COMPLEX POWERS OF OPERATORS

Marko Kostić

Communicated by Stevan Pilipovic

Abstract

We define the complex powers of a densely defined operator A whose resolvent exists in a suitable region of the complex plane. Generally, this region is strictly contained in an angle and there exists $\alpha \in[0, \infty)$ such that the resolvent of A is bounded by $O\left((1+|\lambda|)^{\alpha}\right)$ there. We prove that for some particular choices of a fractional number b, the negative of the fractional power $(-A)^{b}$ is the c.i.g. of an analytic semigroup of growth order $r>0$.

1. Introduction

Chronologically, the theory of fractional powers of operators dates from a paper of S . Bochner who constructed the fractional powers of $-\Delta$ in 1949. From then on, many different techniques have been established in the framework of this theory. Let us mention the papers of Balakrishnan [4], Komatsu [11], Balabane [3], Martínez, Sanz and Marco [15], Straub [20] and deLaubenfels, Yao and Wang [6]. Especially, we refer to the monograph $[\mathbf{1 4}]$ where the interested reader can find a great part of the theory of fractional powers of non-negative operators including topics related to extensions of Hirsch functional calculus, fractional powers of operators in locally convex spaces, interpolation spaces and the famous Dore-Venni theorem.

This paper is motivated by the work of Straub [20] who defined the complex powers of a closed, densely defined operator A satisfying:
(1.1) $\Sigma(\gamma):=\{z \in \mathbb{C}: z \neq 0,|\arg (z)| \leqslant \gamma\} \cup\{0\} \subset \rho(A)$, for some $\gamma \in\left(0, \frac{\pi}{2}\right)$;
(1.2) $\|R(\lambda: A)\| \leqslant M(1+|\lambda|)^{n}, \lambda \in \Sigma(\gamma)$, for some $M>0$ and $n \in \mathbb{N}_{0}$.

For such an operator A, Straub defined in $[\mathbf{2 0}]$ the fractional powers $(-A)^{b}$, for all $b \in \mathbb{C}$. If A fulfills (1.1) and (1.2), then one can employ the construction given in $[\mathbf{6}]$ to obtain the definition of the fractional operator of $-A$, but only for $b \in[0, \infty)$. In general, the definitions given in $[\mathbf{6}]$ and $[\mathbf{2 0}]$ do not coincide; see $[\mathbf{6}]$ and $[\mathbf{1 9}]$ for further information.

In this paper, we show how ideas developed in [20] can be applied to an essentially larger class of closed, densely defined operators. It is worth noting that

[^0]the spectrum of an operator belonging this class and $\Sigma(\gamma)$ may have non-empty intersection, for every $\gamma \in\left(0, \frac{\pi}{2}\right)$. Condition (1.2) in our analysis is replaced by $\|R(\lambda: A)\| \leqslant M(1+|\lambda|)^{\alpha}$, for some $M>0$ and $\alpha \in[0, \infty)$. This implies that the operators J^{b} (cf. Section 3), which are fundamental in the construction of fractional powers given in $[\mathbf{9}],[\mathbf{2 0}]$ and this paper, remain bounded for all $b \in \mathbb{C}$ with $\operatorname{Re} b<-(\alpha+1)$. The fractional power $(-A)^{b}, b \in \mathbb{C}$, is defined to be the closure of J^{b}. If $b \in\left(0, \frac{1}{2}\right)$, then the negative of the fractional power $(-A)^{b}$ is the c.i.g. of an analytic semigroup of growth order $r>0$. This allows one to consider the incomplete higher order abstract Cauchy problems; in this paper, it is necessary that the order of such a problem is strictly greater than two.

2. Basic concepts

Throughout this paper, E denotes a complex Banach space and A a closed, densely defined operator in E. The space of all bounded linear operators from E into E is denoted by $L(E) ; \rho(A)$ stands for the resolvent set of A while $[D(A)]$ designates the Banach space $D(A)$ equipped with the graph norm. Let $a \in(0,1)$, $C \in(0,1]$ and $d \in(0,1] ; B_{d}:=\{z \in \mathbb{C}:|z| \leqslant d\}$ and

$$
P_{a, C}:=\left\{\xi+i \eta: \xi \in(0, \infty), \eta \in \mathbb{R}, \| \eta \mid \leqslant C \xi^{a}\right\}
$$

We assume that A satisfies the following conditions:
(*) $P_{a, C} \cup B_{d} \subset \rho(A)$,
$(* *)\|R(\lambda: A)\| \leqslant M(1+|\lambda|)^{\alpha}, \lambda \in P_{a, C} \cup B_{d}$, for some $M>0$ and $\alpha \geqslant 0$.
Note, if $P_{a, C} \cup\{0\} \subset \rho(A)$ and $\|R(\lambda: A)\|=O\left((1+|\lambda|)^{\alpha}\right), \lambda \in P_{a, C} \cup\{0\}$, then there exists a $d \in(0,1]$ and an appropriate $M>0$ such that $(*)$ and $(* *)$ are fulfilled.

Example 2.1. (a) Let $\alpha>0$ and $0<\tau \leqslant \infty$. It is said that the abstract Cauchy problem

$$
C_{\alpha+1}(\tau):\left\{\begin{array}{l}
u \in C([0, \tau):[D(A)]) \cap C^{1}([0, \tau): E) \\
u^{\prime}(t)=A u(t)+\frac{t^{\alpha}}{\Gamma(\alpha+1)} x, 0 \leqslant t<\tau \\
u(0)=x
\end{array}\right.
$$

is well posed if it has a unique solution for every $x \in E$, cf. [1] if $\alpha \in \mathbb{N}$ and [13] if $\alpha>0$. If $u(t, x)$ is a solution of $C_{\alpha+1}(\tau)$, then the operators $S(t) x:=\frac{d}{d t} u(t, x)$, $t \in[0, \tau), x \in E$, are bounded and form an α-times integrated semigroup generated by A. By [13, Theorem 2.1], the well-posedness of the problem $C_{\alpha+1}(\tau)$ implies that for every $c \in\left(0, \frac{\tau}{\alpha}\right)$, there exist constants $c_{1}>0$ and $M>0$ such that the exponential region $E\left(c, c_{1}\right):=\left\{\xi+i \eta: \xi \in \mathbb{R}, \eta \in \mathbb{R}, \xi \geqslant \underline{c_{1},|\eta|} \leqslant e^{c \xi}\right\} \subset \rho(A)$ and that $\|R(\lambda: A)\| \leqslant M|\lambda|^{\alpha}, \lambda \in E\left(c, c_{1}\right)$. If, additionally, $\overline{D(A)}=E$, then there exists a sufficiently large $\omega>0$ such that $A-\omega$ satisfies the assumptions (*) and $(* *)$ given above. Further on, if A is the densely defined generator of an α-times integrated semigroup $(S(t))_{t \geqslant 0}$ satisfying $\|S(t)\| \leqslant M t^{\beta} e^{\omega t}$, for all $t \geqslant 0$, where $\omega \geqslant 0, \beta \geqslant 0, \alpha>0$, then for every $a \in(0,1), C \in(0,1]$ and $d \in(0,1]$, there exists a sufficiently large $\omega>0$ such that $A-\omega$ satisfies $(*)$. Furthermore, it can
be proved that $A-\omega$ satisfies $(* *)$ with $\alpha-\beta-1$ instead of α, see [$\mathbf{1 7}$, page 158] for this refinement.
(b) If the operator A satisfies the assumptions (1.1) and (1.2), then it can be easily proved that, for every $a \in(0,1)$, there exist $C \in(0,1]$ and $b \in(0,1]$ such that $(*)$ and $(* *)$ are valid (with $\alpha=n$). It is clear that there exist a great number of multiplication, differential and pseudo-differential operators acting on L^{p} type spaces which fulfill $(*)$ and $(* *)$, but not (1.1). Especially, the construction given in $[\mathbf{2 0}]$ cannot be applied even if $E:=L^{2}(\mathbb{R})$ and A is chosen to be the operator $\Delta^{2}-i \Delta-I$ with maximal distributional domain. Then the spectrum of A is $\left\{\xi+i \eta: \xi \in \mathbb{R}, \eta \in \mathbb{R}, \eta^{2}=\xi+1\right\}$ and, for every $b \in \mathbb{C}$, our construction gives the definition of $\left(I+i \Delta-\Delta^{2}\right)^{b}$.

We recall the basic fasts about semigroups of growth order $r>0$, see [5], [18], [19] and [21] for this notion. An operator family $(T(t))_{t>0}$ in $L(E)$ is a semigroup of growth order r if it satisfies:
(i) $T(t+s)=T(t) T(s), t, s>0$,
(ii) for every $x \in E$, the mapping $t \mapsto T(t) x$ is continuous,
(iii) $\left\|t^{r} T(t)\right\|=O(1), t \rightarrow 0+$,
(iv) $T(t) x=0$ for all $t>0$ implies $x=0$, and
(v) $E_{0}=\bigcup_{t>0} T(t) E$ is dense in E.

The infinitesimal generator of $(T(t))_{t>0}$ is defined by

$$
A_{0}:=\left\{(x, y) \in E^{2}: \lim _{t \rightarrow 0+} \frac{T(t) x-x}{t}=y\right\}
$$

It is a closable linear operator and its closure $A=\overline{A_{0}}$ is called the complete infinitesimal generator (c.i.g.) of $(T(t))_{t>0}$. Following Tanaka [21], if the semigroup $(T(t))_{t>0}$ of growth order $r>0$ has an analytic extension to $\Sigma_{\gamma}:=\{z \in \mathbb{C}$: $z \neq 0,|\arg (z)|<\gamma\}$, for some $\gamma \in\left(0, \frac{\pi}{2}\right)$, denoted by the same symbol, and if additionally there exists an $\omega \in \mathbb{R}$ such that, for every $\delta \in(0, \gamma)$, there exists a suitable constant $M_{\delta}>0$ with $\left\|z^{r} T(z)\right\| \leqslant M_{\delta} e^{\omega \operatorname{Re} z}$, $z \in \Sigma_{\delta}$, then the family $(T(t))_{t \in \Sigma_{\gamma}}$ is called an analytic semigroup of growth order r. We will use the following notations. For given $a \in(0,1), C \in(0,1]$ and $d \in(0,1]$, put $\Gamma_{1}(a, C, d):=\left\{\xi+i \eta: \xi \in \mathbb{R}, \eta \in \mathbb{R}, \eta=-C \xi^{a}, \xi^{2}+\eta^{2} \geqslant d^{2}\right\}$. It is clear that there exists a unique $\varepsilon(a, C, d) \in(0, d)$ such that $\left(\varepsilon(a, C, d),-C \varepsilon(a, C, d)^{a}\right) \in \partial B_{d}$. We define $\Gamma_{2}(a, C, d):=\left\{\xi+i \eta: \xi \in \mathbb{R}, \eta \in \mathbb{R}, \xi^{2}+\eta^{2}=d^{2}, \xi \leqslant \varepsilon(a, C, d)\right\}$ and $\Gamma_{3}(a, C, d):=\left\{\xi+i \eta: \xi \in \mathbb{R}, \eta \in \mathbb{R}, \eta=C \xi^{a}, \xi^{2}+\eta^{2} \geqslant d^{2}\right\}$. The upwards oriented curve $\Gamma(a, C, d)$ is defined by $\Gamma(a, C, d):=\Gamma_{1}(a, C, d) \cup \Gamma_{2}(a, C, d) \cup \Gamma_{3}(a, C, d)$; put now $H(a, C, d):=\left\{\xi+i \eta: \xi \in(0, \infty), \eta \in \mathbb{R},|\eta| \leqslant C \xi^{a}\right\} \cup B_{d}$. For given $\tilde{d} \in(0, d]$ and $\tilde{a} \in(0, a]$, one can find a suitable constant \tilde{C} so that $\Gamma(\tilde{a}, \tilde{C}, \tilde{d}) \subset H(a, C, d)$, where we define $\Gamma(\tilde{a}, \tilde{C}, \tilde{d})$ in the same way as $\Gamma(a, C, d)$.

3. Operators $J^{b}, b \in \mathbb{C}$

In order to construct the fractional powers $(-A)^{b}$, for every $b \in \mathbb{C}$, we define a closable linear operator J^{b}. As in [20], if $\alpha \in \mathbb{N}_{0}$ and [9], if $\alpha=-1$, the construction
is based on improper integrals of the form

$$
\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b} R(\lambda: A) x d \lambda .
$$

Proposition 3.1. Let $b \in \mathbb{C}$ satisfy $\operatorname{Re} b<-(\alpha+1)$ and let $x \in E$. Then the integral

$$
I(b) x:=\frac{1}{2 \pi i} \int_{\Gamma(a, C, d)}(-\lambda)^{b} R(\lambda: A) x d \lambda
$$

exists and defines a bounded linear operator $I(b) \in L(E)$. Moreover, if for some $\tilde{a} \in(0, a], \tilde{C} \in(0, C]$ and $\tilde{d} \in(0, d]: \Gamma(\tilde{a}, \tilde{C}, \tilde{d}) \subset H(a, C, d)$, then

$$
I(b) x=\frac{1}{2 \pi i} \int_{\Gamma(\tilde{a}, \tilde{C}, \tilde{d})}(-\lambda)^{b} R(\lambda: A) x d \lambda
$$

Proof. The proof is essentially contained in that of Lemma 1.1 in [20]. We sketch it for the sake of completeness. Note that the function $\lambda \mapsto(-\lambda)^{b}\left(1^{b}=1\right)$ is analytic in $\mathbb{C} \backslash[0, \infty)$ and that

$$
\begin{equation*}
\left|(-\lambda)^{b}\right| \leqslant|\lambda|^{\operatorname{Re} b} e^{\pi|\operatorname{Im} b|}, \lambda \in \mathbb{C} \backslash\{0\} \tag{3.1}
\end{equation*}
$$

The integral over $\Gamma_{2}(a, C, d)$ exists since $\Gamma_{2}(a, C, d)$ is a finite path. The estimate (**) implies

$$
\begin{aligned}
& \left\|\frac{1}{2 \pi i} \int_{\Gamma_{3}(a, C, d)}(-\lambda)^{b} R(\lambda: A) x d \lambda\right\| \\
\leqslant & \frac{M}{2 \pi} \int_{\varepsilon(a, C, d)}^{\infty}\left(\sqrt{t^{2}+C^{2} t^{2 a}}\right)^{\operatorname{Re} b} e^{\pi|\operatorname{Im} b|}\left(1+\sqrt{t^{2}+C^{2} t^{2 a}}\right)^{\alpha}\left(1+C a \varepsilon(a, C, d)^{a-1}\right) d t \\
\leqslant & \frac{M(1+C a \varepsilon(a, C, d))^{a-1} e^{\pi|\operatorname{Im} b|}}{2 \pi} \int_{\varepsilon(a, C, d)}^{\infty}\left(\sqrt{t^{2}+C^{2} t^{2 a}}\right)^{\operatorname{Re} b} t^{\alpha} d t .
\end{aligned}
$$

Since $\left(t^{2}+C^{2} t^{2 a}\right)^{\operatorname{Re} b / 2} t^{\alpha} \sim t^{\alpha+\operatorname{Re} b}, t \rightarrow+\infty$, the integral over $\Gamma_{3}(a, C, d)$ exists. Similarly, the integral over $\Gamma_{1}(a, C, d)$ exists. It remains to be shown that the integral $I(b)$ is independent of the choice of a curve $\Gamma(a, C, d)$. Let R be sufficiently large and let the curve $\Gamma_{R}=\left\{R e^{i t}: t \in\left[\arctan \left(\tilde{C} R^{\tilde{a}-1}\right), \arctan \left(C R^{a-1}\right)\right]\right\}$ be upwards oriented. Then

$$
\left\|\int_{\Gamma_{R}}(-\lambda)^{b} R(\lambda: A) x d \lambda\right\| \leqslant 2 \pi e^{\pi|\operatorname{Im} b|} R^{\operatorname{Re} b}(1+R)^{\alpha} R \rightarrow 0, R \rightarrow+\infty
$$

The proof completes an elementary application of Cauchy's theorem.
If no confusion seems likely, we shall simply denote $\Gamma(a, C, d), H(a, C, d)$ and $\varepsilon(a, C, d)$ by Γ, H and ε, respectively.

Let $t \in \mathbb{R}$. Denote by $\lfloor t\rfloor$ and $\lceil t\rceil$ the largest integer $\leqslant t$ and the smaller integer $\geqslant t$, respectively. Put $\{t\}:=t-\lfloor t\rfloor$. Note, if $b \in \mathbb{C}$, then $\operatorname{Re}(b-\lfloor\operatorname{Re} b+\alpha\rfloor-2) \in$
$[-(\alpha+2),-(\alpha+1))$. Hence, the following definition of the operator J^{b} makes a sense.

Definition 3.1. Let $b \in \mathbb{C}$. The operator J^{b} is defined as follows: $D\left(J^{b}\right):=$ $D\left(A^{\lfloor\operatorname{Re} b+\alpha\rfloor+2}\right)$ and

$$
J^{b} x:=\left\{\begin{array}{lr}
I(b) x, & -(\alpha+2) \leqslant \operatorname{Re} b<-(\alpha+1) \\
I(b-\lfloor\operatorname{Re} b+\alpha\rfloor-2)(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} x, & \text { otherwise } .
\end{array}\right.
$$

Remark 3.1. If a densely defined operator A satisfies (1.1) and (1.2), then we have already seen that, for every $a \in(0,1)$, there exist $C \in(0,1]$ and $d \in(0,1]$ such that $(*)$ and $(* *)$ are fulfilled. In this case, the definition of J^{b} is equivalent to the corresponding one given in Definition 1.2 of [20].

In what follows, we will use the generalized resolvent equation

$$
\begin{equation*}
(-\lambda)^{-n-1} R(\lambda: A)(-A)^{n+1} x=R(\lambda: A) x+\sum_{i=0}^{n}(-\lambda)^{-i-1}(-A)^{i} x \tag{3.2}
\end{equation*}
$$

if $\lambda \in \rho(A), \lambda \neq 0, n \in \mathbb{N}_{0}, x \in D\left(A^{n+1}\right)$, and the simple equality $\int_{\Gamma}(-\lambda)^{b} d \lambda=0$, if $\operatorname{Re} b<-1$.

Proposition 3.2. Suppose $x \in D\left(A^{\lfloor\operatorname{Re} b+\alpha\rfloor+2}\right)$. Then

$$
J^{b} x= \begin{cases}\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b} R(\lambda: A) x d \lambda, & \operatorname{Re} b<0 \\ \frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b-\lfloor\operatorname{Re} b\rfloor-1} R(\lambda: A)(-A)^{\lfloor\operatorname{Re} b\rfloor+1} x d \lambda, & \operatorname{Re} b \geqslant 0\end{cases}
$$

Proof. Suppose $\operatorname{Re} b<0$. If $\operatorname{Re} b \in[-(\alpha+2),-(\alpha+1))$, the conclusion follows directly from the definition of J^{b}. If $\operatorname{Re} b \notin[-(\alpha+2),-(\alpha+1))$, then by Definition 3.1 and (3.2):

$$
\begin{aligned}
J^{b} x & =J^{b-\lfloor\operatorname{Re} b+\alpha\rfloor-2}(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} x \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b-\lfloor\operatorname{Re} b+\alpha\rfloor-2} R(\lambda: A)(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} x d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b}\left(R(\lambda: A) x+\sum_{i=0}^{\lfloor\operatorname{Re} b+\alpha\rfloor+1}(-\lambda)^{-i-1}(-A)^{i} x\right) d \lambda .
\end{aligned}
$$

If $\operatorname{Re} b<0$ and $i=0,1, \ldots,\lfloor\operatorname{Re} b+\alpha\rfloor+1$, then $\operatorname{Re} b-i-1<-1$ and the last term equals

$$
\frac{1}{2 \pi i} \int(-\lambda)^{b} R(\lambda: A) x d \lambda
$$

as claimed. Suppose now $\operatorname{Re} b \geqslant 5$. Then (3.2) implies

$$
(-\lambda)^{b-\lfloor\operatorname{Re} b\rfloor-1} R(\lambda: A)(-A)^{\lfloor\operatorname{Re} b\rfloor+1} x=(-\lambda)^{b}\left(R(\lambda: A) x+\sum_{i=0}^{\lfloor\operatorname{Re} b\rfloor}(-\lambda)^{-i-1}(-A)^{i} x\right)
$$

By Definition 3.1,

$$
\begin{aligned}
J^{b} x & =J^{b-\lfloor\operatorname{Re} b+\alpha\rfloor-2}(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} x \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b-\lfloor\operatorname{Re} b+\alpha\rfloor-2} R(\lambda: A)(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} x d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b}\left(R(\lambda: A) x+\sum_{i=0}^{\lfloor\operatorname{Re} b+\alpha+1\rfloor}(-\lambda)^{-i-1}(-A)^{i} x\right) d \lambda,
\end{aligned}
$$

and since for $j=\lfloor\operatorname{Re} b+1\rfloor, \ldots,\lfloor\operatorname{Re} b+\alpha+1\rfloor, \operatorname{Re} b-i-1<-1$, we obtain

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b}\left(R(\lambda: A) x+\sum_{i=0}^{\lfloor\operatorname{Re} b\rfloor}(-\lambda)^{-i-1}(-A)^{i} x\right) d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b-\lfloor\operatorname{Re} b\rfloor-1} R(\lambda: A)(-A)^{\lfloor\operatorname{Re} b+1\rfloor} x d \lambda .
\end{aligned}
$$

The proof is completed.
Put $C^{b}:=(-A)^{\lfloor\operatorname{Re} b+\alpha\rfloor+2} J^{b-\lfloor\operatorname{Re} b+\alpha\rfloor-2}$. Then, for every $b \in \mathbb{C}, C^{b}$ is a closed linear operator. Proceeding similarly as in the proof of [20, Proposition 1.3], one obtains that, for every $b \in \mathbb{C}$ with $\operatorname{Re} b \geqslant-(\alpha+1), J^{b} \subset C^{b}$ and, consequently, J^{b} is a closable operator. Clearly, $J^{b} \in L(E)$ for every $b \in \mathbb{C}$ with $\operatorname{Re} b<-(\alpha+1)$.

Lemma 3.1. Let $b \in \mathbb{C}$. Then J^{b} is a closable operator.
Lemma 3.2. Let $b \in \mathbb{C}$. Then
(i') $J^{b} x=J^{b+k}(-A)^{-k} x, k \in \mathbb{N}_{0}, x \in D\left(J^{b}\right)$, and
(ii') $J^{b} x=J^{b+k}(-A)^{-k} x$, if $-k \in \mathbb{N}$ and $x \in D\left(A^{\max (-k,\lfloor\operatorname{Re} b+\alpha+2\rfloor)}\right)$.
Proof. (i') If $k=0$, the proof is trivial. Suppose now $k=1$. If $-(\alpha+2) \leqslant$ $\operatorname{Re} b<-(\alpha+1)$, then $\operatorname{Re} b+1<0$ and by Proposition 3.2, we obtain

$$
\begin{aligned}
J^{b+1}(-A)^{-1} x & =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b+1} R(\lambda: A)(-A)^{-1} x d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b+1} \frac{R(\lambda: A) x-(-A)^{-1} x}{-\lambda} d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{b} R(\lambda: A) x d \lambda .
\end{aligned}
$$

If $\operatorname{Re} b \notin[-(\alpha+2),-(\alpha+1))$, the assertion follows from Definition 3.1. Now ($\left.\mathrm{i}^{\prime}\right)$ follows by induction; (ii') can be proved by the use of (i^{\prime}).

For $b \in \mathbb{C}$, denote $\langle b\rangle:=\max (0,\lfloor\operatorname{Re} b+\alpha\rfloor+2)$. Note that $\langle b+c\rangle \leqslant\langle b\rangle+\langle c\rangle$. The expected semigroup property of the family $\left(J^{b}\right)_{b \in \mathbb{C}}$ can be proved similarly as in $[\mathbf{2 0}$, Lemma 1.4]. More precisely, we have:

Proposition 3.3. Let $b, c \in \mathbb{C}$. Then $J^{b} J^{c} x=J^{b+c} x, x \in D\left(A^{\langle b\rangle+\langle c\rangle}\right)$.
If $k \in \mathbb{N}$ and $x \in D\left(A^{k}\right)$, put $\|x\|_{k}:=\|x\|+\|A x\|+\cdots+\left\|A^{k} x\right\|$. We prove the following lemma which naturally corresponds to [20, Lemma 1.5].

Proposition 3.4. Let $b \in \mathbb{Z}$ and $x \in D\left(A^{\lfloor b+\alpha\rfloor+2}\right)$. Then $J^{b} x=(-A)^{b} x$.
Proof. By Lemma 3.2, it is enough to prove the statement in the case $b=1$. We have to prove (see Proposition 3.2) that

$$
\frac{1}{2 \pi i} \int_{\Gamma}(-\lambda)^{-1} R(\lambda: A)(-A)^{2} x d \lambda=-A x
$$

By the resolvent equation, if $x \in D\left(A^{\lfloor\alpha+1\rfloor}\right)$, then there exists a suitable constant $M>0$ such that

$$
\|R(\lambda: A) x\| \leqslant M|\lambda|^{\alpha-\lfloor\alpha\rfloor-1}\|x\|_{\lfloor\alpha+1\rfloor}, \lambda \in H \cup \Gamma,|\lambda| \geqslant d
$$

Let $R>d$. Then there exists a unique number $\kappa(R) \in(0, R)$ such that $\kappa(R)^{2}+$ $C^{2} \kappa(R)^{2 a}=R^{2}$. Denote $\Gamma_{R}=\left\{R e^{i \theta}:|\theta| \leqslant \arctan \left(C \kappa(R)^{a-1}\right)\right\}$; we assume that Γ_{R} is upwards oriented. If $x \in D\left(A^{\lfloor\alpha\rfloor+3}\right)$, then $A^{2} x \in D\left(A^{\lfloor\alpha\rfloor+1}\right)$ and the previous inequality implies

$$
\left\|\int_{\Gamma_{R}}(-\lambda)^{-1} R(\lambda: A)(-A)^{2} x d \lambda\right\| \leqslant 2 \pi \frac{M}{R} R^{\alpha-\lfloor\alpha\rfloor-1}\|x\|_{\lfloor\alpha+3\rfloor} R \rightarrow 0, \quad R \rightarrow+\infty
$$

The rest of proof follows by an application of Cauchy's integral formula.
Proceeding as in $[\mathbf{2 0}]$, one can prove the next proposition.
Proposition 3.5. The next assertions are valid
(i) If $b \in \mathbb{Z}$, then $\overline{J^{b}}=(-A)^{b}$.
(ii) If $\operatorname{Re} b>\alpha+1$, then $\overline{J^{b}}=C^{b}$.

4. Fractional powers and semigroups generated by them

Definition 4.1. Let $b \in \mathbb{C}$. Then the fractional power $(-A)^{b}$ of the operator $-A$ is defined by $(-A)^{b}:=\overline{J^{b}}$.

The next theorem clarifies the basic structural properties of fractional powers. See [20] for the proof.

Theorem 4.1. Let $b, c \in \mathbb{C}$ and $k \in \mathbb{N}_{0}$. Then
(a) $D\left(A^{\lfloor\operatorname{Re} b+\alpha\rfloor+2+k}\right)$ is a core for $(-A)^{b}$.
(b) $(-A)^{b+c} \subset \overline{(-A)^{b}(-A)^{c}}$.
(c) $(-A)^{b+c}=\overline{(-A)^{b}(-A)^{c}}$, if $(-A)^{b+c}=C^{b+c}$.
(d) $\overline{(-A)^{-b}(-A)^{b}}=I ;(-A)^{-b}(-A)^{b} x=x, x \in D\left((-A)^{b}\right)$.
(e) $(-A)^{b}$ is injective.

In the rest of this section, we consider fractional powers as generators of analytic semigroups of growth order $r>0$.

THEOREM 4.2. Let $b \in\left(0, \frac{1}{2}\right)$. Then the operator $-(-A)^{b}$ is the c.i.g. of an analytic semigroup $\left(T_{b}(z)\right)_{z \in \Sigma_{\arctan (\cos \pi b)}}$ of growth order $\frac{\alpha+1}{b}$, where

$$
\begin{equation*}
T_{b}(z)=\frac{1}{2 \pi i} \int_{\Gamma} e^{-z(-\lambda)^{b}} R(\lambda: A) d \lambda, z \in \Sigma_{\arctan (\cos \pi b)} \tag{4.1}
\end{equation*}
$$

Proof. Our choice of b implies $b \pi<\frac{\pi}{2}$. Put $\gamma:=\arctan (\cos \pi b)$. Then $\gamma \in\left(0, \frac{\pi}{2}\right)$ and, for every $z=\xi+i \eta \in \Sigma_{\gamma}$, we have $\xi \cos (b \pi)-|\eta|>0$. Furthermore,

$$
\left|e^{-z(-\lambda)^{b}}\right|=e^{-\xi|\lambda|^{b} \cos (b \arg (-\lambda))+\eta|\lambda|^{b} \sin (b \arg (-\lambda))} \leqslant e^{-(\xi \cos (b \pi)-|\eta|)|\lambda|^{b}}
$$

The convergence of the curve integral over Γ_{1} and Γ_{3} follows from the computation

$$
\begin{aligned}
& \left\|\frac{1}{2 \pi i} \int_{\Gamma_{1}} e^{-z(-\lambda)^{b}} R(\lambda: A) d \lambda\right\| \\
\leqslant & \frac{M}{2 \pi} \int_{\varepsilon}^{\infty} e^{-(\xi \cos (b \pi)-|\eta|)\left(\sqrt{t^{2}+t^{2 a}}\right)^{b}}\left(1+\sqrt{t^{2}+t^{2 a}}\right)^{\alpha}\left(1+a \varepsilon^{a-1}\right) d t \\
\leqslant & \frac{M\left(1+a \varepsilon^{a-1}\right)}{2 \pi}\left[\int_{\varepsilon}^{\infty} e^{-(\xi \cos (b \pi)-|\eta|) t^{b}}(1+\sqrt{2})^{\alpha} d t+\int_{1}^{\infty} e^{-(\xi \cos (b \pi)-|\eta|) t^{b}}(1+\sqrt{2})^{\alpha} t^{\alpha} d t\right] \\
\leqslant & \frac{M(1+\sqrt{2})^{\alpha}\left(1+a \varepsilon^{a-1}\right)}{2 \pi}\left[(1-\varepsilon) e^{-(\xi \cos (b \pi)-|\eta|) \varepsilon^{b}}+\int_{0}^{\infty} e^{-(\xi \cos (b \pi)-|\eta|) t^{b}} t^{\alpha} d t\right] \\
= & \frac{M(1+\sqrt{2})^{\alpha}\left(1+a \varepsilon^{a-1}\right)}{2 \pi}\left[(1-\varepsilon) e^{-(\xi \cos (b \pi)-|\eta|) \varepsilon^{b}}+\frac{1}{b} \Gamma\left(\frac{\alpha+1}{b}\right)(\xi \cos (b \pi)-|\eta|)^{-\frac{\alpha+1}{b}}\right],
\end{aligned}
$$

where $\Gamma(\cdot)$ denotes the gamma function in the last estimate. The convergence of the integral over Γ_{2} is obvious and one obtains

$$
\left\|\frac{1}{2 \pi i} \int_{\Gamma_{2}} e^{-z(-\lambda)^{b}} R(\lambda: A) d \lambda\right\| \leqslant M e^{-(\xi \cos (b \pi)-|\eta|) d^{b}}(1+d)^{\alpha+1}
$$

Hence, for every $\delta \in(0, \gamma)$, we have $\left\|z^{\frac{\alpha+1}{b}} T_{b}(z)\right\|=O(1), z \in \Sigma_{\delta}$. By an elementary application of Cauchy's formula, it follows that the integral in (4.1) does not depend on the choice of the curve $\Gamma(a, C, d)$. Fix a $\lambda_{0} \in \rho(A) \backslash H$. Here we would like to point out that $\rho(A) \backslash H$ is a nonempty set since $\rho(A)$ is an open subset of \mathbb{C}. Using the same arguments as in [20, Propositions $2.3,2.5,2.6,2.7$ and 2.8], one obtains:

1. Let $m \in\{0,1\}$. The improper integral

$$
\int_{\Gamma} \frac{-(-\lambda)^{m b} e^{-z(-\lambda)^{b}}}{\left(\lambda-\lambda_{0}\right)^{\lfloor b+\alpha\rfloor+2}} R(\lambda: A) d \lambda
$$

converges uniformly for $z \in \overline{\Sigma_{\gamma}}$.
2. The mapping $z \mapsto T_{b}(z), z \in \Sigma_{\gamma}$, is analytic and

$$
\frac{d^{n}}{d z^{n}} T_{b}(z)=\frac{(-1)^{n}}{2 \pi i} \int_{\Gamma}(-\lambda)^{n b} e^{-t(-\lambda)^{b}} R(\lambda: A) d \lambda, \quad n \in \mathbb{N}
$$

3. $T_{b}\left(z_{1}+z_{2}\right)=T_{b}\left(z_{1}\right) T_{b}\left(z_{2}\right), z_{1}, z_{2} \in \Sigma_{\gamma}$.
4. If $x \in D\left(A^{\lfloor b+\alpha\rfloor+2}\right)=D\left(J^{b}\right)$, then $\lim _{z \rightarrow 0, z \in \Sigma_{\gamma}} \frac{T_{b}(z) x-x}{z}=-J^{b} x$. Especially, the continuity set $\Omega_{b}:=\left\{x \in E: T_{b}(t) x \rightarrow x\right.$ as $\left.t \rightarrow 0+\right\}$ is dense in E. Since the set $E_{b}:=\bigcup_{t>0} T_{b}(t) E$ is dense in Ω_{b}, it follows that $\overline{E_{b}}=E$.
5. For every $z \in \Sigma_{\gamma}, T_{b}(z)$ is an injective operator.

By the foregoing, we obtain that $\left(T_{b}(t)\right)_{t \in \Sigma_{\gamma}}$ is an analytic semigroup of growth order $\frac{\alpha+1}{b}$. Denote by A_{b} the generator of $\left(T_{b}(t)\right)_{t>0}$. By 4 , we obtain that $-J^{b} \subset$ A_{b}. Consequently, $-(-A)^{b} \subset \overline{A_{b}}$. Since $\int_{\Gamma} e^{-t(-\lambda)^{b}} \lambda^{n} d \lambda=0, n \in \mathbb{N}_{0}$, one can repeat literally the arguments given in [20, Lemma 2.10] in order to obtain that, for every $x \in E$ and $t>0, T_{b}(t) x \in D\left(A^{n}\right)$ and that

$$
\begin{equation*}
A^{n} T_{b}(t) x=\frac{1}{2 \pi i} \int_{\Gamma} e^{-t(-\lambda)^{b}} \lambda^{n} R(\lambda: A) x d \lambda \tag{4.2}
\end{equation*}
$$

Particularly, $E_{b} \subset D_{\infty}(A)$. In order to prove that $\overline{A_{b}} \subset-(-A)^{b}$, one can proceed in the same manner as in [20]. Actually, it is sufficient to replace the natural number n in the proofs of [20, Propositions 2.11 and 2.12] with $\lfloor b+\alpha\rfloor$.

The following theorem is the main result of this paper and possesses several natural consequences in the theory of partial differential equations.

Theorem 4.3. Suppose that a closed, densely defined operator A satisfies (*) and $(* *)$. Then, for every $n \in \mathbb{N}$ with $n \geqslant 3$ and $x \in D\left(A^{\left\lfloor\frac{1}{n}+\alpha\right\rfloor+2}\right)$, the abstract Cauchy problem

$$
\left\{\begin{array}{l}
u \in C((0, \infty):[D(A)]) \cap C^{n}((0, \infty): E) \\
\frac{d^{n}}{d t^{n}} u(t)=(-1)^{n+1} A u(t), t>0 \\
\lim _{t \rightarrow 0+} u(t)=x, \sup _{t>0}\|u(t)\|<\infty
\end{array}\right.
$$

has a solution $u(t)=T_{\frac{1}{n}}(t) x, t>0$. Further on, u can be analytically extended to $\Sigma_{\arctan \left(\cos \frac{\pi}{n}\right)}$ and, for every $\delta \in\left(0, \arctan \left(\cos \frac{\pi}{n}\right)\right)$ and $i \in \mathbb{N}_{0}$,

$$
\sup _{z \in \Sigma_{\delta}}\left\|z^{i+n \alpha+n} \frac{d^{i}}{d z^{i}} u(z)\right\|<\infty
$$

Proof. One can use the assertion 2 given in the proof of the Theorem 4.2 and (4.2) to obtain that $\frac{d^{n}}{d t^{n}} u(t)=(-1)^{n+1} A u(t), t>0$. By Theorem 4.2, u can be analytically extended to $\Sigma_{\arctan \left(\cos \frac{\pi}{n}\right)}$. Due to the proof of Theorem 4.2 (see the assertion 4), we conclude that $\lim _{t \rightarrow 0+} u(t)=x$. Let $\delta \in\left(0, \arctan \left(\cos \frac{\pi}{n}\right)\right)$ and $z \in \Sigma_{\delta}$ be fixed. Since

$$
\frac{d^{i}}{d z^{i}} u(z)=\frac{(-1)^{n}}{2 \pi i} \int_{\Gamma}(-\lambda)^{\frac{i}{n}} e^{-z(-\lambda)^{\frac{1}{n}}} R(\lambda: A) x d \lambda
$$

and $\left\|(-\lambda)^{\frac{i}{n}} R(\lambda: A)\right\| \leqslant M(1+|\lambda|)^{\alpha+\frac{i}{n}}$, it follows (see the proofs of Theorem 4.2 and $[\mathbf{2 0}$, Proposition 2.2]) that

$$
\left\|\frac{d^{i}}{d z^{i}} u(z)\right\|=O\left(\left(\xi \cos \left(\frac{\pi}{n}\right)-|\eta|\right)^{-\left(\alpha+\frac{i}{n}+1\right) / \frac{i}{n}}\right), \quad z \in \Sigma_{\delta} .
$$

Hence, $\sup _{z \in \Sigma_{\delta}}\left\|z^{i+n \alpha+n} \frac{d^{i}}{d z^{i}} u(z)\right\|<\infty$.
The author wants to thank B. Straub and F. Periago for sending him the copies of $[\mathbf{1 7}]-[\mathbf{2 0}]$ and $[\mathbf{2 2}]$. The genesis of the paper is partially supported by Ministry of Sciences and Technology of Republic Serbia and Faculty of Technical Sciences of Novi Sad.

References

[1] W. Arendt, O. El-Mennaoui, V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595.
[2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, 2001.
[3] M. Balabane, Puissances fractionnaires d'un opérateur générateur d'un semi-groupe distribution régulier, Ann. Inst. Fourier, Grenoble, 26 (1976), 157-203.
[4] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
[5] G. Da Prato, Semigruppi di crescenza n, Ann. Scuola Norm. Sup. Pisa 20 (1966), 753-782.
[6] R. deLaubenfels, F. Yao, S. Wang, Fractional powers of operators of regularized type, J. Math. Anal. Appl. 168 (1996), 910-933.
[7] R. deLaubenfels, Holomorphic C-existence families, Tokyo J. Math. 15 (1992), 17-38.
[8] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics 1570, Springer-Verlag, 1994.
[9] H. O. Fattorini, The Cauchy Problem, Addison-Wesley, 1983.
[10] M. Kostić, On analytic integrated semigroups, Novi Sad J. Math. 35 (2005), 127-135.
[11] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
[12] P. C. Kunstmann, Stationary dense operators and generation of non-dense distribution semigroups, J. Operator Theory 37 (1997), 111-120.
[13] M. Li, Q. Zheng, α-times integrated semigroups: local and global, Studia Math. 154 (2003), 243-252.
[14] C. Martínez, M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Math. Stud. 187, Elseiver, Amsterdam, 2001.
[15] C. Martínez, M. Sanz, L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347.
[16] I. V. Melnikova, A. I. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC, 2001.
[17] J. M. A. M. van Neerven, B. Straub, On the existence and growth of mild solutions of the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston J. Math. 24 (1998), 137-171.
[18] N. Okazawa, A generation theorem for the semigroups of growth order α, Tôhoku Math. J. 26 (1974), 39-51.
[19] F. Periago, B. Straub, On the existence and uniqueness of solutions for an incomplete secondorder abstract Cauchy problem, Studia Math. 155 (2003), 183-193.
[20] B. Straub, Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them, Hiroshima Math. J. 24 (1994), 529-548.
[21] N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups, Semigroup Forum 38 (1989), 253-261.
[22] W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. 11 (1972), 231-258.
[23] T.-J. Xiao, J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998.

Faculty of Technical Sciences
(Received 1406 2006)
University of Novi Sad
21000 Novi Sad
Serbia
marco.s@verat.net

[^0]: 2000 Mathematics Subject Classification: Primary 47A99; Secondary 47D03, 47D09, 47D62.

