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Abstract. Let {Xi, i � 1} denote a sequence of variables that take values

in {0, 1} and suppose that the sequence forms a Markov chain with transition
matrix P and with initial distribution (q, p) = (P (X1 = 0), P (X1 = 1)).
Several authors have studied the quantities Sn, Y (r) and AR(n), where Sn =∑n

i=1 Xi denotes the number of successes, where Y (r) denotes the number of
experiments up to the r-th success and where AR(n) denotes the number of

runs. In the present paper we study the number of singles AS(n) in the vector
(X1, X2, . . . , Xn). A single in a sequence is an isolated value of 0 or 1, i.e., a
run of length 1. Among others we prove a central limit theorem for AS(n).

1. Introduction

Many papers are devoted to sequences of Bernoulli trials and they form the basis
of many (known) distributions and scientific activities. Applications are numerous.
To mention only a few:

– the one-sample runs test can be used to test the hypothesis that the order in
a sample is random;

– the number of successes can be used for testing for trends in the weather or
in the stock market;

– Bernoulli-trials are important in matching DNA-sequences;
– the number of (consecutive) failures can be used in quality control.
In the case where the trials are i.i.d. many results are known concerning e.g. the

quantities Sn, Y (r) and AR(n), where Sn =
∑n

i=1 Xi denotes the number of suc-
cesses, where Y (r) denotes the number of experiments up to the r-th success and
where AR(n) denotes the number of runs. A Markovian binomial distribution and
other generalizations of the binomial distribution was studied e.g. by Altham [1],
Madsen [7], Omey et al. [8]. In the present paper we study the number of singles
AS(n) in the vector (X1,X2, . . . , Xn).

Suppose that each Xi takes values in the set {0, 1} and for n � 1, let AS(n)
denote the number of singles in the sequence (X1,X2, . . . , Xn). With AS(n) we
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count the number of isolated values of 0 or 1 in (X1,X2, . . . , Xn). Mathematically
we can study AS(n) as follows. For fixed n � 1 we construct a new sequence of
t{0, 1}-valued r.v. ti where ti = 1 if and only if Xi is a single. More precisely we
define the ti as follows:

t1 = (X2 − X1)2, tn = (Xn − Xn−1)2;

ti = (Xi+1 − Xi)2(Xi − Xi−1)2, 2 � i � n − 1.

Clearly we have AS(n) =
∑n

i=1 ti. Note that for simplicity we use the notation ti

and not the notation t
(n)
i . In studying ti and AS(n) we assume that the sequence

X1,X2, . . . , Xn, . . . is a Markov chain taking values in {0, 1}. As special cases we
recover the i.i.d. case. We also briefly consider the the number of 0-singles AS

(0)
n

and the number of 1-singles AS
(1)
n , i.e., AS

(0)
n counts the number of isolated zeros

in the sequence and AS
(1)
n counts the number of isolated ”1” in the sequence.

Before starting our analysis we briefly discuss the Markov chain we use. We
assume that {Xi, i � 1} is a {0, 1}-Markov chain with initial distribution

(P (X1 = 0), P (X1 = 1)) = (q, p), where 0 < p = 1 − q < 1.

The transition matrix P is given by

P =
(

p0,0 p0,1

p1,0 p1,1

)

where for i, j = 0, 1, pi,j = P (X2 = j | X1 = i). To avoid trivialities we suppose
that 0 < pi,j < 1. Note that the Markov chain has the unique stationary vector
given by (x, y) = (p1,0, p0,1)/(p0,1 +p1,0). The eigenvalues of P are given by λ1 = 1
and λ = 1 − p0,1 − p1,0 = p0,0 − p1,0. Note that |λ| < 1. By induction it is easy to
show that the n-step transition matrix is given by

(1.1) Pn = A + λnB, where A =
(

x y
x y

)
and B =

(
y −y
−x x

)
.

Using these relations we find that(
P (Xn = 0), P (Xn = 1)

)
= (q, p)Pn−1 =

(
x + λn−1(y − p), y − λn−1(y − p)

)
.

Among others this implies (see Omey et al. [8]) that for n � 1 we have

E(Xn) = y − λn−1(y − p),

Var(Xn) =
(
y − λn−1(y − p)

)(
x + λn−1(y − p)

)
,

Cov(Xm,Xn) = λn−m Var(Xm), m � n.

As a special case we consider the case where the transition matrix P = P (p, ρ)
is given by

P (p, ρ) =
(

q + ρp p(1 − ρ)
q(1 − ρ) p + ρq

)
.

In this case we have (x, y) = (q, p) and λ = ρ. Since we also have P (Xn = 1) = p,
for all n, the Xi have the same distribution. If ρ �= 0, the Xi are correlated with
ρ = ρ(Xn,Xn+1). From this it follows that Cov(Xn,Xm) = ρn−mpq (m � n). This
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type of correlated Bernoulli trials has been studied among others by Dimitrov and
Kolev [3]. See also Kupper and Haseman [5] or Lai et al. [6]. If ρ = 0, we find back
the case where the Xi are i.i.d. Bernoulli variables. In Fu and Lou [4], the authors
use a finite Markov imbedding approach to study runs and patterns.

2. Moments

Now we focus our attention on the number of singles. We use the sequence of
r.v. ti as in the introduction. In Propositions 2.1 and 2.2 below we study distribu-
tional properties of the random variables ti.

Proposition 2.1. For n � 3 we have:
• P (t1 = 1) = pp1,0 + qp0,1;
• P (ti = 1) = p0,1p1,0, for 2 � i � n − 1;
• P (tn = 1) = P (Xn−1 = 1)p1,0 + P (Xn−1 = 0)p0,1 = (q, p)Pn−2

(
p0,1

p1,0

)
.

Proof. For t1 we have

P (t1 = 1) = P
(
(X1,X2) ∈ {(1, 0), (0, 1)}) = pp1,0 + qp0,1.

For 2 � i � n − 1, we have

P (ti = 1) = P
(
(Xi−1,Xi,Xi+1) ∈ {(0, 1, 0), (1, 0, 1)})

and it follows that

P (ti = 1) =
(
P (Xi−1 = 0) + P (Xi−1 = 1)

)
p0,1p1,0 = p0,1p1,0.

Finally, we have P (tn = 1) = P
(
(Xn−1,Xn) ∈ {(1, 0), (0, 1)}) so that

P (tn = 1) = P (Xn−1 = 1)p1,0 + P (Xn−1 = 0)p0,1. �
Proposition 2.2. For n � 4, the joint distributions are given by:
(a) For i = 1 or i = n − 1, P (ti = ti+1 = 1) = p0,1p1,0.

(b) For 2 � i � n − 2, P (ti = ti+1 = 1) = p0,1p1,0(q, p)P i−2

(
p0,1

p1,0

)
.

(c) P (t1 = tn = 1) = (pp1,0, qp0,1)Pn−3

(
p0,1

p1,0

)
.

(d) For 2 � i � n − 2, P (ti = tn = 1) = p0,1p1,0(q, p)Pn−4

(
p0,1

p1,0

)
.

(e) In all other cases ti and tj are independent.

Proof. (a) For (t1, t2) we have

P (t1 = t2 = 1) = P
(
(X1,X2,X3) ∈ {(1, 0, 1), (0, 1, 0)})

so that P (t1 = t2 = 1) = pp1,0p0,1 + qp0,1p1,0 = p1,0p0,1. The result for i = n − 1
follows in a similar way.

(b) For i = 2, 3, . . . , n − 2 we have

P (ti = ti+1 = 1) = P
(
(Xi−1,Xi,Xi+1,Xi+2) ∈ {(1, 0, 1, 0), (0, 1, 0, 1)})

so that

P (ti = ti+1 = 1) = P (Xi−1 = 1)p1,0p0,1p1,0 + P (Xi−1 = 0)p0,1p1,0p0,1.
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Using
(
P (Xi−1 = 0), P (Xi−1 = 1)

)
= (q, p)P i−2 we find that

P (ti = 1, ti+1 = 1) = p0,1p1,0(q, p)P i−2

(
p0,1

p1,0

)
.

(c) For (t1, tn) we have P (t1 = tn = 1) = P
(
(X1,X2,Xn−1,Xn) ∈ S

)
where

S = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}. Considering the first case, we
have

P
(
(X1,X2,Xn−1,Xn) = (1, 0, 1, 0)

)
= pp1,0p

(n−3)
0,1 p1,0.

In a similar way we calculate the other 3 cases. Using matrices, it follows that

P (t1 = tn = 1) = (pp1,0, qp0,1)Pn−3

(
p0,1

p1,0

)
.

(d) For 2 � i � n − 2 we have

P (ti = tn = 1) = P
(
(Xi−1,Xi,Xi+1,Xn−1,Xn) ∈ S

)
where S = {(1, 0, 1, 0, 1), (1, 0, 1, 1, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0)}. Considering the
first case, we have

P
(
(Xi−1,Xi,Xi+1,Xn−1,Xn) = (1, 0, 1, 0, 1)

)
= P (Xi−1 = 1)p1,0p0,1p

(n−i−2)
1,0 p0,1.

In a similar way we treat the other cases and using matrices we find that

P (ti = tn = 1) = p0,1p1,0

(
P (Xi−1 = 0), P (Xi−1 = 1)

)
Pn−i−2

(
p0,1

p1,0

)

so that

P (ti = tn = 1) = p0,1p1,0(q, p)Pn−4

(
p0,1

p1,0

)
.

(e) To prove independence, consider for example (t1, t3). We have

P (t1 = t3 = 1) = P
(
(X1,X2,X3,X4) ∈ {(1, 0, 1, 0), (0, 1, 0, 1)})

so that

P (t1 = t3 = 1) = pp1,0p0,1p1,0 + qp0,1p1,0p0,1 = P (t1 = 1)P (t3 = 1).

It follows that t1 and t3 are independent. In a similar way it follows that (t1, ti) for
i = 3, 4, . . . , n−1 are independent r.v. and that the other (ti, tj) are independent r.v.

�
In the i.i.d. case, we obtain the following corollary.

Corollary 2.1. Suppose n � 4 and X1,X2, . . . , Xn i.i.d. with P (X1 = 1) = p;
then

(a) P (t1 = 1) = P (tn = 1) = 2pq and for 2 � i � n − 1, P (ti = 1) = pq.
(b) P (t1 = t2 = 1) = P (tn−1 = tn = 1) = pq and for 2 � i � n − 2,

P (ti = ti+1) = 2p2q2.
(c) P (t1 = tn = 1) = 4p2q2.
(d) For 2 � i � n − 2, P (ti = tn = 1) = 2p2q2.
(e) In the other cases ti and tj are independent.

In the next result we discuss the mean and the variance of AS(n).
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Proposition 2.3. (a) As n → ∞, we have 1
nE(AS(n)) → p0,1p1,0.

(b) As n → ∞, we have 1
n Var(AS(n)) → p0,1p1,0

(
1− 3p0,1p1,0 +

4p0,1p1,0

p0,1 + p1,0

)
.

Proof. (a) Using Proposition 2.1, for 2 � i � n − 1 we have E(ti) = p0,1p1,0

It follows that E(AS(n)) = (n − 2)p0,1p1,0 + E(t1) + E(tn) and the result follows.

(b) Using Proposition 2.2 we have

Var(AS(n)) =
n∑

1=1

Var(ti) + 2
n−2∑
i=1

Cov(ti, ti+1) + 2
n−1∑
i=1

Cov(ti, tn) = I + II + III.

We consider these three terms separately.
Term I. For i = 2, 3, , . . . , n − 1 we have Var(ti) = p0,1p1,0(1 − p0,1p1,0). For

i = 1, n, we have Var(t1)+Var(tn) � 2. It follows that I/n → p0,1p1,0(1−p0,1p1,0).

Term II. For i = 2, 3, . . . , n − 2 it follows from Propositions 2.1 and 2.2 that

Cov(ti, ti+1) = p0,1p1,0(q, p)P i−2

(
p0,1

p1,0

)
− (p0,1p1,0)2.

It follows that
n−2∑
i=2

Cov(ti, ti+1) = p0,1p1,0(q, p)
n−2∑
i=2

P i−2

(
p0,1

p1,0

)
− (n − 3)(p0,1p1,0)2.

Using P k = A + λkB, cf (1.1), we obtain that

1
n

n−2∑
i=2

P i−2 =
1
n

n−4∑
j=0

(A + λjB) → A.

We conclude that
II

n
→ 2p0,1p1,0(q, p)A

(
p0,1

p1,0

)
− 2(p0,1p1,0)2 = 2p0,1p1,0(xp0,1 + yp1,0 − p1,0p0,1).

Term III. For 2 � i � n − 1, we have

Cov(ti, tn) = p0,1p1,0(q, p)
(
Pn−4 − Pn−2

)(
p0,1

p1,0

)

so that

Cov(ti, tn) = p0,1p1,0(q, p)
(
λn−4 − λn−2

)
B

(
p0,1

p1,0

)
,

n−1∑
i=2

Cov(ti, tn) = (n − 3)p0,1p1,0(q, p)
(
λn−4 − λn−2

)
B

(
p0,1

p1,0

)
.

It follows that III/n → 0. We conclude that

1
n

Var(AS(n)) → p0,1p1,0(1 − p1,0p0,1) + 2p0,1p1,0(xp0,1 + yp1,0 − p1,0p0,1).
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Using x = p1,0/(p1,0 + p0,1) and y = 1 − x, it follows that

1
n

Var(AS(n)) → p0,1p1,0

(
1 − 3p0,1p1,0 +

4p0,1p1,0

p0,1 + p1,0

)
. �

Remark 2.1. A more detailed analysis shows that

E(AS(n)) = (p + y)p1,0 + (q + x)p0,1 + (n − 2)p0,1p1,0 + λn−2(y − p)(p0,1 − p1,0).

In the next corollary we formulate two special cases.

Corollary 2.2. (i) If P = P (p, ρ) then

E(AS(n)) = (n − 2)pq(1 − ρ)2 + 4pq(1 − ρ),
1
n

Var(AS(n)) → pq(1 − ρ)2
(
1 + pq(1 − ρ) + 3pqρ(1 − ρ)

)
.

(ii) (the i.i.d. case) If ρ = 0, then

E(AS(n)) = (n + 2)pq, and
1
n

Var(AS(n)) → pq(1 + pq).

3. The distribution of AS(n)

In the next proposition we show how to calculate pn(k) = P (AS(n) = k)
recursively.

For n � 2 and for i, j = 0, 1 we write

pn(k) =
1∑

i=0

1∑
j=0

p(i,j)
n (k), where p(i,j)

n (k) = P (AS(n) = k,Xn−1 = i,Xn = j)

For n = 2 we clearly have p
(0,0)
2 (0) = qp0,0 and 0 otherwise; also p

(0,1)
2 (2) = qp0,1

and 0 otherwise; p
(1,0)
2 (2) = pp1,0 and 0 otherwise and p

(1,1)
2 (0) = pp1,1 and 0

otherwise. We have the following relations.

Proposition 3.1. For n � 2 we have
• p

(0,0)
n+1 (k) = p0,0p

(1,0)
n (k + 1) + p0,0p

(0,0)
n (k);

• p
(0,1)
n+1 (k) = p0,1p

(0,0)
n (k − 1) + p0,1p

(1,0)
n (k − 1);

• p
(1,0)
n+1 (k) = p1,0p

(0,1)
n (k − 1) + p1,0p

(1,1)
n (k − 1);

• p
(1,1)
n+1 (k) = p1,1p

(0,1)
n (k + 1) + p1,1p

(1,1)
n (k).

Proof. We only prove the first relation. We have p
(0,0)
n+1 (k) = I + II where

I = P (AS(n + 1) = k, X(n − 1) = 0, X(n) = 0, X(n + 1) = 0)

II = P (AS(n + 1) = k, X(n − 1) = 1, X(n) = 0, X(n + 1) = 0).

It follows that

I = P
(
AS(n) = k,X(n − 1) = 0,X(n) = 0,X(n + 1) = 0

)
= P

(
X(n + 1) = 0 | X(n) = 0,X(n − 1) = 0, AS(n) = k

)
p0,0

n (k)

so that I = p0,0p
(0,0)
n (k).
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In a similar way we have II = p0,0p
(1,0)
n (k + 1). �

Proposition 3.1 can be used to calculate the p.d. of AS(n) explicitly for small
values of n. A straightforward analysis shows that the complexity effort is of order
n2 and exact calculations can be carried out for moderate values of n. For large
values of n we prove the following central limit theorem.

Theorem 3.1. As n → ∞, we have
AS(n) − np0,1p1,0√

n

d⇒ Z,

where Z ∼ N(0, β) with β = p0,1p1,0

(
1 − 3p0,1p1,0 + 4

p0,1p1,0

p1,0 + p0,1

)
.

Proof. To prove the result we use Proposition 3.1 and generating functions.
Let Ψ(i,j)

n (z) denote the generating function of p
(i,j)
n (k) and let Ψn(z) denote the

generating function of pn(k). Also, let

Λn(z) =
(
Ψ(0,0)

n (z),Ψ(0,1)
n (z),Ψ(1,0)

n (z),Ψ(1,1)
n (z)

)
.

Clearly we have

Λ2(z) = (qp0,0, qp0,1z
2, pp1,0z

2, pp1,1) and Ψn(z) = Λn(z)(1, 1, 1, 1)t.

For n � 2 we use Proposition 3.1 to see that

• Ψ(0,0)
n+1 (z) = (p0,0/z)Ψ(1,0)

n (z) + p0,0Ψ
(0,0)
n (z);

• Ψ(0,1)
n+1 (z) = p0,1zΨ(0,0)

n (z) + p0,1zΨ(1,0)
n (z);

• Ψ(1,0)
n+1 (z) = p1,0zΨ(0,1)

n (z) + p1,0zΨ(1,1)
n (z);

• Ψ(1,1)
n+1 (z) = (p1,1/z)Ψ(0,1)

n (z) + p1,1Ψ
(1,1)
n (z).

For n � 2 we obtain that Λn+1(z) = Λn(z)A(z) = Λ2(z)An−1(z), where the
matrix A(z) is given by

A(z) =

⎛
⎜⎜⎝

p0,0 p0,1z 0 0
0 0 p1,0z p1,1/z

p0,0/z p0,1z 0 0
0 0 p1,0z p1,1

⎞
⎟⎟⎠ .

The eigenvalue equation of A(z) leads to

(3.1) λ4 − λ3(p0,0 + p1,1) + λ2(p0,0p1,1 − z2p0,1p1,0) − λa(z) − b(z) = 0,

where

a(z) = z(1 − z)(p0,0 + p1,1)p0,1p1,0, and b(z) = p0,0p0,1p1,0p1,1(1 − z)2.

In the case where z = 1 the eigenvalues are λ1 = 1, λ2 = 1 − p0,1 − p1,0 and
λ3 = λ4 = 0. In the general case, a continuity argument shows that for z < 1, the
matrix A(z) has a unique largest eigenvalue λ(z) = λ1(z) such that λ(z) → 1 as
z → 1. The other eigenvalues are dominated by λ(z). It follows that

An(zn)/(λ(zn))n → U(1)

where zn → 1 and where each row of U(1) equals (xp0,0, xp0,1, yp1,0, yp1,1).
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Now we consider the largest eigenvalue λ(z) of A(z). Starting from (3.1) we
calculate the first derivative, then the second derivative and then take z = 1. Some
lengthy but straighforward calculations show that

λ′(1) = p1,0p0,1 and λ′′(1) =
2p2

0,1p
2
1,0(p0,0 + p1,1)

p0,1 + p1,0
.

Using Taylor’s expansion for log(z) and for log(λ(z)) around z = 1, we find that

log(λ(z)) − p1,0p0,1 log(z)
(1 − z)2

→ 1
2
β

where

β = p0,1p1,0

(
1 − 3p0,1p1,0 + 4

p0,1p1,0

p1,0 + p0,1

)
.

Now we replace z by un = z1/
√

n to see that

λn(un)
u

np0,1p1,0
n

→ exp
(1

2
β(log(z))2

)
.

Turning to Ψn+1(z) we find that Ψn+1(un) ∼ Λ2(un)λn(un)U(1)(1, 1, 1, 1)t and
hence

Ψn+1(un)u−np0,1p1,0
n →

(
exp

{1
2
β(log(z))2

})
Λ2(1)U(1) (1, 1, 1, 1)t.

It follows that

Ψn+1(un)u−np0,1p1,0
n → exp

{1
2
β(log(z))2

}
.

Since Ψn+1(un) = E
(
zAS(n+1)/

√
n
)

the desired result follows. �

In the i.i.d. case we find back the following result of Bloom [2].

Corollary 3.1. In the i.i.d. case we have
AS(n) − npq√

n

d⇒ Z,

where Z ∼ N
(
0, β = pq(1 + pq)

)
.

4. Singles “0” and singles “1”

In this section we briefly discuss the number AS
(0)
n of isolated values 0 and the

number AS
(1)
n of isolated values 1. First we look at isolated values of 0. Starting

from the sequence X1,X2, . . . , Xn we define t
(0)
i = 1 if Xi = 0 is a single. Clearly

we have

t
(0)
1 = X2(1 − X1), t(0)n = Xn−1(1 − Xn), t

(0)
i = Xi−1(1 − Xi)Xi+1

and AS
(0)
n =

∑n
i=1 t

(0)
i . Using the methods of the previous sections one can prove

the following result.
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Theorem 4.1. (a) As n → ∞ we have 1
nE(AS

(0)
n ) → yp0,1p1,0 and

1
n

Var(AS(0)
n ) → θ0 = yp0,1p1,0(1 − 3yp0,1p1,0 + 2xyp1,0).

(b) As n → ∞ we have

AS
(0)
n − nyp0,1p1,0√

n

d⇒ Z(0)

where Z(0) ∼ N(0, θ0).

An entirely similar result holds for AS
(1)
n . Now we find

AS
(1)
n − nxp0,1p1,0√

n

d⇒ Z(1)

where Z(1) ∼ N(0, θ1) with θ1 = xp0,1p1,0(1 − 3xp0,1p1,0 + 2xyp0,1). Using

Var(AS(n)) = Var(AS(0)
n ) + Var(AS(1)

n ) + 2Cov(AS(0)
n , AS(1)

n ),

we obtain the following asymptotic expression for the covariance.

Corollary 4.1. As n → ∞ we have
1
n

Cov
(
AS(0)

n , AS(1)
n

) → −3xyp2
0,1p

2
1,0 +

2p2
0,1p

2
1,0

p1,0 + p0,1
(1 − xy).
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