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A LOGIC WITH HIGHER ORDER
CONDITIONAL PROBABILITIES

Zoran Ognjanović and Neboǰsa Ikodinović

Abstract. We investigate probability logic with the conditional probability
operators. This logic, denoted LCP , allows making statements such as: P�sα,

CP�s(α | β), CP�0(α | β) with the intended meaning “the probability of α
is at least s”, “the conditional probability of α given β is at least s”, “the
conditional probability of α given β at most 0”. A possible-world approach
is proposed to give semantics to such formulas. Every world of a given set
of worlds is equipped with a probability space and conditional probability is

derived in the usual way: P (α | β) =
P (α∧β)

P (β)
, P (β) > 0, by the (uncondi-

tional) probability measure that is defined on an algebra of subsets of possible
worlds. Infinitary axiomatic system for our logic which is sound and complete
with respect to the mentioned class of models is given. Decidability of the
presented logic is proved.

1. Introduction

The aim of probabilistic logics is clearly to capture the rules of reasoning about
uncertain knowledge. One of the crucial issue in uncertain reasoning is the notion
of conditional probability. Nilsson, for example, in a review [10] of work subse-
quent to his paper [9], argue that the conditional probability of β given α reflects
more accurately what we normally mean by the certainty of the rule ’if α then
β’, then the probability of α → β does. In recent times, many authors stress the
importance of conditional probabilities. Some of them even suggest to consider
conditional probability and conditional events as basic notions, not derived from
the notion of unconditional probability. This idea is actually quite old, but some
formal treatments can be found in Popper (1934, 1938) and de Finetti (1936, 1949).
The latter was the first who introduced the axioms for a direct definition of con-
ditional probability (linking it to the concept of coherence, that allows to manage
also ’partial’ assessments). In [1] a rich elaboration of different issue of reasoning
with the conditional probability, but only at semantical level, along the ideas pro-
posed by de Finetti, is provided. In [6] we investigated a probability logic which
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enriches propositional calculus with a class of conditional probability operators of
de Finetti’s type. But, allowing iterations of probability operators in that frame-
work could produce some problems. In this paper we consider probability logic
suitable for reasoning about conditional probability that is based on Kolmogorov’s
approach, allowing the iterations of probabilistic operators and mixing of classical
and probabilistic formulas. Let’s mention that iteration of probability and mixing
classical and probabilistic formulas are not allowed in most of the logic for reasoning
about conditional probabilities that may be found in the literature. Higher order
absolute (unconditional) probabilities were allowed in the logic presented in [11].

The corresponding probability language is obtained by adding probability op-
erators of the forms P�s, CP�s and CP�0 to classical languages. It allows making
formulas such as P�sα, with the intended meaning “the probability of truthfulness
of α is greater than or equal to s” and CP�s(α | β), with the intended meaning
“the conditional probability of truthfulness of α given β is greater than or equal to
s”. The probability operators behave like modal operators. As the corresponding
semantics we introduce special types of Kripke models with addition of probability
measure defined over the words. It is well known that if we have a finitary ax-
iomatization, then the compactness theorem: ’if every finite subset of a set T of
formulas is satisfiable, then T is satisfiable’ follows easily from the extended com-
pleteness theorem (’every set of formulas is satisfiable’). The compactness theorem
does not hold for LCP . Namely, consider an arbitrary classical formula and the
set T = {¬P=0ϕ} ∪ {P<1/nϕ : n is a positive integer}; although every finite sub-
set of T is satisfiable, the set T itself is not. A consequence is that, if we want
the extended completeness theorem, we cannot obtain a finitary axiomatization.
Building on [8, 12, 13, 14, 17], we define a system which we show to be sound
and complete, using infinitary rules of inference (i.e., rules where a conclusion has
a countable set of premises).

The rest of the paper is organized as follows. In Section 2 the syntax of the logic
is given. Section 3 contains a description of the corresponding Kripke-style models
and satisfiability and validity notions. A formulation of a sound and complete
axiomatic system can be found in Section 4. Proofs of Soundness and Completeness
theorems are presented in Section 5. The decidability is discussed in Section 6. We
conclude in Section 7 with some remarks about similar approaches, open questions
and further investigations.

2. Syntax

The language L of LCP consists of a countable set I = {p1, p2, . . . } of proposi-
tional letters, classical connectives ∧ and ¬, a list of unary probabilistic operators
P�s and binary probability operators CP�s for every rational number s ∈ [0, 1],
CP�0 and parentheses. The set ForLCP of formulas is the smallest set of a finite
sequences of symbols of the language L containing the propositional letters and
closed under formation rules: if α and β are formulas, then ¬α, P�α, CP�s(α | β),
CP�0(α | β) and α ∧ β are formulas. For example, the following is a formula:
CP�0.2(p1 → p2 | P�0.12P�0.1p1).
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We use the usual abbreviations for the other classical connectives ∨, →, ↔. It
is convenient the following abbreviations in our logic, for every rational number s
from [0, 1]:

• P<s(α) def= ¬P�s(α), • P�s(α) def= P�1−s(¬α),
• P>s(α) def= ¬P�s(α), • P=s(α) def= P�s(α) ∧ P�s(α),

and:
• CP<s(α | β) def= ¬CP�s(α | β),
• CP�s(α | β) def= CP�1−s(¬α | β), for s �= 0,
• CP>s(α | β) def= ¬CP�s(α | β),
• CP=s(α | β) def= CP�s(α | β) ∧ CP�s(α | β).

Also, ⊥ is used to denote θ∧¬θ, for an arbitrary formula θ. We use various conven-
tions such as rules about deleting parenthesis and priority of logical connectives.

3. Semantics

The usual way of introducing probability is axiomatic through the measure-
theoretic framework proposed by Kolmogorov.

A probability space (Ω,H, µ) consists of
• a non-empty set Ω (called the sample space),
• an algebra H of subsets of Ω containing Ω and closed under complemen-

tation and finite union (but not necessarily consisting of all subsets of Ω),
whose elements are called events (or measurable sets),

• a finitely additive measure µ : H → [0, 1] (called probability) satisfying:
– µ(Ω) = 1,
– µ(A1 ∪A2) = µ(A1) + µ(A2), for all disjoint sets A1, A2 ∈ H.

Given a fixed A with µ(A) > 0, probability measure µ(· | A), called conditional
probability, is defined as µ(B | A) = µ(A ∩ B)/µ(A). The requirement µ(A) > 0
is essential. If µ(A) = 0, then the conditional probability remains undefined. Let’s
mention that Kolmogorov’s approach has become so entrenched that it is often
referred to as the definition of conditional probability.

We use the possible-worlds approach to give semantics to probabilistic formulas.

Definition 3.1. An LCP -model is a structure M = (W, v,Prob), where:
• W is a non empty set of elements called worlds,
• v : W×I → {true, false} provides for each world w ∈W a two-valued eval-

uation of the propositional letters, that is v(w, p) ∈ {true, false}, for each
propositional letter p ∈ I and each world w ∈ W ; the truth-evaluation
v(w, ·) is extended to classical propositional formulas as usual,

• Prob assigns to every w ∈ W a structure (W (w),H(w), µ(w)), such that
W (w) is non empty subset of W , H(w) is an algebra of subsets of W (w)
and µ(w) : H(w) → [0, 1] is a finitely additive probability measure.

Definition 3.2. The satisfiability relation �M⊂ W × ForLCP fulfills the fol-
lowing condition for every LCP−model M = (W, v,Prob) and every world w ∈W :
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• if ϕ is a propositional letter, then: w �M ϕ iff v(w,ϕ) = 1,
• if ϕ = P�sα, then: w �M ϕ iff µ(w)({w′ ∈W (w) : w′ �M α}) � s,
• if ϕ = CP�s(α | β), then: w �M ϕ iff either

µ(w)({w′ ∈W (w) : w′ �M β}) = 0 or µ(w)({w′ ∈W (w) : w′ �M β}) > 0

and
µ(w)({w′ ∈W (w) : w′ �M α} ∩ {w′ ∈W (w) : w′ �M β})

µ(w)({w′ ∈W (w) : w′ �M β}) � s,

• if ϕ = CP�0(α | β), then: w �M ϕ iff

µ(w)({w′ ∈W (w) : w′ �M α} ∩ {w′ ∈W (w) : w′ �M β}) = 0

and
µ(w)({w′ ∈W (w) : w′ �M β}) > 0,

• if ϕ = α ∧ β, then w �M ϕ iff w �M α and w �M β,
• if ϕ = ¬α, then w �M ϕ iff not w �M α.

A formula ϕ is satisfiable in a given LCP−model M if there is a world w from
M such that w �M ϕ. A formula ϕ is valid, if for every LCP−model M and each
world w from M, w �M ϕ.

An LCP−model M is measurable, if for every formula ϕ and every world w
from M, {w′ ∈ W (w) : w′ �M ϕ} ∈ H(w). We denote the class of all measurable
models by LCPMeas. In the sequel [ϕ]M,w denotes {w′ ∈ W (w) : w′ �M ϕ}. We
will omit the subscript M, w from [ϕ]M,w and write [ϕ] if M and w are clear from
the context.

If µ(w)([β]M,w) > 0, we will use µ(w)([α]M,w | [β]M,w) to denote

µ(w)([α]M,w ∩ [β]M,w)
µ(w)([β]M,w)

.

4. Axiomatic system

The axiomatic system AxLCP for LCP contains the following axiom schemata:
(1) all ForLCP -instances of classical propositional tautologies,
(2) P�0α
(3) P�rα→ P<sα, s > r
(4) P<sα→ P�sα
(5) (P�rα ∧ P�sβ ∧ P�1(¬α ∨ ¬β)) → P�min(1,r+s)(α ∨ β)
(6) (P�rα ∧ P<sβ) → P<r+s(α ∨ β), r + s � 1
(7) CP�s(α | β) ∧ P�tβ → P�s·t(α ∧ β), t > 0,
(8) P=0(α ∧ β) ∧ P>0β ↔ CP�0(α | β),

and inference rules:
(1) From α and α→ β infer β.
(2) From α infer P�1α.
(3) From β → P�s− 1

k
α, for every integer k � 1

s , infer β → P�sα.
(4) From γ → (P�rβ → P�r·s(α∧β)), for every rational number r from (0, 1),

infer γ → CP�s(α | β).
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The above axiomatic system is extension of the axiomatic system for the un-
conditional probability logic analyzed in [11, 12]. The new axioms 7 and 8 and
the inference rule 4 express the standard definition of the conditional probability.
The infinitary inference rule 4 links, in the way to be expected, unary and binary
probability operators

Definition 4.1. A formula α is a theorem (� α) if there is an at most countable
sequence of formulas α0, α1, . . . , α, such that every αi is an axiom or it is derived
from the preceding formulas of the sequence by an inference rule. In this paper we
will also use the notion of deducibility. A formula α is deducible from a set T of
sentences (T � α) if there is an at most countable sequence of formulas α0, α1, . . . , α,
such that every αi is an axiom or a formula from the set T , or it is derived from the
preceding formulas by an inference rule, with the exception that the inference rule
2 can be applied on the theorems only. A set T of sentences is consistent if there
is at least one formula which is not deducible from T , otherwise T is inconsistent.
A consistent set T of formulas is said to be maximal consistent if for every formula
α, either α ∈ T or ¬α ∈ T .

The next theorem gives some auxiliary statements.

Theorem 4.1. (1) (Deduction theorem) If T is a set of formulas, α is a for-
mula, and T ∪ {α} � β, then T � α→ β.

(2) Let α, β, γ be formulas. Then:
(a) � P�1(α→ β) → (P�sα→ P�sβ)
(b) � P�rα→ P�sα, r > s
(c) � CP�0(α | β)
(d) � CP�1(α | β)
(e) � CP�1(α | β) → CP=1(α | β)
(f) � CP�1(α | β) → CP�s(α | β).
(g) if � α→ β, then � CP�1(β | α),
(h) � P=0β → CP=1(α | β).

Proof. 1. We use the transfinite induction on the length of the proof of β
from T ∪ {α}. The classical cases follow as usual.

Suppose that β = γ → CP�s(ϕ | ψ) is obtained from T ∪{α} by an application
of the inference rule 4. Then:

T, α � γ → (P�rψ → P�r·s(α ∧ β)), for all rational r from (0, 1),
T � α → (γ → (P�rψ → P�r·s(α ∧ β))), for all r, by the induction
hypothesis,
T � (α ∧ γ) → (P�rψ → P�r·s(α ∧ β)), for all r
T � (α ∧ γ) → CP�s(ϕ | ψ), by the inference rule 4
T � α→ β.

The other cases follow similarly.
2. We prove some of the statements, while the other can be shown in a similar

way [13, 15].
(4.1) By Axiom 7, we have CP�1(α | β) � CP�1(α | β)∧P�tβ → P�t(α∧β), for

all t > 0, i.e. CP�1(α | β) � P�tβ → P�t(α ∧ β), for all t. Then, by 4.1, we have
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P�t(α∧β) → P�t·s(α∧β), and hence CP�1(α | β) � P�tβ → P�t·s(α∧β), for all t.
An application the inference rule 4 gives CP�1(α | β) � CP�s(α | β), i.e. �
CP�1(α | β) → CP�s(α | β), by Deduction theorem.

(4.1) Let � α → β. Then � α → (α ∧ β) and we have � P�1(α → (α ∧ β)), by
inference rule 2. From (4.1), � P�rα → P�r·1(α ∧ β), for every rational r ∈ [0, 1].
Now, by inference rule 4 (s = 1), we obtain � CP�1(β | α).

(4.1) Axioms 1–6 and Rules 1–3 imply: � P=0β → P=0(α∧β) and � P=0β →
¬P�rβ, for every rational r ∈ (0, 1]. Then, for s = 1 and every r ∈ [0, 1] we have
� P=0β → (P�rβ → P�r(α ∧ β)), � P=0β → CP=1(α | β), by Rule 4. �

5. Soundness and Completeness

Theorem 5.1 (Soundness theorem). The axiomatic system AxLCP is sound
with respect to LCPMeas class of models.

Proof. Soundness of our system follows from the soundness of propositional
classical logics and from the properties of probability, so we give only a sketch of
a straightforward but tedious proof. We can show that every instance of an axiom
schemata holds in every world of every LCPMeas-model, while the inference rules
preserve validity.

It is easy to see that if α is an instance of a classical propositional tautologies,
then for every model M and each world from M, w �M α.

Axioms 2–8 concern to the properties of measures and obviously holds in every
world of a model. For example, let us consider Axiom 6. Let M be an LCP -
model and w an arbitrary world from M. Then, from [α]M,w = ([α]M,w ∩ (W (w)�

[β]M,w)) ∪ [α]M,w, we have µ(w)([α]M,w) � µ(w)([α]M,w ∩ (W (w) � [β]M,w)), for
arbitrary α and β. From [α ∨ β]M,w = ([α]M,w ∩ (W (w) � [β]M,w)) ∪ [β]M,w it
follows that µ(w)([α∨β]M,w) � µ(w)([α]M,w)+µ(w)([β]M,w), i.e., Axiom 6 is valid.
Similarly, from µ(w)([α]M,w | [β]M,w) · µ(w)([β]M,w) = µ(w)([α]M,w ∩ [β]M,w),
µ(w)([β]M,w) > 0, follows that the axioms 7 and 8 are valid. The other axioms can
be proved to be valid in a similar way.

Rule 1 is validity-preserving for the same reason as in classical logic. Consider
Rule 2 and suppose that a formula α is valid. Then, for every world w from a
model M = 〈W, v,Prob〉, [α]M,w = W (w) and µ(w)(W (w)) = 1. Hence, P�1α is
valid too.

Rule 3 preserves validity because of the properties of the set of rational numbers.
Let us consider Rule 4. Let M = 〈W, v,Prob〉 be an LCPMeas-model, and

w ∈ W such that w �M A → (P�rβ → P�r·s(α ∧ β)), for every rational number
r ∈ [0, 1]. Let w �M A. If µ(w)([β]) = 0, then w �M CP�1(α | β), and w �M A→
CP�s(α | β). Now, let µ(w)([β]) = r0 > 0. Since the set of premisses holds in w,
and w �M P�rβ, for every r � r0, it must be µ(w)([α] ∩ [β]) � r · s (for r � r0). If
µ(w)([α] | [β]) � s, we have µ(w)([α] ∩ [β]) = µ(w)([α], [β]) · µ(w)([β]) < s · r0, i.e.
w ��M P�s·r0(α ∧ β). Thus, µ(w)([α] | [β]) � s, and w �M CP�s(α | β). �

In order to prove the completeness theorems for our logics, we show that every
consistent set of sentences is satisfiable. We describe how a consistent set T of
sentences can be extended to a suitable maximal consistent set, and how a canonical
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model can be constructed out of such maximal consistent sets. Finally, we prove
that for every world w from the canonical model, a sentence α is satisfied in w if
and only if α ∈ w, and as a consequence we obtain that the set T is satisfiable.

Theorem 5.2. Every consistent set of formulas can be extended to a maximal
consistent set.

Proof. Let T be a consistent set of formulas and let α0, α1, . . . be an enumer-
ation of all formulas. We define a sequence of sets Ti, i = 0, 1, 2, . . . such that:

(1) T0 = T ,
(2) for every i � 0, if Ti ∪{αi} is consistent, then Ti+1 = Ti ∪{αi}; otherwise

Ti+1 = Ti ∪ {¬αi}.
(3) if Ti+1 is obtained by adding a formula of the form ¬(β → P�sγ), then

for some positive integer n, β → ¬P�s− 1
n
γ, is also added to Ti+1, so that

Ti+1 is consistent,
(4) if Ti+1 is obtained by adding a formula of the form ¬(β → CP�s(γ | δ)),

then for some rational number r′ ∈ (0, 1), β → ¬(P�r′δ → P�r′·s(γ ∧ δ)),
is also added to Ti+1, so that Ti+1 is consistent.

The set obtained by the step 1 is obviously consistent. The step 2 produces
consistent sets, too. For if Ti, αi � ⊥, by the deduction theorem we have Ti � ¬αi,
and since Ti is consistent, so it is Ti∪{¬αi}. Consider the step 3. If Ti∪{β → P�sγ}
is not consistent, then the set Ti can be consistently extended as it is described
above. Suppose that it is not the case. Then:

(1) Ti,¬(β → P�sγ), β → ¬P�s− 1
k
γ � ⊥, for every k > 1

s , by the hypothesis
(2) Ti,¬(β → P�sγ) � ¬(β → ¬P�s− 1

k
γ) for every k > 1

s , by the deduction
theorem

(3) Ti,¬(β → P�sγ) � β → P�s− 1
k
γ for every k > 1

s , from 2., by the classical
tautology ¬(α→ γ) → (α→ ¬γ)

(4) Ti,¬(β → P�sγ) � β → P�sγ, from 3, by the inference rule 3
(5) Ti � ¬(β → P�sγ) → β → P�sγ, from 4, by Deduction theorem
(6) Ti � β → P�sγ

Since Ti ∪ {β → P�sγ} is not consistent, from Ti � β → P�sγ it follows that Ti is
not consistent, a contradiction. Thus, the step 3 produces consistent sets. Finally,
consider the step 4 of the construction. If the set Ti∪{¬(β → CP�s(γ | δ))}, is not
consistent, then the set Ti can be consistently extended as it is described above.
Suppose that it is not the case. Then:

Ti,¬(β → CP�s(γ | δ)), β → ¬(P�rδ → P�r·s(γ ∧ δ)) � ⊥, for all r
Ti,¬(β → CP�s(γ | δ)) � (β → ¬(P�rδ → P�r·s(γ ∧ δ))) → ⊥, for all r,
Ti,¬(β → CP�s(γ | δ)) � ¬(β → ¬(P�rδ → P�r·s(γ ∧ δ))), for all r, by
the classical tautology ¬(A→ B) → (A→ ¬B),
Ti,¬(β → CP�s(γ | δ)) � β → (P�rδ → P�r·s(γ ∧ δ)), for all r,
Ti,¬(β → CP�s(γ | δ)) � β → CP�s(γ | δ), by the inference rule 4.

Thus, Ti is not consistent, a contradiction; hence, the step 4 produces consistent
sets.
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Let T = ∪iTi. We can show that T is a deductively closed set which does not
contain all formulas, and as a consequence that T is consistent. First note that for
every sentence α, if Ti � α, then it must be α ∈ T . For if α = αk, and α �∈ T , then
Tmax{i,k}+1 � α and Tmax{i,k}+1 � ¬α, a contradiction. Let α be a sentence, and
T � α. If the deduction of α from T is a finite sequence, then there is some i � 0
such that Ti � α, and α ∈ T . Suppose that the sequence β1, β2, . . . , α of formulas
which forms the proof of α from T is countably infinite. We can show that for every
i, if βi is obtained by an application of an inference rule, and all the premises of
βi belong to T , then βi ∈ T . Suppose βi is obtained by the inference rule 1 and
its premises β1

i and β2
i belong to T . There must be some k such that β1

i , β
2
i ∈ Tk.

Since Tk � βi, it must be βi ∈ T . If βi is obtained by the inference rule 2, then
βi is a theorem and it must be βi ∈ T . If it is not, then αk = ¬βi ∈ Tk+1, and
Tk+1 is not consistent. Suppose that βi = β → P�sγ is obtained by the infinitary
inference rule 3, and that the premises β1

i = β → P�s− 1
k
γ, β2

i = β → P�s− 1
k+1

γ, . . .

belong to T . If β → P�s �∈ T , by the step 3 of the construction of T , there is a
j > 1

s , such that β → ¬P�s− 1
j
γ ∈ T . Let l = max{k, j}. By the axioms 2 and 3,

β → P�s− 1
l
γ ∈ T , and β → ¬P�s− 1

l
γ ∈ T . There is a set Tm which also contains

these formulas. It follows that Tm ∪ {β} is not consistent, and β �∈ T . There is
some j such that ¬β ∈ Tj , Tj � β → ⊥, Tj � β → P�sγ, and β → P�sγ ∈ T ,
a contradiction. Finally, suppose that βi = γ → CP�s(ϕ | ψ) is obtained by the
infinitary inference rule 4, and that the premises βj

i = γ → (P�rj
ψ → P�rj ·s(ϕ∧ψ))

belong to T (r1, r2, . . . is an enumeration of all rational numbers from (0, 1)).
If γ → CP�s(ϕ | ψ) �∈ T , by the construction of T , there is a m, such that
γ → ¬(P�rj

ψ → P�rj ·s(ϕ ∧ ψ)) ∈ T . There is a set Tk which contains formulas
γ → (P�rj

ψ → P�rj ·s(ϕ∧ ψ)) and γ → ¬(P�rj
ψ → P�rj ·s(ϕ∧ ψ)). It follows that

Tk∪{γ} is not consistent, and γ �∈ T . Then there is l such that ¬γ ∈ Tl, Tl � γ → ⊥
and Tl � γ → CP�s(ϕ | ψ), a contradiction. Thus, the set T is deductively closed.
It does not contain all formulas. If for some α, both α and ¬α belong to T , then
there is a set Ti such that α,¬α ∈ Ti, a contradiction because every Ti is consistent.
Thus, T is consistent.

From the step 2 of the construction, it follows that the set T is maximal. �

The next theorem summarizes some obvious properties of the maximal consis-
tent sets of formulas.

Theorem 5.3. Let T be a maximal consistent set of sentences. Let α and β
be sentences. Then the following hold:

(1) If α ∈ T , then ¬α �∈ T .
(2) α ∧ β ∈ T iff α ∈ T and β ∈ T .
(3) If T � α, then α ∈ T , i.e., T is deductively closed.
(4) If α ∈ T and α→ β ∈ T , then β ∈ T .
(5) If P�sα ∈ T , and s � r, then P�rα ∈ T .
(6) If r is a rational number and r = sup{s : P�sα ∈ T}, then P�rα ∈ T .
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Proof. As an example we prove 6. Let r = sup{s : P�sα ∈ T}. By the
inference rule 3, T � P�rα, and, since T is deductively closed set, P�rα ∈ T . The
other cases follow similarly. �

Theorem 5.4 (Completeness theorem). Every consistent set T of formulas has
an LCPMeas-model.

Proof. Let T be a consistent set of formulas. Let the tuple M = (W, v,Prob)
be defined as follows:

• W is the set of all maximal consistent sets,
• v : W × I → {true, false} is an assignment such that for every world
w ∈W and every propositional letter p ∈ I, v(w, p) = true iff p ∈ w,

• Prob(w) = (W (w),H(w), µ(w)) is a structure such that:
– W (w) = W ,
– H(w) is a set of [ϕ] = {w ∈W : ϕ ∈ w}, for every formula ϕ,
– µ(w)([ϕ]) = sup{s : P�s(ϕ) ∈ w}.

First we have to prove that M is an LCPMeas−model. For every w ∈W , H(w)
is an algebra of subsets of W (w). Really, for an arbitrary formula α, W (w) = [α ∨
¬α] ∈ H(w). Also, if [α] ∈ H(w), then the complement of [α] is the set [¬α], and it
belongs to H(w), and if [α1], . . . [αn] ∈ H(w), then the union [α1]∪. . .∪[αn] ∈ H(w)
because [α1] ∪ . . . ∪ [αn] = [α1 ∨ . . . ∨ αn]. Thus, for every w, H(w) is an algebra
of subsets of W (w).

Now, we will show that the following hold for all sentences α, and β, and every
w ∈W :

(1) If [α] = [β], then µ(w)([α]) = µ(w)([β]),
(2) µ(w)([α]) � 0,
(3) µ(w)([α]) = 1 − µ(w)([¬α]), and
(4) µ(w)([α]∪ [β]) = µ(w)([α])+µ(w)([β]), for all sentence α and β such that

[α] ∩ [β] = ∅,
i.e. µ(w) is a finite additive probability measure on H(w).

1. It is enough to prove that [α] ⊂ [β] implies µ(w)([α]) � µ(w)([β]). From
[α] ⊂ [β] it follows that � ¬(α ∧ ¬β), and � P�1(α → β). If P�sα ∈ w, then by
Theorem 4.1. 4.1, P�sβ ∈ w, and we conclude that µ(w)([α]) � µ(w)([β]).

2. Since P�0α is an axiom, µ(w)([α]) � 0.
3. Let r = µ(w)([α]) = sup{s : P�sα ∈ w}. Suppose that r = 1. Then, by

Theorem 5.3. 6 we have P�1α = P�0¬α = ¬P>0¬α, and ¬P>0¬α ∈ w. If for
some s > 0, P�s¬α ∈ w, by the axiom 3’ it must be P>0¬α ∈ w, a contradiction.
It follows that µ(w)([¬α]) = 1. Suppose that r < 1. Then, for every rational
number r′ ∈ (r, 1], ¬P�r′α = P<r′α, and P<r′α ∈ w. By the axiom 3, P�r′α
and P�1−r′(¬α) belong to w. On the other hand, if there is a rational number
r′′ ∈ [0, r) such that P�1−r′′(¬α) ∈ w, then ¬P>r′′α ∈ w, a contradiction. Hence,
sup{s : P�s(¬α) ∈ w} = 1 − sup{s : P�sα ∈ w}.

4. Let [α] ∩ [β] = ∅, µ(w)([α]) = r and µ(w)([β]) = s. Since [β] ⊂ [¬α], by
the step 3, we have r + s � r + (1 − r) = 1. Suppose that r > 0, and s > 0. By
the well known properties of the supremum, and monotonicity (Theorem 4.1.4.1)
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for every rational number r′ ∈ [0, r), and every rational number s′ ∈ [0, s), we have
P�r′α, P�s′β ∈ w. It follows by the axiom 5 that P�r′+s′(α ∨ β) ∈ w. Hence,
r + s � sup{t : P�t(α ∨ β) ∈ w}. If r + s = 1, then the assertion trivially holds.
Suppose r + s < 1. If r + s < t0 = sup{t : P�t(α ∨ β) ∈ w}, then for every
rational number t′ ∈ (r + s, t0) we have P�t′(α ∨ β) ∈ w. We can choose rational
numbers r′′ > r and s′′ > s such that: ¬P�r′′α, P<r′′α ∈ w, ¬P�s′′β, P<s′′(β) ∈ w,
and r′′ + s′′ = t′ � 1. By the axiom 4, P�r′′α ∈ w. Using the axiom 6 we have
P<r′′+s′′(α ∨ β), ¬P�r′′+s′′(α ∨ β), and ¬P�t′(α ∨ β) ∈ w, a contradiction. Hence,
µ(w)([α]∪ [β]) = µ(w)([α])+µ(w)([β]). Finally suppose that r = 0 or s = 0. Then
we can reason as above, with the only exception that r′ = 0 or s′ = 0.

Finally, by the induction on the complexity of formulas we can prove that for
every formula α, end every world w ∈W , w �M α iff α ∈ w.

To begin the induction, let α be a propositional letter. Then, w �M α iff
v(w,α) = true iff α ∈ w, by the definition of v. Let α = ¬β. Then w �M ¬β
iff w ��M β iff β �∈ w iff ¬β ∈ w. Let α = β ∧ γ. w �M β ∧ γ iff w �M β
and w �M γ iff β ∈ w and γ ∈ w iff β ∧ γ ∈ w. Let α = P�sβ. If α ∈ w,
sup{r : P�rβ ∈ w} = µ(w)([β]) � s, and w �M P�sβ. For the other direction,
suppose that w �M P�sβ, i.e., that sup{r : P�rβ ∈ w} � s. If µ(w)([β]) > s, then,
by the well known property of supremum and monotonicity of µ(w), P�sβ ∈ w. If
µ(w)([β]) = s, then by Theorem 5.3. 6, P�sβ ∈ w. Now, let α = CP�0(β | γ).
If α ∈ w, then, by Axiom 8, P=0(β ∧ γ), P>0γ ∈ w, i.e. µ(w)([β] ∩ [γ]) = 0 and
µ(w)([γ]) > 0. Then, µ(w)([β]∩[γ])

µ(w)([γ]) = 0, and hence w �M CP�0(β | γ). On the

other hand, if w �M CP�0(β | γ), i.e. µ(w)([β]∩[γ])
µ(w)([γ]) � 0, we have µ(w)([γ]) > 0

and µ(w)([β] ∩ [γ]) = 0, by Axiom 8. Then, there is t0 > 0 such that t0 = sup{t :
P�tγ ∈ w}, and hence there is rational number t′ such that P�t′γ ∈ w. So,
P>0γ ∈ w. Also, it is not difficult to Prove that P=0(β ∧ γ) ∈ w. Then, it follows
that CP�0(β | γ) ∈ w. At the end, let α = CP�s(β | γ). Suppose CP�s(β | γ) ∈ w.
We have either P=0γ ∈ w or P=0γ �∈ w. If P=0γ ∈ w, then µ(w)([γ]) = 0, and
hence w �M CP�s(β | γ), for all s. If P=0γ �∈ w, then w �M CP�s(β | γ) iff
µ(w)([β]∩[γ])

µ(w)([γ]) � s iff µ(w)([β] ∩ [γ]) � s ·µ(w)([γ]). Let t0 = µ(w)([γ]) > 0. For every
t < t0 we have P�tγ ∈ w and P�t·s(β ∧ γ) ∈ w (by Axiom 7 and CP�s(β | γ) ∈ w).
So, µ(w)([β]∩[γ])

µ(w)([γ]) � s and w �M CP�s(β | γ). Now, let w �M CP�s(β | γ).
If w �M P=0γ, then P=0γ ∈ w, and hence CP=1(β | γ) ∈ w. Since we have
CP=1(β | γ) → CP�s(β | γ) for every s, CP�s(β | γ) ∈ w. If w ��M P=0γ, then
µ(w)([γ]) = t0 > 0. Let µ(w)([β] ∩ [γ]) = r. Then we have r

t0
� s, i.e. r � t0 · s

(since w �M CP�s(β | γ), i.e. µ(w)([β]∩[γ])
µ(w)([γ]) � s). For every rational number

t′ � t0, and every rational number r′ � r, we have P�t′γ, P�r′(β ∧ γ) ∈ w. Also,
for every t′ > t0, ¬P�t′γ ∈ w. So, for every t′ � t0, P�t′γ → P�t′·s(β ∧ γ) ∈ w
(t′ ·s � t·s � r), and for every t′ > t, P�t′γ → P�t′·s(β∧γ) ∈ w (since ¬P�t′γ ∈ w).
Now, by the inference rule 4 we have CP�s(β | γ) ∈ w. �
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6. Decidability

We will use a kind of filtration, as well as linear programming theory to show
that the logic LCP is decidable.

Theorem 6.1. If an LCP -formula α is satisfiable, then it is satisfiable in a
finite LCP -model.

Proof. Let Subfor(α) be the set of all subformulas of α. Suppose α holds
in a world of an LCP -model M = 〈W, v,Prob〉. Let ≈ be an equivalence relation
over W 2, such that w ≈ u iff (∀θ ∈ Subfor(α)) (w �M θ iff u �M θ). The quotient
set W/ ≈ is finite, W/ ≈= {Cw1 , . . . , Cwn

} (from every class we choose an element
and denoted it by wi). We consider a model M∗ = 〈W ∗, v∗,Prob∗〉, where W ∗ =
{w1, . . . , wn}, v∗(w, p) = v(w, p), for every propositional letter p and Prob∗ is
defined as follows: W ∗(wi) = {w : (∃u ∈ Cw)u ∈ W (wi)}, H∗(wi) is the power
set of W ∗(wi), for every u ∈ W ∗, µ∗(wi)(u) = µ(wi)(Cu ∩W (wi)) and for every
D ∈ H∗(wi), µ∗(wi)(D) =

∑
u∈D

µ(wi)(Cu ∩W (wi)). Since we have

µ∗(wi)(W ∗(wi)) =
∑

u∈W∗(wi)

µ(wi)(Cu ∩W (w)) =
∑

Cu∈W/≈
µ(wi)(Cu ∩W (w)) = 1,

µ∗(wi) is a probability. It is easy to prove that M∗ is an LCP−model. Now,
every formula θ ∈ Subfor(α) is satisfiable in M iff it is satisfiable in M∗. If θ is
a propositional letter, and w �M θ, then wi �M θ holds for wi ∈ Cw. Obviously,
wi �M θ iff wi �M∗ θ. If θ = θ1 ∧ θ2, w �M θ and wi ∈ Cw, then wi �M θ iff
wi �M θ1 and wi �M θ2 iff wi �M∗ θ1 and wi �M∗ θ2 iff wi �M∗ θ. The case θ = ¬ϕ
follows similarly. If θ = P�sβ and w �M θ, then wi �M θ holds for wi ∈ Cw, and

wi �M θ ⇔ µ(wi)({u ∈W (wi) : u �M β}) � r

⇔ µ(wi)
( ⋃

u�Mβ

Cu ∩W (wi)
)

� r

⇔ µ(wi)
( ⋃

wj�Mβ

Cwj
∩W (wi)

)
� r

⇔ µ(wi)
( ⋃

wj�M∗β

Cwj
∩W (wi)

)
� r

⇔ µ∗(wi)
(
{wj ∈W (wi) : wj �M∗ β}

)
� r

⇔ wi �M∗ θ.

The cases θ = CP�s(β | γ) and θ = CP�0(β | γ) follow similarly.
The model M∗ from the theorem has no more then 2n worlds, where n is a

number of subformulas of the considered formula α. �

Theorem 6.2. The logic LCP is decidable.



152 OGNJANOVIĆ AND IKODINOVIĆ

Proof. Suppose that α holds in a world w of an model M = (W, v,Prob). Let

Subfor(α) = {ϕ1, . . . , ϕk}
be the set of all subformulas of α. In each world holds exactly one conjunction of the
form ±ϕ1∧. . .∧±ϕk, called characteristic formula of that world. Let α1, . . . , α2k be
the list of all characteristic formulas. By Theorem 6.1, there is an LCP−model of
cardinality � 2k and α is satisfiable in at least one world from the model. For every
natural number l � 2k, we consider models which have l worlds. In each of these
worlds holds exactly one characteristic formula. So, for every l we consider all sets
containing l characteristic formulas, which are propositional consistent and at least
one contains α. For every such choice and each world wi (i.e. the corresponding
characteristic formula αi) let Xr1βr1 , . . . , Xrp

βrp
, Ys1(γ1 | δ1),. . . , Ysq

(γq | δq),
CP�0(η1 | θ1), . . . , CP�0(ηt | θt), p+q+ t � k, be an enumeration of all probability
formulas which appear as conjuncts in αi, where Xr is a probability operator from
the set {P�r, P<r} and Ys is a probability operator from the set {CP�s, CP<s}. We
consider the following systems of linear equalities and inequalities with unknowns
xi

j (denoting µ(wi)(wj)), i = 0, 1, . . . , l, j = 1, 2, . . . , l (we use expression of the
form ϕ ∈ αi to denote that the formula ϕ appears as a conjunct in αi):

l∑
j=1

xi
j = 1; xi

j � 0 (i = 1, . . . , l),
∑

j:β∈αj
xi

j � rk, if P�rk
β ∈ αi;∑

j:β∈αj
xi

j < rk, if P<rk
β ∈ αi;∑

j:γ∧δ∈αj
xi

j � s
∑

j:γ∈αj
xi

j and
∑

j:γ∈αj
xi

j > 0,
or

∑
j:γ∈αj

xi
j = 0, if CP�s(γ | δ) ∈ αi;∑

j:γ∧δ∈αj
xi

j < s
∑

j:γ∈αj
xi

j and
∑

j:γ∈αj
xi

j > 0, if CP<s(γ | δ) ∈ αi;∑
j:η∧θ∈αj

xi
j = 0,

∑
j:θ∈αj

xi
j > 0, if CP�0(η | θ) ∈ αi.

Since the problem of satisfiability of α is reduced to the linear system solving
problem, the LCP is decidable. �

7. Conclusions

In this paper we have presented a probability logic which is suitable for reason-
ing about higher-order conditional probability in the sense of Kolmogorov. It might
be applied, for example, to consider Miller’s principle, a well-known principle re-
lating higher order probabilities. Among a number of variants of Miller’s principle,
one of most interesting can be expressed in LCP by the formula CP�s(ϕ | P�sϕ).
Since Miller’s principle is not sound with respect to the class of LCP -models, it
would be interesting to characterize structures satisfying it.

There are some papers that consider conditional probabilities from the log-
ical point. Hawthorne [4] described a range of nonmonotonic conditional that
behave like conditional probability functions at various levels of probabilistic sup-
ports. These conditional were defined as semantic relation on an object language
for propositional logic. In [5] he extended the semantics of the most prominent
family of these nonmonotonic conditionals to a language for predicate logic. In [2]
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conditional probability is defined syntactically. However, a complicated machin-
ery of real closed fields is needed to obtain the corresponding sound and complete
axiomatization. In [16, 17] a logic, which contains several types of probabilistic
operators (including operators of the form “the conditional probability of α given
β is s), is defined. The range of the probability functions is taken to be the unit
interval of a recursive nonarchimedean field. Thus, it is possible to define another
probabilistic operator with the intended meaning “probabilities of α∧ β and β are
almost the same” which may be used to model default reasoning. In [3] a treatment
of nonstandard conditional probability by means of fuzzy logic is given. Using de
Finetti’s approaches to conditional probability, a fuzzy modal logic is introduced in
[7], such that for each pair of classical propositional formulas α and β, the proba-
bility of the conditional event “α given β” is taken as the truth-value of the (fuzzy)
modal proposition P (α | β). One of the interesting problems might be to find ax-
iomatization of the logic with higher order conditional probability operators of de
Finetti’s type. Namely, allowing iterations of probability operators can help us to
formalize uncertainty of probabilities. Another direction for further research might
be extending our logic to corresponding first order logics. All these formalizations
can be seen as useful tool in modelling and understanding real-world problems.
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