕ z, which belongs to the section g of a tableau τ , cannot be

used anywhere in τ , if either z = g or z = g2 . . . 2. This is clear for z = g, since then
F belongs to the part g of τ , where it cannot be used. On the other hand, z may
be set to g2 . . . 2 only when a branch g2 . . . 2 is the current branch of our tableau
derivation. Therefore, before the application of the rule, which sets z to g2 . . . 2, F
belongs only to the current branch g2 . . . 2, of our tableau. After the application of
that rule, it cannot be used there (and in the part g2 . . . 2 of any tableau generated
in a further derivation) any more. Therefore, sϕ z, where z = g or z = g2 . . . 2,
will be called invisible in τ (although invisible nodes can be deleted, we keep them
to avoid empty sections; however in the program implementation, we delete those
nodes and change o-sequences of some sections, if necessary). A t-formula which is
not invisible in τ , is called a visible t-formula.

We shall use Σvis (Σinvis) to denote the sequence of visible (invisible) t-formulae
from Σ, and Σt to denote all t-formulae from a branch t of a tableau.

We now give the postulates of the tableau system for BCK logic, namely
TCBCK:

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 69

A complete branch t closure rules, z1 = in(t), z2 = in(t), z = in(t):

(− 1) :

Σ
− 1 z

Π

− (tt) (+ 0) :

Σ
+ 0 z

Π

− (tt)

(−�) :

Σ
− � z

Π

− (tt) (+⊥) :

Σ
+ ⊥ z

Π

− (tt)

(+α,−α) :

Σ
s α z1

Φ
s α z2

Π

− (tt) s =

{
+, if s = −
−, if s = +

Rules for constants, t is the current branch, z = in(t):

(+ 1) :

Σ
+ 1 z

Π

− (t) (− 0) :

Σ
− 0 z

Π

− (t)

Rules for connectives (t is the current branch, z = in(t); t1 (t2) is the o-
sequence obtained by concatenating t and 1 (2); Φ1 and Φ2 are sequences of
unused t-formulae, which are formulated as follows: for every visible t-formula
(sϕ z) from the branch t, we formulate another unused t-formula (sϕ ∅) which
belongs either to Φ1 (i.e., to the branch t1), or to Φ2 (i.e., to the branch t2)):

(+→) :

Σ
+ α → β z

Π

Φ1

− α ∅
∣∣∣∣ Φ2

+ β ∅
(tt) (−→) :

Σ
− α → β z

Π

+ α ∅
− β ∅

(t)

(+ ·) :

Σ
+ α · β z

Π

+ α ∅
+ β ∅

(t) (− ·) :

Σ
− α · β z

Π

Φ1

− α ∅
∣∣∣∣ Φ2

− β ∅
(tt)

(+ +) :

Σ
+ α + β z

Π

Φ1

+ α ∅
∣∣∣∣ Φ2

+ β ∅
(tt) (−+) :

Σ
− α + β z

Π

− α ∅
− β ∅

(t)

70 ISAKOVIĆ ILIĆ

(+∧) :

Σ
+ α ∧ β z

Π

+ α ∅ (t),

Σ
+ α ∧ β z

Π

+ β ∅ (t) (−∧) :

Σ
− α ∧ β z

Π

− α ∅ ∣∣ − β ∅ (t)

(+∨) :

Σ
+ α ∨ β z

Π

+ α ∅ ∣∣ + β ∅ (t) (−∨) :

Σ
− α ∨ β z

Π

− α ∅ (t),

Σ
− α ∨ β z

Π

− β ∅ (t)

We note that after the application of a rule for a constant, no new nodes of a
tableau have been generated, therefore a marked node of our tableau, at which we
apply a rule for a constant is also a node at which we apply the next rule of our
tableau derivation, i.e., this node is marked more than once.

We also note that the branch closure rules for 1 and 0 coincide with the rules
for � and ⊥, respectively. It is expected, since 1 and � and 0 and ⊥ are equivalent
in BCK logic. Therefore, we can exclude both � and ⊥, together with the rules for
� and ⊥ from TCBCK. However in their presence, a tableau system for linear logic
(where 1 differs from � and 0 from ⊥), TCBC, can be defined: TCBC, has the
postulates of TCBCK above, satisfying ((Σ,Φ,Π)t)vis in (+α,−α) and ((Σ,Π)t)vis

in (− 1) and (+ 0) are empty.
Furthermore, we define a tableau system for relevant logic, TCBCW, from

TCBC, as follows. The axioms and the rules for constants in TCBCW are the same
as in TCBC. We change the rules for connectives in TCBC, to allow applications
of contraction as discussed in the previous section. We shall use Σ1 to denote the
sequence of all t-formulae from Σ, whose corresponding signed formulae appear
exactly once in S(Σ).

We note that in the rules (+→), (− ·) and (+ +), in TCBC (and TCBCK), Φ1

and Φ2 are such that:
1. S((Σ,Π)vis) = Perm(S(Φ1,Φ2)).
In TCBCW, we also allow Φ1 and Φ2 to be as follows (we use F to denote the

principal t-formula of the rule):
2. S(Φ1) = S(Ω,∆1), S(Φ2) = S(Ω,∆2), Ω ⊆ ((Σ,Π)vis)1 and Perm(Ω,∆1,∆2)

= (Σ,Π)vis.
3. S(Φ1,Φ2) = Perm(S(F, (Σ,Π)vis)), provided that S(F) does not appear in

S((Σ,Π)vis).
4. S(Φ1) = S(Ω,∆1), S(Φ2) = S(Ω,∆2), Ω ⊆ ((Σ,Π)vis)1 and Perm(Ω,∆1,∆2)

= Perm(F, (Σ,Π)vis), provided that S(F) does not appear in S((Σ,Π)vis).
5. S(Φ1) = S(F,Ω,∆1), S(Φ2) = S(F,Ω,∆2), where Ω ⊆ ((Σ,Π)vis)1 and

Perm(Ω,∆1,∆2) = (Σ,Π)vis, provided that S(F) does not appear in S((Σ,Π)vis).
The ‘used’ in the rules (+→), (− ·) and (+ +) of TCBCW is the same as in

TCBC.
In all other rules, we alow ’used’ to be either (t) (as in TCBC) or empty,

provided that S(F) does not appear in S((Σ,Π)vis).

Our tableaux are very closely related to upward sequent derivations. In the
proof of the following theorem, we shall see how the upward derivation of a sequent

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 71

γ1, . . . , γn � δ1, . . . , δm in CBCK can be transformed into the tableau derivation of
the sequence +γ1, . . . ,+γn,−δ1, . . . ,−δm in TCBCK, and vice versa.

We shall say that in a tableau τ , a node N1 is the predecessor node of a node
N2 iff there is a branch in τ which contains both N1 and N2, such that N1 is above
N2 (we also say that N2 is the successor node to N1, then).

Let τ be a tableau of S in TCBCK and let N be a marked node in τ , which
is marked k � 1 times. Let t be a branch of τ (which is not necessarily complete)
whose end node is N . Let Σ = F1, . . . , Fm be the sequence of all t-formulae from
t (Fm is assigned to N) and let S(Σ) = f1, . . . , fm (remember that S(Σ) is the se-
quence of signed formulae which corresponds to Σ). Then, for every j ∈ {1, . . . , k},
we define the sequence of signed formulae Unusedj(N), as follows: Unusedj(N) is
the sequence of signed formulae from f1, . . . , fm which are unused in t until the
moment we mark N for the j-th time.

For example:
N1 : − (α · β. · γ) · 1 → α 1 Unused1(N1) = − (α · β. · γ) · 1 → α

N2 : + (α · β. · γ) · 1 1

N3 : − α 1 Unused1(N3) = + (α · β. · γ) · 1,−α

N4 : + α · β. · γ 1

N5 : + 1 1 Unused1(N5) = −α, + α · β. · γ, + 1

N6 : + α · β 1

N7 : + γ 1 Unused1(N7) = −α, + 1, + α · β, + γ

Unused2(N7) = −α, + α · β, + γ

N8 : + α 1

N9 : + β 1 Unused1(N9) = −α, + γ, + α, + β

At the end of our derivation, a branch closure rule has been applied to −α ∅
and +α ∅ at +β ∅.

Let S be a sequence of signed formulae. If +α1, . . . ,+αm are all positive and if
−β1, . . . ,−βn are all negative signed formulae from S, then Sequent(S) (a sequent
of S) is α1, . . . , αm � β1, . . . , βn, where α1, . . . , αm and β1, . . . , βn are multisets of
formulae (each of them may be empty).

We now show that CBCK and TCBCK are equivalent systems. Namely, we
shall prove the following theorem:

Theorem 1. The sequent γ1, . . . , γn � δ1, . . . , δm is provable in CBCK iff there
is a proof of +γ1, . . . ,+γn,−δ1, . . . ,−δm in TCBCK.

For the proof we shall use the following lemma:

Lemma 7. Let τ be a closed tableau of S in TCBCK and let N be a marked
node in τ . If N is marked m � 1 times in τ , then for every j ∈ {1, . . . , m}, a
sequent Sequent(Unusedj(N)) is provable in CBCK.

Proof. Let N be a marked node in a closed tableau τ of S in TCBCK. We
proceed by induction on n, where n is the number of marked nodes which succeed
N in τ . First we note that if N is marked m > 1 times, then rules for constants have

72 ISAKOVIĆ ILIĆ

been applied m− 1 times to N , before a rule for a connective or a branch closure
rule has been applied to N . Since every Sequent(Unusedi(N)) can be derived
from Sequent(Unusedi+1(N)) by the application of either (1 l) or (0 r), for every
i ∈ {1, . . . , m− 1}, it is enough to prove that Sequent(Unusedm(N)) is provable in
CBCK.

Let n = 0 (note that N is the end node of τ , then). If N is marked m � 1 times,
then the m-th applied rule at N is a branch closure rule. We have the following
cases. If the m-th applied rule at N is (+α,−α), then Sequent(Unusedm(N)) is of
the form Γ, α � α,∆, i.e., it is the axiom of CBCK, therefore it is provable. We
proceed analogously when any other branch closure rule has been applied at N .

Let n > 0 and let N be marked m � 1 times. Then we have the following
cases. Let the m-th applied rule at N be (+ →) and let it be applied to a node
M to which +α → β z is assigned. M is either N or the predecessor node of N .
Then we wish to show that Sequent(Unusedm(N)) is provable in CBCK.

A node N1, to which a t-formula −α ∅ is assigned, immediately after the appli-
cation of the rule (+ →) at N to M , is our next marked node in the branch t1 (see
the formulation of rule (+ →) in TCBCK). Let the m1-th, m1 � 1, applied rule at
N1 be a rule which is not not a rule for a constant. Since N1 is followed by less than
n succeeding marked nodes, by the induction hypothesis Sequent(Unusedm1(N1)) is
provable in CBCK. We proceed analogously to show that Sequent(Unusedm2(N2))
is provable in CBCK, where N2 is a node, to which a t-formula +β ∅ is assigned
immediately after the application of the rule (+ →) at N to M and where m2 � 1
is such that the m2-th applied rule at N2 is not a rule for a constant.

If Sequent(Unusedm1(N1)) = Γ1 � α,∆1 and if Sequent(Unusedm2(N2)) =
Γ2, β � ∆2, then Sequent(Unusedm(N)) = Γ, α → β � ∆, where Γ = Γ1,Γ2,Σ,
such that Σ is either an empty multiset or a multiset which consists of repeated
occurrences of 1 only, and ∆ = ∆1,∆2,Π, such that Π is either an empty multiset
or a multiset which consists of repeated occurrences of 0 only. Now it is clear that
our sequent Sequent(Unusedm(N)) is provable in CBCK:

π1

Γ1 � α,∆1

· · ·
possible applications
of the rules (1 l) and
(0 r)

Γ1,Σ1 � α,∆1,Π1

π2

Γ2, β � ∆2

· · ·
possible applications
of the rules (1 l) and
(0 r)

Γ2, β,Σ2 � ∆2,Π2

Γ1,Γ2,Σ, α→ β � ∆1,∆2,Π
(→ l)

where Σ1,Σ2 = Σ and Π1,Π2 = Π.
We proceed analogously in all other cases. �

Proof of Theorem 1. Let D be the proof of γ1, . . . , γn � δ1, . . . , δm in
CBCK (γ1, . . . , γn and δ1, . . . , δm are multisets of formulae). We formulate the
initial tableau of S = +γ1, . . . ,+γn,−δ1, . . . ,−δm in TCBCK:

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 73

+ γ1 ∅
.
..

+ γn ∅
− δ1 ∅

.

.

.
− δm ∅

By induction on n, where n is the length of D (n is the total number of sequents
in D), we wish to show that this closes in TCBCK.

Let n = 1. Then our sequent is an axiom. We proceed as follows. If our
sequent is an axiom Γ, α � α,∆ (Id), then a tableau which begins with +α1z1, . . . ,
+αn−1zn−1,+αzn,−αz′1,−β2z

′
2, . . . ,−βmz′m, where zi = in(t) for every i={1, ..., n}

and z′j = in(t) for every j = {1, . . . , m}, for either t = ∅ or any o-sequence t, is
closed by the application of the rule (+α,−α) to +αzn and −αz′1. We proceed
analogously when our sequent is one of the axioms (1 r) or (0 l) ((� r) or (⊥ l)).

Suppose n > 1. Then our sequent is the lower sequent of an inference rule in
CBCK. We have the following cases.

Let D be of the following form:

π1

γ1, . . . , γi−1 � α, δ1, . . . , δj

π2

γi, . . . , γn, β � δj+1, . . . , δm

γ1, . . . , γn, α → β � δ1, . . . , δm

(→ l)

Then we consider the tableau that begins with:

Σ
+ α → β z

Π

such that S((Σ,Π)vis
t) = Perm(+γ1, . . . ,+γn,−δ1, . . . ,−δm) and z = in(t), for

either t = ∅ or any o-sequence t. We wish to show that this tableau closes. We
apply the rule (+ →) to + α→ β z:

Σ
+ α → β z

Π

+ γ1 ∅
.
.
.

+ γi−1 ∅
− δ1 ∅

..

.

− δj ∅
−α ∅

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ γi ∅
.
.
.

+ γn ∅
− δj+1 ∅

..

.

− δm ∅
+ β ∅

(tt)

On inductive hypothesis, our tableau closes.
We proceed analogously when D ends with any other inference rule of CBCK.
Conversely, we wish to show that if there is a closed tableau τ of S = +γ1, . . . ,

. . . ,+γn,−δ1, . . . ,−δm, in TCBCK, then there is a proof of γ1, . . . , γn � δ1, . . . , δm

74 ISAKOVIĆ ILIĆ

in CBCK. We should note that the first marked node in our tableau is the node
N1 to which the t-formula −δmz is assigned (z = ∅ in the initial tableau of S).
However, directly from Lemma 7 it follows that a sequent Sequent(Unused1(N1)) =
γ1, . . . , γn � δ1, . . . , δm is provable in CBCK. �

A tableau system for classical logic, TCBCKW, consists of the axioms of
TCBCK, together with the rules for constants and the rules for connectives of
TCBCW. Tableau systems for single-conclusion logics are without the connective
+ and they satisfy the following condition: at any moment of a derivation, every
complete branch of a tableau contains at most one negative visible t-formula.

4. The general algorithm

We shall describe the algorithm which can be used for determining provability
in any of our logics. We shall use it for designing two theorem provers: the first
one, P1, searches for the proof in single- and multiple-conclusion Lambek logic and
in single- and multiple conclusion Lambek logic with weakening; the other one, P2

searches for the proof in single- and multiple-conclusion linear, BCK and relevant
logic, intuitionistic and classical logic. Here we shall describe P2, only.

We should mention that our prover is not the most efficient one: for every logic,
it is possible to formulate more efficient proof search. However, the advantage of
our approach is that, for a given input, we always get, as an output, the list of
structural rules, whose presence is necessary in the proof, if the given input is a
theorem of at least one of our logics (otherwise, the program exits either with the
message about syntactic incorrectness of our input, or with the message that our
input is a formula which is not a theorem in any of our logics).

The specific feature of our subtructural logics is the nondeterminism of their
derivations. Namely, for tableaux τ and τ ′, in a tableau system TS, where τ ′ is
obtained from τ by an application of a rule from TS, it is possible that τ closes
and τ ′ doesn’t (except when TS is a tableau system for either intuitionistic or
classical logic). This means that if the application of a rule to a t-formula in the
current branch leads to a closed tableau, then the application of a rule to some
other t-formula in the current branch need not. Furthermore, even when a tableau
of S closes in the presence of some structural rules or when it closes in a multiple-
conclusion logic, the derivation is not finished: we still wish to know if there is a
closed tableau of S, in the presence of some other structural rules or without any of
them or if there is a closed tableau of S in some single-conclusion logic. Therefore,
the use of backtracking is necessary, in designing the prover.

The structure that supports backtracking is MOGUCI. A node of the type MOGUCI
contains information about the tableau at the moment when the derivation becomes
nondeterministic (i.e., it contains the tableau at the moment we chose one possibil-
ity to continue the derivation, when at least two of them are available; furthermore,
all structural rules that have been used in the derivation until then, together with
the information whether the derivation has been in a single- or in a multiple-
conclusion logic, form the closure condition which we save in the closure fields;

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 75

algorithm uses several closure fields; closure fields of a node of the type MOGUCI are
some of them).

Our program (P2) always searches for a proof with the minimal closure con-
dition. Our minimal logic, where a given formula can be a theorem is the single-
conclusion linear logic. The minimal closure condition is defined as follows.

Definition 7. Let C1 and C2 be two closure conditions. If C1 gives the proof
in a single-conclusion logic and if C2 gives the proof in a multiple-conclusion logic,
then C1 is less than C2. Furthermore, if both C1 and C2 give the proof either in a
single- or in a multiple-conclusion logic, then C1 is less than C2 if either C1 is with
permutation only, or C2 is with permutation, weakening and contraction.

Our prover uses the system TCBCKW. However, if there is a proof of −ϕ in
TCBCKW, where every complete branch is closed using the axioms of TCBCW
(TCBC) only, and where at least one rule for a connective, which is not also the rule
for a connective in TCBC, is used, then −ϕ is the theorem in a multiple-conclusion
logic, in the presence of permutation and contraction, only, i.e., in TCBCW. On
the other hand, if there is a proof of −ϕ in TCBCKW, where at least one branch is
closed using an axiom of TCBCK, which is not the axiom of TCBC, also, and where
every applied rule for a connective is from TCBC only, then −ϕ is the theorem in
a multiple-conclusion logic, in the presence of permutation and weakening only,
i.e., in TCBCK. Furthermore, if there is a proof of −ϕ in TCBCKW, where every
complete branch is closed using the axioms of TCBCW (TCBC) only, and where
every applied rule for a connective is from TCBC only, then −ϕ is the theorem
in a multiple-conclusion logic, in the presence of permutation only, i.e., in TCBC.
Finally, if ϕ is without + and if every complete branch generated in the proof has
at most one visible negative t-formula, then our formula is provable in a single-
conclusion logic with permutation and/or weakening and/or contraction, due to
the above consideration.

Now we give the general algorithm. Our input gets the minus sign as prefix and
if it is syntactically correct, the associated binary tree of a given signed formula −ϕ
is produced. From the root of this tree, the initial tableau is generated. A proof
search procedure proceeds as follows.

1. If the current branch is closed, set the appropriate values in the closure
fields. If the current branch is closed and finished, then go to 7, else go to 2.

2. If the current branch is finished, but not closed, or empty, then go to 4, else
go to 3.

3. Pick up a t-formula to which we wish to apply a rule and form a new node
of the list moguci, containing the information about the rest of t-formulae that
could be picked up instead. If the rule can be applied to a picked up t-formula on
several equally applicable possibilities, we chose one, and form another node of the
list moguci, containing the information about the others. We apply the rule, then
go to 1.

4. If the list moguci is empty, then exit with the message “the formula ϕ is not
a theorem in any of corresponding logics”, else go to 5.

76 ISAKOVIĆ ILIĆ

5. If all possibilities for deriving the tableau in the first node of the list moguci,
are exhausted, then go to 6, else generate another new current state based on the
information from that node and go to 1.

6. Delete the first node of the list moguci. If the tableau of the deleted node
of the list moguci didn’t close in any of earlier derivations, then go to 4, else, set
the appropriate values in the closure fields and go to 7.

7. If the list moguci is empty, then go to 8, else go to 9.
8. If every complete branch of our tableau is closed, then exit with the message

“the formula ϕ is a theorem”, and give all structural rules needed in the proof, else
generate another current state and go to 1.

9. If the tableau from the first node of the list moguci, closes, then go to 10,
else take its leftmost open branch for the current branch and go to 1.

10. If all possibilities for deriving the tableau from the first node of the list
moguci are exhausted, then delete that node from the list, set the appropriate
values in the closure fields and go to 7, else form another current state based on
the information from that node and go to 1.

We shall illustrate our proof search procedure with the following simple exam-
ple. Namely, we shall prove the theorem: (α→ β)→ α.→ α.

At the beginning the initial tableau of − (α→ β)→ α.→ α is produced:

τ1 : − (α → β) → α. → α ∅

Here, only one rule can be applied, the rule (− →) to − (α→ β)→ α.→ α ∅:
τ2 : − (α → β) → α. → α 1

+ (α → β) → α ∅
−α ∅

Here, we can apply only one rule again, the rule (+ →) to + (α→ β)→ α ∅.
However it can be applied in several different ways. We chose one of them to derive
a tableau τ3 and we generate the first node of the list moguci to remember the
other possibilities.

τ3 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α → β ∅
∣∣∣∣ + α ∅
−α ∅

After the application of the rule (− →) to −α→ β ∅, the tableau τ4 is pro-
duced, whose every branch is finished, but the leftmost one is not closed, therefore
it is not the proof of our formula:

τ4 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α → β 11
+ α ∅
−β ∅

∣∣∣∣∣∣
+ α ∅
−α ∅

THEOREM PROVERS FOR SUBSTRUCTURAL LOGICS 77

Since the list moguci is not empty, we generate another tableau τ3, keeping the
remaining possibilities in the list moguci:

τ3 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α ∅
−α → β ∅

∣∣∣∣ + α ∅

Then we apply the rule (− →) to generate τ4:

τ4 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α ∅
−α → β 11
+ α ∅
−β ∅

∣∣∣∣∣∣∣∣
+ α ∅

The current branch (the leftmost one) is closed in the multiple-conclusion logic
with weakening. However the other one is finished, but it is not closed. Therefore
our tableau, again, is not a proof of our formula. Once more, we pick the (last)
information from the list moguci to generate another tableau τ3:

τ3 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α ∅
−α → β ∅

∣∣∣∣ −α ∅
+ α ∅

We note that the above tableau is derived in the presence of contraction and
we keep that information in the corresponding closure fields. Then again we apply
the rule (− →) to −α→ β ∅ to generate the final tableau of our derivation:

τ4 :

− (α → β) → α. → α 1
+ (α → β) → α 1
−α 1

−α ∅
−α → β 11
+α ∅
−β ∅

∣∣∣∣∣∣∣∣
−α ∅
+ α ∅

The leftmost branch is closed in the multiple-conclusion logic with weaken-
ing; the other one is closed unconditionally. Since the list moguci is empty, our
derivation is finished: our formula is a theorem in a multiple-conclusion logic with
permutation, contraction and weakening (i.e., in classical logic, only).

Acknowledgements. I would like to express my gratitude to Professors Zoran
Petrić and Miodrag Kapetanović for many useful suggestions. Furthermore, I am
grateful to the referees for very helpful comments.

78 ISAKOVIĆ ILIĆ

References

[1] V.M. Abrusci, Phase semantics and sequent calculus for pure noncomutative classical linear
propositional logic, J. Symbolic Logic 56:4 (1991), 1403–1451.

[2] G. Gentzen, Investigations into logical deduction; in: M. E. Szabo (Ed.), The Collected Papers
of Gerhard Gentzen, North-Holland, Amsterdam, 1969, pp. 68–131

[3] M. Isaković Ilić, Cut elimination and decidability for classical Lambek logic, Journal of Logic
and Computation 2007; DOI:10.1093/logcom/exm063

[4] P. Schroeder-Heister and K. Došen (Eds.), Substructural Logics, Oxford, Oxford University

Press, 1993.
[5] S. Kripke, The problem of entailment, abstract, J. Symbolic Logic 24 (1959), 234.
[6] G. Restall, An intruduction to Substructural Logics, Routledge, London, 2000.

Šumarski fakultet
Kneza Vǐseslava 1
11000 Beograd
Serbia
isakm@yubc.net

