SINGLES IN A MARKOV CHAIN

Edward Omey and Stefan Van Gulck

Communicated by Slobodabka Janković

Abstract

Let $\left\{X_{i}, i \geqslant 1\right\}$ denote a sequence of variables that take values in $\{0,1\}$ and suppose that the sequence forms a Markov chain with transition matrix P and with initial distribution $(q, p)=\left(P\left(X_{1}=0\right), P\left(X_{1}=1\right)\right)$. Several authors have studied the quantities $S_{n}, Y(r)$ and $A R(n)$, where $S_{n}=$ $\sum_{i=1}^{n} X_{i}$ denotes the number of successes, where $Y(r)$ denotes the number of experiments up to the r-th success and where $A R(n)$ denotes the number of runs. In the present paper we study the number of singles $A S(n)$ in the vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. A single in a sequence is an isolated value of 0 or 1, i.e., a run of length 1 . Among others we prove a central limit theorem for $A S(n)$.

1. Introduction

Many papers are devoted to sequences of Bernoulli trials and they form the basis of many (known) distributions and scientific activities. Applications are numerous. To mention only a few:

- the one-sample runs test can be used to test the hypothesis that the order in a sample is random;
- the number of successes can be used for testing for trends in the weather or in the stock market;
- Bernoulli-trials are important in matching DNA-sequences;
- the number of (consecutive) failures can be used in quality control.

In the case where the trials are i.i.d. many results are known concerning e.g. the quantities $S_{n}, Y(r)$ and $A R(n)$, where $S_{n}=\sum_{i=1}^{n} X_{i}$ denotes the number of successes, where $Y(r)$ denotes the number of experiments up to the r-th success and where $A R(n)$ denotes the number of runs. A Markovian binomial distribution and other generalizations of the binomial distribution was studied e.g. by Altham [1], Madsen [7], Omey et al. [8]. In the present paper we study the number of singles $A S(n)$ in the vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Suppose that each X_{i} takes values in the set $\{0,1\}$ and for $n \geqslant 1$, let $A S(n)$ denote the number of singles in the sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. With $A S(n)$ we

[^0]count the number of isolated values of 0 or 1 in $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Mathematically we can study $A S(n)$ as follows. For fixed $n \geqslant 1$ we construct a new sequence of $t\{0,1\}$-valued r.v. t_{i} where $t_{i}=1$ if and only if X_{i} is a single. More precisely we define the t_{i} as follows:
\[

$$
\begin{gathered}
t_{1}=\left(X_{2}-X_{1}\right)^{2}, \quad t_{n}=\left(X_{n}-X_{n-1}\right)^{2} \\
t_{i}=\left(X_{i+1}-X_{i}\right)^{2}\left(X_{i}-X_{i-1}\right)^{2}, \quad 2 \leqslant i \leqslant n-1
\end{gathered}
$$
\]

Clearly we have $A S(n)=\sum_{i=1}^{n} t_{i}$. Note that for simplicity we use the notation t_{i} and not the notation $t_{i}^{(n)}$. In studying t_{i} and $A S(n)$ we assume that the sequence $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is a Markov chain taking values in $\{0,1\}$. As special cases we recover the i.i.d. case. We also briefly consider the the number of 0 -singles $A S_{n}^{(0)}$ and the number of 1-singles $A S_{n}^{(1)}$, i.e., $A S_{n}^{(0)}$ counts the number of isolated zeros in the sequence and $A S_{n}^{(1)}$ counts the number of isolated " 1 " in the sequence.

Before starting our analysis we briefly discuss the Markov chain we use. We assume that $\left\{X_{i}, i \geqslant 1\right\}$ is a $\{0,1\}$-Markov chain with initial distribution

$$
\left(P\left(X_{1}=0\right), P\left(X_{1}=1\right)\right)=(q, p), \quad \text { where } 0<p=1-q<1
$$

The transition matrix P is given by

$$
P=\left(\begin{array}{ll}
p_{0,0} & p_{0,1} \\
p_{1,0} & p_{1,1}
\end{array}\right)
$$

where for $i, j=0,1, p_{i, j}=P\left(X_{2}=j \mid X_{1}=i\right)$. To avoid trivialities we suppose that $0<p_{i, j}<1$. Note that the Markov chain has the unique stationary vector given by $(x, y)=\left(p_{1,0}, p_{0,1}\right) /\left(p_{0,1}+p_{1,0}\right)$. The eigenvalues of P are given by $\lambda_{1}=1$ and $\lambda=1-p_{0,1}-p_{1,0}=p_{0,0}-p_{1,0}$. Note that $|\lambda|<1$. By induction it is easy to show that the n-step transition matrix is given by

$$
P^{n}=A+\lambda^{n} B, \text { where } A=\left(\begin{array}{ll}
x & y \tag{1.1}\\
x & y
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
y & -y \\
-x & x
\end{array}\right)
$$

Using these relations we find that

$$
\left(P\left(X_{n}=0\right), P\left(X_{n}=1\right)\right)=(q, p) P^{n-1}=\left(x+\lambda^{n-1}(y-p), y-\lambda^{n-1}(y-p)\right) .
$$

Among others this implies (see Omey et al. [8]) that for $n \geqslant 1$ we have

$$
\begin{aligned}
E\left(X_{n}\right) & =y-\lambda^{n-1}(y-p), \\
\operatorname{Var}\left(X_{n}\right) & =\left(y-\lambda^{n-1}(y-p)\right)\left(x+\lambda^{n-1}(y-p)\right), \\
\operatorname{Cov}\left(X_{m}, X_{n}\right) & =\lambda^{n-m} \operatorname{Var}\left(X_{m}\right), \quad m \leqslant n .
\end{aligned}
$$

As a special case we consider the case where the transition matrix $P=P(p, \rho)$ is given by

$$
P(p, \rho)=\left(\begin{array}{cc}
q+\rho p & p(1-\rho) \\
q(1-\rho) & p+\rho q
\end{array}\right)
$$

In this case we have $(x, y)=(q, p)$ and $\lambda=\rho$. Since we also have $P\left(X_{n}=1\right)=p$, for all n, the X_{i} have the same distribution. If $\rho \neq 0$, the X_{i} are correlated with $\rho=\rho\left(X_{n}, X_{n+1}\right)$. From this it follows that $\operatorname{Cov}\left(X_{n}, X_{m}\right)=\rho^{n-m} p q(m \leqslant n)$. This
type of correlated Bernoulli trials has been studied among others by Dimitrov and Kolev [3]. See also Kupper and Haseman [5] or Lai et al. [6]. If $\rho=0$, we find back the case where the X_{i} are i.i.d. Bernoulli variables. In Fu and Lou [4], the authors use a finite Markov imbedding approach to study runs and patterns.

2. Moments

Now we focus our attention on the number of singles. We use the sequence of r.v. t_{i} as in the introduction. In Propositions 2.1 and 2.2 below we study distributional properties of the random variables t_{i}.

Proposition 2.1. For $n \geqslant 3$ we have:

- $P\left(t_{1}=1\right)=p p_{1,0}+q p_{0,1} ;$
- $P\left(t_{i}=1\right)=p_{0,1} p_{1,0}$, for $2 \leqslant i \leqslant n-1$;
- $P\left(t_{n}=1\right)=P\left(X_{n-1}=1\right) p_{1,0}+P\left(X_{n-1}=0\right) p_{0,1}=(q, p) P^{n-2}\binom{p_{0,1}}{p_{1,0}}$.

Proof. For t_{1} we have

$$
P\left(t_{1}=1\right)=P\left(\left(X_{1}, X_{2}\right) \in\{(1,0),(0,1)\}\right)=p p_{1,0}+q p_{0,1}
$$

For $2 \leqslant i \leqslant n-1$, we have

$$
P\left(t_{i}=1\right)=P\left(\left(X_{i-1}, X_{i}, X_{i+1}\right) \in\{(0,1,0),(1,0,1)\}\right)
$$

and it follows that

$$
P\left(t_{i}=1\right)=\left(P\left(X_{i-1}=0\right)+P\left(X_{i-1}=1\right)\right) p_{0,1} p_{1,0}=p_{0,1} p_{1,0}
$$

Finally, we have $P\left(t_{n}=1\right)=P\left(\left(X_{n-1}, X_{n}\right) \in\{(1,0),(0,1)\}\right)$ so that

$$
P\left(t_{n}=1\right)=P\left(X_{n-1}=1\right) p_{1,0}+P\left(X_{n-1}=0\right) p_{0,1} .
$$

Proposition 2.2. For $n \geqslant 4$, the joint distributions are given by:
(a) For $i=1$ or $i=n-1, P\left(t_{i}=t_{i+1}=1\right)=p_{0,1} p_{1,0}$.
(b) For $2 \leqslant i \leqslant n-2, P\left(t_{i}=t_{i+1}=1\right)=p_{0,1} p_{1,0}(q, p) P^{i-2}\binom{p_{0,1}}{p_{1,0}}$.
(c) $P\left(t_{1}=t_{n}=1\right)=\left(p p_{1,0}, q p_{0,1}\right) P^{n-3}\binom{p_{0,1}}{p_{1,0}}$.
(d) For $2 \leqslant i \leqslant n-2, P\left(t_{i}=t_{n}=1\right)=p_{0,1} p_{1,0}(q, p) P^{n-4}\binom{p_{0,1}}{p_{1,0}}$.
(e) In all other cases t_{i} and t_{j} are independent.

Proof. (a) For $\left(t_{1}, t_{2}\right)$ we have

$$
P\left(t_{1}=t_{2}=1\right)=P\left(\left(X_{1}, X_{2}, X_{3}\right) \in\{(1,0,1),(0,1,0)\}\right)
$$

so that $P\left(t_{1}=t_{2}=1\right)=p p_{1,0} p_{0,1}+q p_{0,1} p_{1,0}=p_{1,0} p_{0,1}$. The result for $i=n-1$ follows in a similar way.
(b) For $i=2,3, \ldots, n-2$ we have

$$
P\left(t_{i}=t_{i+1}=1\right)=P\left(\left(X_{i-1}, X_{i}, X_{i+1}, X_{i+2}\right) \in\{(1,0,1,0),(0,1,0,1)\}\right)
$$

so that

$$
P\left(t_{i}=t_{i+1}=1\right)=P\left(X_{i-1}=1\right) p_{1,0} p_{0,1} p_{1,0}+P\left(X_{i-1}=0\right) p_{0,1} p_{1,0} p_{0,1} .
$$

Using $\left(P\left(X_{i-1}=0\right), P\left(X_{i-1}=1\right)\right)=(q, p) P^{i-2}$ we find that

$$
P\left(t_{i}=1, t_{i+1}=1\right)=p_{0,1} p_{1,0}(q, p) P^{i-2}\binom{p_{0,1}}{p_{1,0}} .
$$

(c) For $\left(t_{1}, t_{n}\right)$ we have $P\left(t_{1}=t_{n}=1\right)=P\left(\left(X_{1}, X_{2}, X_{n-1}, X_{n}\right) \in S\right)$ where $S=\{(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1)\}$. Considering the first case, we have

$$
P\left(\left(X_{1}, X_{2}, X_{n-1}, X_{n}\right)=(1,0,1,0)\right)=p p_{1,0} p_{0,1}^{(n-3)} p_{1,0} .
$$

In a similar way we calculate the other 3 cases. Using matrices, it follows that

$$
P\left(t_{1}=t_{n}=1\right)=\left(p p_{1,0}, q p_{0,1}\right) P^{n-3}\binom{p_{0,1}}{p_{1,0}}
$$

(d) For $2 \leqslant i \leqslant n-2$ we have

$$
P\left(t_{i}=t_{n}=1\right)=P\left(\left(X_{i-1}, X_{i}, X_{i+1}, X_{n-1}, X_{n}\right) \in S\right)
$$

where $S=\{(1,0,1,0,1),(1,0,1,1,0),(0,1,0,0,1),(0,1,0,1,0)\}$. Considering the first case, we have

$$
P\left(\left(X_{i-1}, X_{i}, X_{i+1}, X_{n-1}, X_{n}\right)=(1,0,1,0,1)\right)=P\left(X_{i-1}=1\right) p_{1,0} p_{0,1} p_{1,0}^{(n-i-2)} p_{0,1}
$$

In a similar way we treat the other cases and using matrices we find that

$$
P\left(t_{i}=t_{n}=1\right)=p_{0,1} p_{1,0}\left(P\left(X_{i-1}=0\right), P\left(X_{i-1}=1\right)\right) P^{n-i-2}\binom{p_{0,1}}{p_{1,0}}
$$

so that

$$
P\left(t_{i}=t_{n}=1\right)=p_{0,1} p_{1,0}(q, p) P^{n-4}\binom{p_{0,1}}{p_{1,0}}
$$

(e) To prove independence, consider for example $\left(t_{1}, t_{3}\right)$. We have

$$
P\left(t_{1}=t_{3}=1\right)=P\left(\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \in\{(1,0,1,0),(0,1,0,1)\}\right)
$$

so that

$$
P\left(t_{1}=t_{3}=1\right)=p p_{1,0} p_{0,1} p_{1,0}+q p_{0,1} p_{1,0} p_{0,1}=P\left(t_{1}=1\right) P\left(t_{3}=1\right)
$$

It follows that t_{1} and t_{3} are independent. In a similar way it follows that $\left(t_{1}, t_{i}\right)$ for $i=3,4, \ldots, n-1$ are independent r.v. and that the other $\left(t_{i}, t_{j}\right)$ are independent r.v.

In the i.i.d. case, we obtain the following corollary.
Corollary 2.1. Suppose $n \geqslant 4$ and $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d. with $P\left(X_{1}=1\right)=p$; then
(a) $P\left(t_{1}=1\right)=P\left(t_{n}=1\right)=2 p q$ and for $2 \leqslant i \leqslant n-1, P\left(t_{i}=1\right)=p q$.
(b) $P\left(t_{1}=t_{2}=1\right)=P\left(t_{n-1}=t_{n}=1\right)=p q$ and for $2 \leqslant i \leqslant n-2$, $P\left(t_{i}=t_{i+1}\right)=2 p^{2} q^{2}$
(c) $P\left(t_{1}=t_{n}=1\right)=4 p^{2} q^{2}$.
(d) For $2 \leqslant i \leqslant n-2, P\left(t_{i}=t_{n}=1\right)=2 p^{2} q^{2}$.
(e) In the other cases t_{i} and t_{j} are independent.

In the next result we discuss the mean and the variance of $A S(n)$.

Proposition 2.3. (a) As $n \rightarrow \infty$, we have $\frac{1}{n} E(A S(n)) \rightarrow p_{0,1} p_{1,0}$.
(b) As $n \rightarrow \infty$, we have $\frac{1}{n} \operatorname{Var}(A S(n)) \rightarrow p_{0,1} p_{1,0}\left(1-3 p_{0,1} p_{1,0}+\frac{4 p_{0,1} p_{1,0}}{p_{0,1}+p_{1,0}}\right)$.

Proof. (a) Using Proposition 2.1, for $2 \leqslant i \leqslant n-1$ we have $E\left(t_{i}\right)=p_{0,1} p_{1,0}$ It follows that $E(A S(n))=(n-2) p_{0,1} p_{1,0}+E\left(t_{1}\right)+E\left(t_{n}\right)$ and the result follows.
(b) Using Proposition 2.2 we have
$\operatorname{Var}(A S(n))=\sum_{1=1}^{n} \operatorname{Var}\left(t_{i}\right)+2 \sum_{i=1}^{n-2} \operatorname{Cov}\left(t_{i}, t_{i+1}\right)+2 \sum_{i=1}^{n-1} \operatorname{Cov}\left(t_{i}, t_{n}\right)=I+I I+I I I$.
We consider these three terms separately.
Term I. For $i=2,3, \ldots, n-1$ we have $\operatorname{Var}\left(t_{i}\right)=p_{0,1} p_{1,0}\left(1-p_{0,1} p_{1,0}\right)$. For $i=1, n$, we have $\operatorname{Var}\left(t_{1}\right)+\operatorname{Var}\left(t_{n}\right) \leqslant 2$. It follows that $I / n \rightarrow p_{0,1} p_{1,0}\left(1-p_{0,1} p_{1,0}\right)$.

Term $I I$. For $i=2,3, \ldots, n-2$ it follows from Propositions 2.1 and 2.2 that

$$
\operatorname{Cov}\left(t_{i}, t_{i+1}\right)=p_{0,1} p_{1,0}(q, p) P^{i-2}\binom{p_{0,1}}{p_{1,0}}-\left(p_{0,1} p_{1,0}\right)^{2}
$$

It follows that

$$
\sum_{i=2}^{n-2} \operatorname{Cov}\left(t_{i}, t_{i+1}\right)=p_{0,1} p_{1,0}(q, p) \sum_{i=2}^{n-2} P^{i-2}\binom{p_{0,1}}{p_{1,0}}-(n-3)\left(p_{0,1} p_{1,0}\right)^{2}
$$

Using $P^{k}=A+\lambda^{k} B$, cf (1.1), we obtain that

$$
\frac{1}{n} \sum_{i=2}^{n-2} P^{i-2}=\frac{1}{n} \sum_{j=0}^{n-4}\left(A+\lambda^{j} B\right) \rightarrow A
$$

We conclude that

$$
\frac{I I}{n} \rightarrow 2 p_{0,1} p_{1,0}(q, p) A\binom{p_{0,1}}{p_{1,0}}-2\left(p_{0,1} p_{1,0}\right)^{2}=2 p_{0,1} p_{1,0}\left(x p_{0,1}+y p_{1,0}-p_{1,0} p_{0,1}\right)
$$

Term III. For $2 \leqslant i \leqslant n-1$, we have

$$
\operatorname{Cov}\left(t_{i}, t_{n}\right)=p_{0,1} p_{1,0}(q, p)\left(P^{n-4}-P^{n-2}\right)\binom{p_{0,1}}{p_{1,0}}
$$

so that

$$
\begin{aligned}
\operatorname{Cov}\left(t_{i}, t_{n}\right) & =p_{0,1} p_{1,0}(q, p)\left(\lambda^{n-4}-\lambda^{n-2}\right) B\binom{p_{0,1}}{p_{1,0}} \\
\sum_{i=2}^{n-1} \operatorname{Cov}\left(t_{i}, t_{n}\right) & =(n-3) p_{0,1} p_{1,0}(q, p)\left(\lambda^{n-4}-\lambda^{n-2}\right) B\binom{p_{0,1}}{p_{1,0}}
\end{aligned}
$$

It follows that $I I I / n \rightarrow 0$. We conclude that

$$
\frac{1}{n} \operatorname{Var}(A S(n)) \rightarrow p_{0,1} p_{1,0}\left(1-p_{1,0} p_{0,1}\right)+2 p_{0,1} p_{1,0}\left(x p_{0,1}+y p_{1,0}-p_{1,0} p_{0,1}\right)
$$

Using $x=p_{1,0} /\left(p_{1,0}+p_{0,1}\right)$ and $y=1-x$, it follows that

$$
\frac{1}{n} \operatorname{Var}(A S(n)) \rightarrow p_{0,1} p_{1,0}\left(1-3 p_{0,1} p_{1,0}+\frac{4 p_{0,1} p_{1,0}}{p_{0,1}+p_{1,0}}\right)
$$

Remark 2.1. A more detailed analysis shows that
$E(A S(n))=(p+y) p_{1,0}+(q+x) p_{0,1}+(n-2) p_{0,1} p_{1,0}+\lambda^{n-2}(y-p)\left(p_{0,1}-p_{1,0}\right)$.
In the next corollary we formulate two special cases.
Corollary 2.2. (i) If $P=P(p, \rho)$ then

$$
\begin{gathered}
E(A S(n))=(n-2) p q(1-\rho)^{2}+4 p q(1-\rho) \\
\frac{1}{n} \operatorname{Var}(A S(n)) \rightarrow p q(1-\rho)^{2}(1+p q(1-\rho)+3 p q \rho(1-\rho))
\end{gathered}
$$

(ii) (the i.i.d. case) If $\rho=0$, then

$$
E(A S(n))=(n+2) p q, \quad \text { and } \quad \frac{1}{n} \operatorname{Var}(A S(n)) \rightarrow p q(1+p q)
$$

3. The distribution of $A S(n)$

In the next proposition we show how to calculate $p_{n}(k)=P(A S(n)=k)$ recursively.

For $n \geqslant 2$ and for $i, j=0,1$ we write

$$
p_{n}(k)=\sum_{i=0}^{1} \sum_{j=0}^{1} p_{n}^{(i, j)}(k), \quad \text { where } \quad p_{n}^{(i, j)}(k)=P\left(A S(n)=k, X_{n-1}=i, X_{n}=j\right)
$$

For $n=2$ we clearly have $p_{2}^{(0,0)}(0)=q p_{0,0}$ and 0 otherwise; also $p_{2}^{(0,1)}(2)=q p_{0,1}$ and 0 otherwise; $p_{2}^{(1,0)}(2)=p p_{1,0}$ and 0 otherwise and $p_{2}^{(1,1)}(0)=p p_{1,1}$ and 0 otherwise. We have the following relations.

Proposition 3.1. For $n \geqslant 2$ we have

- $p_{n+1}^{(0,0)}(k)=p_{0,0} p_{n}^{(1,0)}(k+1)+p_{0,0} p_{n}^{(0,0)}(k)$;
- $p_{n+1}^{(0,1)}(k)=p_{0,1} p_{n}^{(0,0)}(k-1)+p_{0,1} p_{n}^{(1,0)}(k-1)$;
- $p_{n+1}^{(1,0)}(k)=p_{1,0} p_{n}^{(0,1)}(k-1)+p_{1,0} p_{n}^{(1,1)}(k-1)$;
- $p_{n+1}^{(1,1)}(k)=p_{1,1} p_{n}^{(0,1)}(k+1)+p_{1,1} p_{n}^{(1,1)}(k)$.

Proof. We only prove the first relation. We have $p_{n+1}^{(0,0)}(k)=I+I I$ where

$$
\left.\begin{array}{rl}
I & =P(A S(n+1)
\end{array}=k, X(n-1)=0, X(n)=0, X(n+1)=0\right) ~ 子 ~=P(A S(n+1)=k, X(n-1)=1, X(n)=0, X(n+1)=0) . ~ \$
$$

It follows that

$$
\begin{aligned}
I & =P(A S(n)=k, X(n-1)=0, X(n)=0, X(n+1)=0) \\
& =P(X(n+1)=0 \mid X(n)=0, X(n-1)=0, A S(n)=k) p_{n}^{0,0}(k)
\end{aligned}
$$

so that $I=p_{0,0} p_{n}^{(0,0)}(k)$.

In a similar way we have $I I=p_{0,0} p_{n}^{(1,0)}(k+1)$.
Proposition 3.1 can be used to calculate the p.d. of $A S(n)$ explicitly for small values of n. A straightforward analysis shows that the complexity effort is of order n^{2} and exact calculations can be carried out for moderate values of n. For large values of n we prove the following central limit theorem.

Theorem 3.1. As $n \rightarrow \infty$, we have

$$
\frac{A S(n)-n p_{0,1} p_{1,0}}{\sqrt{n}} \stackrel{d}{\Rightarrow} Z
$$

where $Z \sim N(0, \beta)$ with $\beta=p_{0,1} p_{1,0}\left(1-3 p_{0,1} p_{1,0}+4 \frac{p_{0,1} p_{1,0}}{p_{1,0}+p_{0,1}}\right)$.
Proof. To prove the result we use Proposition 3.1 and generating functions. Let $\Psi_{n}^{(i, j)}(z)$ denote the generating function of $p_{n}^{(i, j)}(k)$ and let $\Psi_{n}(z)$ denote the generating function of $p_{n}(k)$. Also, let

$$
\Lambda_{n}(z)=\left(\Psi_{n}^{(0,0)}(z), \Psi_{n}^{(0,1)}(z), \Psi_{n}^{(1,0)}(z), \Psi_{n}^{(1,1)}(z)\right)
$$

Clearly we have

$$
\Lambda_{2}(z)=\left(q p_{0,0}, q p_{0,1} z^{2}, p p_{1,0} z^{2}, p p_{1,1}\right) \quad \text { and } \quad \Psi_{n}(z)=\Lambda_{n}(z)(1,1,1,1)^{t}
$$

For $n \geqslant 2$ we use Proposition 3.1 to see that

- $\Psi_{n+1}^{(0,0)}(z)=\left(p_{0,0} / z\right) \Psi_{n}^{(1,0)}(z)+p_{0,0} \Psi_{n}^{(0,0)}(z)$;
- $\Psi_{n+1}^{(0,1)}(z)=p_{0,1} z \Psi_{n}^{(0,0)}(z)+p_{0,1} z \Psi_{n}^{(1,0)}(z)$;
- $\Psi_{n+1}^{(1,0)}(z)=p_{1,0} z \Psi_{n}^{(0,1)}(z)+p_{1,0} z \Psi_{n}^{(1,1)}(z)$;
- $\Psi_{n+1}^{(1,1)}(z)=\left(p_{1,1} / z\right) \Psi_{n}^{(0,1)}(z)+p_{1,1} \Psi_{n}^{(1,1)}(z)$.

For $n \geqslant 2$ we obtain that $\Lambda_{n+1}(z)=\Lambda_{n}(z) A(z)=\Lambda_{2}(z) A^{n-1}(z)$, where the matrix $A(z)$ is given by

$$
A(z)=\left(\begin{array}{cccc}
p_{0,0} & p_{0,1} z & 0 & 0 \\
0 & 0 & p_{1,0} z & p_{1,1} / z \\
p_{0,0} / z & p_{0,1} z & 0 & 0 \\
0 & 0 & p_{1,0} z & p_{1,1}
\end{array}\right)
$$

The eigenvalue equation of $A(z)$ leads to

$$
\begin{equation*}
\lambda^{4}-\lambda^{3}\left(p_{0,0}+p_{1,1}\right)+\lambda^{2}\left(p_{0,0} p_{1,1}-z^{2} p_{0,1} p_{1,0}\right)-\lambda a(z)-b(z)=0 \tag{3.1}
\end{equation*}
$$

where

$$
a(z)=z(1-z)\left(p_{0,0}+p_{1,1}\right) p_{0,1} p_{1,0}, \quad \text { and } \quad b(z)=p_{0,0} p_{0,1} p_{1,0} p_{1,1}(1-z)^{2}
$$

In the case where $z=1$ the eigenvalues are $\lambda_{1}=1, \lambda_{2}=1-p_{0,1}-p_{1,0}$ and $\lambda_{3}=\lambda_{4}=0$. In the general case, a continuity argument shows that for $z<1$, the matrix $A(z)$ has a unique largest eigenvalue $\lambda(z)=\lambda_{1}(z)$ such that $\lambda(z) \rightarrow 1$ as $z \rightarrow 1$. The other eigenvalues are dominated by $\lambda(z)$. It follows that

$$
A^{n}\left(z_{n}\right) /\left(\lambda\left(z_{n}\right)\right)^{n} \rightarrow U(1)
$$

where $z_{n} \rightarrow 1$ and where each row of $U(1)$ equals ($\left.x p_{0,0}, x p_{0,1}, y p_{1,0}, y p_{1,1}\right)$.

Now we consider the largest eigenvalue $\lambda(z)$ of $A(z)$. Starting from (3.1) we calculate the first derivative, then the second derivative and then take $z=1$. Some lengthy but straighforward calculations show that

$$
\lambda^{\prime}(1)=p_{1,0} p_{0,1} \quad \text { and } \quad \lambda^{\prime \prime}(1)=\frac{2 p_{0,1}^{2} p_{1,0}^{2}\left(p_{0,0}+p_{1,1}\right)}{p_{0,1}+p_{1,0}}
$$

Using Taylor's expansion for $\log (z)$ and for $\log (\lambda(z))$ around $z=1$, we find that

$$
\frac{\log (\lambda(z))-p_{1,0} p_{0,1} \log (z)}{(1-z)^{2}} \rightarrow \frac{1}{2} \beta
$$

where

$$
\beta=p_{0,1} p_{1,0}\left(1-3 p_{0,1} p_{1,0}+4 \frac{p_{0,1} p_{1,0}}{p_{1,0}+p_{0,1}}\right) .
$$

Now we replace z by $u_{n}=z^{1 / \sqrt{n}}$ to see that

$$
\frac{\lambda^{n}\left(u_{n}\right)}{u_{n}^{n p_{0,1} p_{1,0}}} \rightarrow \exp \left(\frac{1}{2} \beta(\log (z))^{2}\right)
$$

Turning to $\Psi_{n+1}(z)$ we find that $\Psi_{n+1}\left(u_{n}\right) \sim \Lambda_{2}\left(u_{n}\right) \lambda^{n}\left(u_{n}\right) U(1)(1,1,1,1)^{t}$ and hence

$$
\Psi_{n+1}\left(u_{n}\right) u_{n}^{-n p_{0,1} p_{1,0}} \rightarrow\left(\exp \left\{\frac{1}{2} \beta(\log (z))^{2}\right\}\right) \Lambda_{2}(1) U(1)(1,1,1,1)^{t}
$$

It follows that

$$
\Psi_{n+1}\left(u_{n}\right) u_{n}^{-n p_{0,1} p_{1,0}} \rightarrow \exp \left\{\frac{1}{2} \beta(\log (z))^{2}\right\}
$$

Since $\Psi_{n+1}\left(u_{n}\right)=E\left(z^{A S(n+1) / \sqrt{n}}\right)$ the desired result follows.
In the i.i.d. case we find back the following result of Bloom [2].
Corollary 3.1. In the i.i.d. case we have

$$
\frac{A S(n)-n p q}{\sqrt{n}} \stackrel{d}{\Rightarrow} Z
$$

where $Z \sim N(0, \beta=p q(1+p q))$.

4. Singles " 0 " and singles " 1 "

In this section we briefly discuss the number $A S_{n}^{(0)}$ of isolated values 0 and the number $A S_{n}^{(1)}$ of isolated values 1. First we look at isolated values of 0 . Starting from the sequence $X_{1}, X_{2}, \ldots, X_{n}$ we define $t_{i}^{(0)}=1$ if $X_{i}=0$ is a single. Clearly we have

$$
t_{1}^{(0)}=X_{2}\left(1-X_{1}\right), \quad t_{n}^{(0)}=X_{n-1}\left(1-X_{n}\right), \quad t_{i}^{(0)}=X_{i-1}\left(1-X_{i}\right) X_{i+1}
$$

and $A S_{n}^{(0)}=\sum_{i=1}^{n} t_{i}^{(0)}$. Using the methods of the previous sections one can prove the following result.

THEOREM 4.1. (a) As $n \rightarrow \infty$ we have $\frac{1}{n} E\left(A S_{n}^{(0)}\right) \rightarrow y p_{0,1} p_{1,0}$ and

$$
\frac{1}{n} \operatorname{Var}\left(A S_{n}^{(0)}\right) \rightarrow \theta_{0}=y p_{0,1} p_{1,0}\left(1-3 y p_{0,1} p_{1,0}+2 x y p_{1,0}\right)
$$

(b) As $n \rightarrow \infty$ we have

$$
\frac{A S_{n}^{(0)}-n y p_{0,1} p_{1,0}}{\sqrt{n}} \stackrel{d}{\Rightarrow} Z^{(0)}
$$

where $Z^{(0)} \sim N\left(0, \theta_{0}\right)$.
An entirely similar result holds for $A S_{n}^{(1)}$. Now we find

$$
\frac{A S_{n}^{(1)}-n x p_{0,1} p_{1,0}}{\sqrt{n}} \stackrel{d}{\Rightarrow} Z^{(1)}
$$

where $Z^{(1)} \sim N\left(0, \theta_{1}\right)$ with $\theta_{1}=x p_{0,1} p_{1,0}\left(1-3 x p_{0,1} p_{1,0}+2 x y p_{0,1}\right)$. Using

$$
\operatorname{Var}(A S(n))=\operatorname{Var}\left(A S_{n}^{(0)}\right)+\operatorname{Var}\left(A S_{n}^{(1)}\right)+2 \operatorname{Cov}\left(A S_{n}^{(0)}, A S_{n}^{(1)}\right)
$$

we obtain the following asymptotic expression for the covariance.
Corollary 4.1. As $n \rightarrow \infty$ we have

$$
\frac{1}{n} \operatorname{Cov}\left(A S_{n}^{(0)}, A S_{n}^{(1)}\right) \rightarrow-3 x y p_{0,1}^{2} p_{1,0}^{2}+\frac{2 p_{0,1}^{2} p_{1,0}^{2}}{p_{1,0}+p_{0,1}}(1-x y)
$$

References

[1] P. Altham, Two generalizations of the binomial distribution, J. R. Stat. Soc., Ser. C 27 (1978), 162-167.
[2] D. M. Bloom, Singles in a sequence of coin tosses, Coll. Math. J. 29(2) (1998), 120-127.
[3] B. Dimitrov, B. and N. Kolev, Extended in time correlated Bernoulli trials in modeling waiting times under periodic environmental conditions, Technical paper, Universidade de Sao Paulo, Brasil, 1999.
[4] J. C. Fu and W. Y. W. Lou, Distribution theory of runs and patterns and its applications. A finite Markov chain imbedding approach, World Scientific, Singapore, 2003.
[5] L. L. Kupper and J. K. Haseman, The use of the correlated binomial model for the analysis of certain toxicological experiments, Biometrics 34 (1978), 69-76.
[6] C.D. Lai, K. Govindaraju, and M. Xie, Effects of correlation on fraction non-conforming statistical process control procedures, J. Appl. Stat. 25(4) (1998), 535-543.
[7] R. W. Madsen, Generalized binomial distributions, Commun. Stat., Theory Methods 22(11) (1993), 3065-3086.
[8] E. Omey, J. Santos, and S. Van Gulck, A Markov binomial distribution, Appl. Anal. Discrete Math. 2(1) (2008), 38-50. (available electronically at: http://pefmath.etf.bg.ac.yu)

Department of Mathematics and Statistics
(Received 0605 2008) HUB, Stormstraat 2, 1000 Brussels, Belgium and
Affiliated Researcher K. U. Leuven - ORSTAT
Naamsestraat 69, 3000 Leuven, Belgium
edward.omey@hubrussel.be
Department of Mathematics and Statistics
HUB, Stormstraat 2, 1000 Brussels, Belgium
stefan.vangulck@hubrussel.be

[^0]: 2000 Mathematics Subject Classification: Primary 60J10; Secondary 60F05, 60K99, 60J20.

