DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT

Christoph Schmoeger

Communicated by Stevan Pilipović

ABSTRACT. Let A be a bounded linear operator on a Banach space such that the resolvent of A is rational. If 0 is in the spectrum of A, then it is well known that A is Drazin invertible. We investigate spectral properties of the Drazin inverse of A. For example we show that the Drazin inverse of A is a polynomial in A.

1. Introduction and terminology

In this paper X is always a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. For $A \in \mathcal{L}(X)$ we write N(A) for its kernel and A(X) for its range. We write $\sigma(A)$, $\rho(A)$ and $R_{\lambda}(A)$ for the spectrum, the resolvent set and the resolvent operator $(A - \lambda)^{-1}$ ($\lambda \notin \sigma(A)$) of A, respectively. The ascent of A is denoted by $\alpha(A)$ and the descent of A is denoted by $\delta(A)$.

An operator $A \in \mathcal{L}(X)$ is Drazin invertible if there is $C \in \mathcal{L}(X)$ such that

(i) CAC = C, (ii) AC = CA and (iii) $A^{\nu+1}C = A^{\nu}$ for nonnegative integer ν .

In this case C is uniquely determined (see [2]) and is called the *Drazin inverse* of A. The smallest nonnegative integer ν such that (iii) holds is called the *index* i(A) of A. Observe that

 $0 \in \rho(A) \Leftrightarrow A$ is Drazin invertible and i(A) = 0.

The following proposition tells us exactly which operators are Drazin invertible with index > 0:

1.1. PROPOSITION. Let $A \in \mathcal{L}(X)$ and let ν be a positive integer. Then the following assertions are equivalent:

- (1) A is Drazin invertible and $i(A) = \nu$.
- (2) $\alpha(A) = \delta(A) = \nu$.
- (3) $R_{\lambda}(A)$ has a pole of order ν at $\lambda = 0$.

2000 Mathematics Subject Classification: Primary 47A10. Key words and phrases: rational resolvent, Drazin inverse.

³⁷

PROOF. [2, §5.2] and [3, Satz 101.2].

The next result we will use frequently in our investigations.

1.2. PROPOSITION. Suppose that $A \in \mathcal{L}(X)$ is Drazin invertible, $i(A) = \nu \ge 1$, *P* is the spectral projection of *A* associated with the spectral set $\{0\}$ and that *C* is the Drazin inverse of *A*. Then

$$\begin{split} P &= I - AC, \quad N(C) = N(A^{\nu}) = P(X), \\ C(X) &= N(P) = A^{\nu}(X), \\ C \text{ is Drazin invertible, } \quad i(C) = 1, \\ ACA \text{ is the Drazin inverse of } C, \\ 0 &\in \sigma(C) \text{ and } \sigma(C) \smallsetminus \{0\} = \{\frac{1}{\lambda} : \lambda \in \sigma(A) \smallsetminus \{0\}\}. \end{split}$$

PROOF. We have P = I - AC, $N(A^{\nu}) = P(X)$ and $\sigma(C) \setminus \{0\} = \{\frac{1}{\lambda} : \lambda \in \sigma(A) \setminus \{0\}\}$ by [2, §52]. It is clear that $0 \in \sigma(C)$. From Proposition 1.1 and [3, Satz 101.2] we get $N(P) = A^{\nu}(X)$. If $x \in X$ then $Cx = 0 \Leftrightarrow Px = x$, hence N(C) = P(X). From P = I - AC = I - CA it is easily seen that N(P) = C(X). Let B = ACA. Then

$$C^{2}B = CBC = CACAC = CAC = C,$$

$$CB = CACA = ACAC = BC$$

$$BCB = ACACACA = ACACA = ACA = B.$$

This shows that C is Drazin invertible, B is the Drazin inverse of C and that i(C) = 1.

Now we introduce the class of operators which we will consider in this paper. We say that $A \in \mathcal{L}(X)$ has a *rational resolvent* if

$$R_{\lambda}(A) = \frac{P(\lambda)}{q(\lambda)}$$

where $P(\lambda)$ is a polynomial with coefficients in $\mathcal{L}(X)$, $q(\lambda)$ is polynomial with coefficients in \mathbb{C} and where P and q have no common zeros. We use the symbol $\mathcal{F}(X)$ to denote the subclass of $\mathcal{L}(X)$ consisting of those operators whose resolvent is rational. For $A \in \mathcal{L}(X)$ let $\mathcal{H}(A)$ be the set of all functions $f : \Delta(f) \to \mathbb{C}$ such that $\Delta(f)$ is an open set in \mathbb{C} , $\sigma(A) \subseteq \Delta(f)$ and f is holomorphic on $\Delta(f)$. For $f \in \mathcal{H}(A)$ the operator $f(A) \in \mathcal{L}(X)$ is defined by the usual operational calculus (see [3] or [4]).

The following proposition collects some properties of operators in $\mathcal{F}(X)$. An operator $A \in \mathcal{L}(X)$ is called *algebraic* if p(A) = 0 for some nonzero polynomial p.

- 1.3. PROPOSITION. Let $A \in \mathcal{L}(X)$. Then
- (1) $A \in \mathcal{F}(X)$ if and only if $\sigma(A)$ consists of a finite number of poles of $R_{\lambda}(A)$.
- (2) $A \in \mathcal{F}(X)$ if and only if A is algebraic.
- (3) If dim $A(X) < \infty$, then $A \in \mathcal{F}(X)$.

(4) If $A \in \mathcal{F}(X)$ and $f \in \mathcal{H}(A)$, then f(A) = p(A) for some polynomial p. (5) If $A \in \mathcal{F}(X)$, the $p(A) \in \mathcal{F}(X)$ for every polynomial p.

PROOF. [4, Chapter V.11]

1.4. COROLLARY. Suppose that $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$. Then $A^{-1} \in \mathcal{F}(X)$ and A^{-1} is a polynomial in A.

PROOF. Define the function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by $f(\lambda) = \lambda^{-1}$. Then $f \in \mathcal{H}(A)$ and $f(A) = A^{-1}$. Now apply Proposition 1.3 (4) and (5).

REMARK. That $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$ implies $A^{-1} \in \mathcal{F}(X)$ is also shown in [1, Theorem 2]. In Section 2 we will give a further proof of this fact.

2. Drazin inverses of operators in $\mathcal{F}(X)$

Throughout this section A will be an operator in $\mathcal{F}(X)$ and $\sigma(A) = \{\lambda_1, \ldots, \lambda_k\}$, where $\lambda_1, \ldots, \lambda_k$ are the distinct poles of $R_{\lambda}(A)$ of orders m_1, \ldots, m_k (see Proposition 1.3 (1)).

Recall that
$$m_j = \alpha(A - \lambda_j) = \delta(A - \lambda_j)$$
 $(j = 1, ..., k)$. Let

(2.1)
$$m_A(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}.$$

By [4, Theorem V.10.7],

$$m_A(A) = 0.$$

The polynomial m_A is called the *minimal polynomial* of A. It follows from [4, Theorem V.10.7] that m_A divides any other polynomial p such that p(A) = 0. In what follows we always assume that m_A has degree n, thus $n = m_1 + \cdots + m_k$ and that m_A has the representations (2.1) and

(2.2)
$$m_A(\lambda) = a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_{n-1}\lambda^{n-1} + \lambda^n.$$

Observe that

$$0 \in \rho(A) \Leftrightarrow a_0 \neq 0$$

and that

0 is a pole of order $\nu \ge 1$ of $R_{\lambda}(A) \Leftrightarrow a_0 = \cdots = a_{\nu-1} = 0$ and $a_{\nu} \ne 0$.

Now we are in a position to state our first result. Recall from Proposition 1.1 that if $\lambda_0 \in \sigma(A)$, then $A - \lambda_0$ is Drazin invertible.

2.1. THEOREM. If $\lambda_0 \in \sigma(A)$ and if C is the Drazin inverse of $A - \lambda_0$, then there is a scalar polynomial p such that C = p(A).

PROOF. Without loss of generality we can assume that $\lambda_0 = \lambda_1 = 0$. Let $\nu = m_1$. Then we have

$$m_A(\lambda) = a_\nu \lambda^\nu + a\nu + 1\lambda^{\nu+1} + \dots + \lambda^{n-1} + \lambda^n$$

and that $a_{\nu} \neq 0$. Let

$$q_1(\lambda) = -\frac{1}{a_{\nu}} \left(a_{\nu+1} + a_{\nu+2}\lambda + \dots + \lambda^{n-(\nu+1)} \right).$$

Then

$$A^{\nu+1}q_1(A) = -\frac{1}{a_{\nu}} \left(a_{\nu+1}A^{\nu+1} + a_{\nu+2}A^{\nu+2} + \dots + A^n \right)$$

= $-\frac{1}{a_{\nu}} \left(m_A(A) - a_{\nu}A^{\nu} \right) = A^{\nu}.$

Let $B = q_1(A)$. Then $A^{\nu+1}B = A^{\nu}$ and BA = AB. For the Drazin inverse C we have

$$A^{\nu+1}C = A$$
, $CAC = C$ and $CA = AC$.

Thus

$$A^{\nu+1}(B-C) = A^{\nu+1}B - A^{\nu+1}C = A^{\nu} - A^{\nu} = 0$$

This shows that $(B - C)(X) \subseteq N(A^{\nu+1})$. By Proposition 1.1, $\alpha(A) = \nu$, thus $(B - C)(X) \subseteq N(A^{\nu})$, therefore $(B - C)(X) \subseteq P_1(X)$, where P_1 denotes the spectral projection of A associated with the spectral set $\{0\}$ (see Proposition 1.2). Since $P_1 = I - AC = I - CA$, it follows that

$$B - C = P_1(B - C) = P_1B - P_1C = P_1B - (I - CA)C$$

= $P_1B - C + CAC = P_1B$,

thus $C = B - P_1 B$. We have $P_1 = f(A)$ for some $f \in \mathcal{H}(A)$. By Proposition 1.3 (4), $f(A) = q_2(A)$ for some polynomial q_2 . Now define the polynomial p by $p = q_1 - q_2q_1$. It results that

$$p(A) = q_1(A) - q_2(A)q_1(A) = B - P_1B = C.$$

2.2. COROLLARY. If $\lambda_0 \in \sigma(A)$ and if C is the Drazin inverse of $A - \lambda_0$, then $C \in \mathcal{F}(X)$.

PROOF. Theorem 2.1 and Proposition 1.3 (5). \Box

2.3. COROLLARY. Let A be a complex square matrix and λ_0 a characteristic value of A. Then the Drazin inverse of $A - \lambda_0$ is a polynomial in A.

PROOF. Theorem 2.1 and Proposition 1.3 (3).

Let $T \in \mathcal{L}(X)$. An operator $S \in \mathcal{L}(X)$ is called a *pseudo inverse* of T provided that TST = T. In general the set of all pseudo inverses of T is infinite and this set consists of all operators of the form STS + U - STUTS, where $U \in \mathcal{L}(X)$ is arbitrary (see [2, Theorem 2.3.2]). Observe that if T is Drazin invertible with i(T) = 1, then the Drazin inverse of T is a pseudo inverse of T.

2.4. COROLLARY. If $\lambda_0 \in \sigma(A)$, then the following assertions are equivalent:

- (1) λ_0 is a simple pole of $R_{\lambda}(A)$;
- (2) there is a pseudo inverse B of $A \lambda_0$ such that $B(A \lambda_0) = (A \lambda_0)B$;
- (3) there is a polynomial p such that p(A) is a pseudo inverse of $A \lambda_0$.

PROOF. (1) \Leftrightarrow (2): Proposition 1.1.

 $(1) \Rightarrow (3)$: We can assume that $\lambda_0 = 0$. Let q_1 and B as in the proof of Theorem 2.1. Then $A^2B = A$ and AB = BA, hence ABA = A.

(3) \Rightarrow (1): Again we can assume that $\lambda_0 = 0$. With B = p(A) we have ABA = A and AB = BA. Set C = BAB; then ACA = A, CAC = C and AC = CA. This shows that C is the Drazin inverse of A and that i(A) = 1. By Proposition 1.1, $\lambda_0 = 0$ is a simple pole of $R_{\lambda}(A)$.

2.5. COROLLARY. Let X be a complex Hilbert space and suppose that $N \in \mathcal{L}(X)$ is normal and that $\sigma(N)$ is finite. We have:

(1) $N \in \mathcal{F}(X)$,

(2) If $\lambda_0 \in \sigma(N)$, then there is a polynomial p such that

$$(N - \lambda_0)p(N)(N - \lambda_0) = N - \lambda_0.$$

PROOF. By [3, Satz 111.2], each point in $\sigma(N)$ is a simple pole of $R_{\lambda}(N)$, thus $N \in \mathcal{F}(X)$. Now apply Theorem 2.4.

Our results suggest the following.

QUESTION. If $A \in \mathcal{F}(X)$ and if B is a pseudo inverse such that AB = BA, does there exist a polynomial p with B = p(A)?

The answer is negative:

EXAMPLE. Consider the square matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

It is easy to see that the minimal polynomial of A is given by $m_A(\lambda) = \lambda^2 - 3\lambda = \lambda(\lambda - 3)$, hence $\sigma(A) = \{0, 3\}$ and $A^2 = 3A$. Let

$$B = \frac{1}{3} \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$

Then $AB = BA = \frac{1}{3}A$, thus $ABA = \frac{1}{3}A^2 = A$, hence *B* is a pseudo inverse of *A*. Since $A^2 = 3A$, any polynomial in *A* has the form $\alpha I + \beta A$ with $\alpha, \beta \in \mathbb{C}$. But there are no α and β such that $B = \alpha I + \beta A$. An easy computation shows that the Drazin inverse of *A* is given by $\frac{1}{9}A$ and that i(A) = 1.

If 0 is a simple pole of $R_{\lambda}(A)$, then we have seen in Theorem 2.4 that A has a pseudo inverse. If 0 is a pole of $R_{\lambda}(A)$ of order ≥ 2 , then, in general A does not have a pseudo inverse, as the following example shows.

EXAMPLE. Let $T \in \mathcal{L}(X)$ be any operator with T(X) not closed (of course X must be infinite dimensional). Define the operator $A \in \mathcal{L}(X \oplus X)$ by the matrix

$$A = \begin{pmatrix} 0 & 0 \\ T & 0 \end{pmatrix}.$$

Then the range of A is not closed. By [2, Theorem 2.1], A has no pseudo inverse. From $A^2 = 0$ it follows that $A \in \mathcal{F}(X \oplus X)$ and that 0 is a pole of order 2 of $R_{\lambda}(A)$.

Now we return to the investigations of our operator $A \in \mathcal{F}(X)$. To this end we need the following propositions.

2.6. PROPOSITION. Suppose that $T \in \mathcal{L}(X), 0 \in \rho(T), \lambda \in \mathbb{C} \setminus \{0\}$ and that k is a nonnegative integer. Then:

(1) $N(T-\lambda)^k) = N\left((T^{-1}-\frac{1}{\lambda})^k\right);$ (2) $\alpha(T-\lambda) = \alpha(T^{-1}-\frac{1}{\lambda}).$

PROOF. We only have to show that $N((T-\lambda)^k) \subseteq N((T^{-1}-\frac{1}{\lambda})^k)$. Take $x \in N((T-\lambda)^k)$. Then $0 = (T-\lambda)^k x$, thus $0 = (T^{-1})^k (T-\lambda)^k x = (1-\lambda T^{-1})^k x$, hence $x \in N\left((T^{-1} - \frac{1}{\lambda})^k\right)$.

2.7. PROPOSITION. Suppose that $T \in \mathcal{L}(X), 0 \in \sigma(T), \lambda \in \mathbb{C} \setminus \{0\}$ and k is a nonnegative integer. Furthermore suppose that T is Drazin invertible and that Cis the Drazin inverse of T. Then:

(1) $N((T-\lambda)^k) = N\left((C-\frac{1}{\lambda})^k\right);$ (2) $\alpha(T-\lambda) = \alpha(C-\frac{1}{\lambda});$

PROOF. (2) follows from (1).

(2) Let $\nu = i(T)$. We use induction. First we show that $N(T-\lambda) = N(C-\frac{1}{\lambda})$. Let $x \in N(T - \lambda)$, then $Tx = \lambda x$ and $T^{\nu}x = \lambda^{\nu}x$. We have

$$\lambda C^2 x = C^2 T x = CTC x = Cx,$$

hence $C(1-\lambda C)x = 0$, thus $(1-\lambda C)x \subseteq N(C)$. By Proposition 1.2, $N(C) = N(T^{\nu})$, therefore

 $0 = T^{\nu}(1 - \lambda C)x = (1 - \lambda C)T^{\nu}x = (1 - \lambda C)\lambda^{\nu}x,$

therefore $x \in N(C - \frac{1}{\lambda})$. Now let $x \in N(C - \frac{1}{\lambda})$. From $Cx = \frac{1}{\lambda}x$ we see that $x \in C(X) = N(P)$, where P is as in Proposition 1.2. From P = I - TC we get $x = TCx = T(\frac{1}{\lambda}x)$, thus $Tx = \lambda x$, hence $x \in N(T - \lambda)$. Now suppose that n is a positive integer and that

$$N((T-\lambda)^n) = N((C-\frac{1}{\lambda})^n).$$

Take $x \in N((T-\lambda)^{n+1})$. Then $(T-\lambda)x \in N((T-\lambda)^n) = N((C-\frac{1}{\lambda})^n)$, thus
 $0 = (C-\frac{1}{\lambda})^n (T-\lambda)x = (T-\lambda)(C-\frac{1}{\lambda})^n x.$

This gives

$$(C - \frac{1}{\lambda})^n x \in N(T - \lambda) = N(C - \frac{1}{\lambda}),$$

 $(C - \frac{1}{\lambda})^n x \in N(T - \lambda) = N(C - \frac{1}{\lambda}),$ therefore $x \in N((C - \frac{1}{\lambda})^{n+1})$. Similar arguments show that $N((C - \frac{1}{\lambda})^{n+1}) \subseteq$

In what follows we use the notation of the beginning of this section. Recall that we have $\sigma(A) = \{\lambda_1, \ldots, \lambda_k\}$. If $0 \in \sigma(A)$, then we always assume that $\lambda_1 = 0$, hence $\sigma(A) \smallsetminus \{0\} = \{\lambda_2, \ldots, \lambda_k\}.$

2.8. Proposition.

- (1) If $0 \in \rho(A)$, then $\sigma(A^{-1}) = \{\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_k}\}$. (2) If $0 \in \sigma(A)$ and if C is the Drazin inverse of A, then $0 \in \sigma(C)$ and $\sigma(C) \smallsetminus \{0\} = \{\frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_k}\}$.

PROOF. (1) follows from the spectral mapping theorem.

For our next result recall from Corollary 1.4 that if $0 \in \rho(A)$, then $A^{-1} \in \mathcal{F}(X)$.

2.9. THEOREM. Suppose that $0 \in \rho(A)$. Then

(2) is a consequence of Proposition 1.2.

(1) If the minimal polynomial m_A has the representation (2.1), then the minimal polynomial $m_{A^{-1}}$ of A^{-1} is given by

$$m_{A^{-1}}(\lambda) = \left(\lambda - \frac{1}{\lambda_1}\right)^{m_1} \cdots \left(\lambda - \frac{1}{\lambda_k}\right)^{m_k}$$

(2) If the minimal polynomial m_A has the representation (2.2), then $m_{A^{-1}}$ is given by

$$m_{A^{-1}}(\lambda) = \frac{1}{a_0} + \frac{a_{n-1}}{a_0}\lambda + \dots + \frac{a_1}{a_0}\lambda^{n-1} + \lambda^n.$$

PROOF. Proposition 2.6 shows that

$$\alpha(A^{-1} - \frac{1}{\lambda_j}) = \alpha(A - \lambda_j) = m_j \quad (j = 1, \dots, k),$$

thus (1) is shown. Furthermore $m_{A^{-1}}$ has degree $m_1 + \cdots + m_k = n$. Now define the polynomial q by

$$q(\lambda) = \frac{1}{a_0} + \frac{a_{n-1}}{a_0}\lambda + \dots + \frac{a_1}{a_0}\lambda^{n-1} + \lambda^n.$$

Then

$$a_0 A^n q(A^{-1}) = A^n (a_0 (A^{-1})^n + a_1 (A^{-1})^{n-1} + \dots + a_{n-1} A^{-1} + 1)$$

= $m_A(A) = 0.$

Since $a_0 \neq 0$ and $0 \in \rho(A)$, it results that $q(A^{-1}) = 0$. Because of degree of q = n =degree of $m_{A^{-1}}$, we get $q = m_{A^{-1}}$.

REMARK. The proof just given shows that there is a polynomial q such that $q(A^{-1}) = 0$. Therefore we have a simple proof for the fact that $A^{-1} \in \mathcal{F}(X)$.

2.10. THEOREM. Suppose that $0 \in \sigma(A)$ and that 0 is a pole of $R_{\lambda}(A)$ of order $\nu \ge 1$. Let C denote the Drazin inverse of A (recall from Corollary 2.2 that $C \in \mathcal{F}(X)$).

(1) If m_A has the representation (2.1), then

$$m_C(\lambda) = \lambda (\lambda - \frac{1}{\lambda_2})^{m_2} \cdots (\lambda - \frac{1}{\lambda_k})^{m_k}.$$

(2) If m_A has the representation (2.2), then

$$m_C(\lambda) = \frac{1}{a_{\nu}}\lambda + \frac{a_{n-1}}{a_{\nu}}\lambda^2 + \dots + \frac{a_{\nu+1}}{a_{\nu}}\lambda^{n+1-(\nu+1)} + \lambda^{n+1-\nu}.$$

PROOF. Proposition 2.7 gives

$$\alpha(C - \frac{1}{\lambda_j}) = \alpha(A - \lambda_j) = m_j \quad (j = 2, \dots, k).$$

By Proposition 1.1 and Proposition 1.2, $\alpha(C) = 1$. Thus (1) is valid. We have

$$m_A(\lambda) = a_{\nu}\lambda^{\nu} + a_{\nu+1}\lambda^{\nu+1} + \dots + a_{n-1}\lambda^{n-1} + \lambda^n,$$

hence

(2.3)
$$0 = m_A(A) = a_\nu A^\nu + a_{\nu+1} A^{\nu+1} + \dots + a_{n-1} A^{n-1} + A^n.$$

If $\nu \leq l \leq n$, then

$$C^{n+1}A^{l} = C^{n+1}C^{l}A^{l} = C^{n+1-l}(CA)^{l}$$
$$= C^{n+1-l}CA = C^{n-l}CAC = C^{n+1-l}$$

Then multiplying (2.3) by C^{n+1} , it follows that

$$0 = a_{\nu}C^{n+1-\nu} + a_{\nu+1}C^{n+1-(\nu+1)} + \dots + a_{n-1}C^2 + C.$$

Now define the polynomial q by

$$q(\lambda) = \frac{1}{a_{\nu}}\lambda + \frac{a_{n-1}}{a_{\nu}}\lambda^{2} + \dots + \frac{a_{\nu+1}}{a_{\nu}}\lambda^{n+1-(\nu+1)} + \lambda^{n+1-\nu}.$$

Then q(C) = 0. Since degree of $q = n + 1 - \nu = 1 + m_2 + \dots + m_k$ = degree of m_C , we get $q = m_C$.

2.11. COROLLARY. With the notation in Theorem 2.10 we have

$$C(A - \lambda_2)^{m_2} \cdots (A - \lambda_k)^{m_k} = 0.$$

PROOF. Let $D = (A - \lambda_2)^{m_k} \cdots (A - \lambda_k)^{m_k}$. From $A^{\nu}D = m_A(A) = 0$ we see that $D(X) \subseteq N(A^{\nu})$. Since $N(A^{\nu}) = N(C)$ (Proposition 1.2), CD = 0.

NOTATION. X^* denotes the dual space of X and we write T^* for the adjoint of an operator $T \in \mathcal{L}(X)$. Recall from [4, Theorem IV. 8.4] that

(2.4)
$$\overline{T(X)} = N(T^*)^{\perp} \quad (T \in \mathcal{L}(X)).$$

2.12. PROPOSITION. Suppose that $T \in \mathcal{L}(X)$, $\lambda \in \mathbb{C} \setminus \{0\}$ and that j is a nonnegative integer. Then

- (1) If $0 \in \rho(T)$, then $(T \lambda)^j(X) = (T^{-1} \frac{1}{\lambda})^j(X)$.
- (2) If $0 \in \sigma(T)$, if T is Drazin invertible and if C denotes the Drazin inverse of T, then $\overline{(T-\lambda)^j(X)} = \overline{(C-\frac{1}{\lambda})^j(X)}$.

ROOF. (1) Let
$$y = (T - \lambda)^j x \in (T - \lambda)^j (x)$$
 $(x \in X)$. Then
 $(T^{-1} - \frac{1}{\lambda})^j T^j x = \left((T^{-1} - \frac{1}{\lambda})T \right)^j x = (1 - \frac{T}{\lambda})^j x$
 $= \frac{(-1)^j}{\lambda^j} (T - \lambda)^j x = \frac{(-1)^j}{\lambda^j} y,$

therefore $y \in (T^{-1} - \frac{1}{\lambda})^j(X)$.

Ρ

(2) Let
$$\nu = i(T)$$
. Then $T^{\nu+1}C = T^{\nu}$, $TC = CT$ and $CTC = C$. Hence $(T^*)^{\nu+1}C^* = (T^*)^{\nu}$, $T^*C^* = C^*T^*$ and $C^*T^*C^* = C^*$.

Thus T^* is Drazin invertible and C^* is the Drazin inverse of T^* . By Proposition 2.7,

$$N((T^* - \lambda)^j) = N((C^* - \frac{1}{\lambda})^j),$$

therefore the result follows in view of (2.4).

2.13. COROLLARY.

(1) If $0 \in \rho(A)$, then $(A - \lambda_j)^{m_j}(X) = (A^{-1} - \frac{1}{\lambda_j})^{m_j}(X)$ $(j = 1, \dots, k)$.

(2) If $0 \in \sigma(A)$ is a pole of order $\nu \ge 1$ of $R_{\lambda}(A)$ and if C is the Drazin inverse of A, then $A^{\nu}(X) = C(X)$ and

$$(A - \lambda_J)^{m_j}(X) = (C - \frac{1}{\lambda_j})^{m_j}(X) \quad (j = 2, \dots, k).$$

PROOF. (1) is a consequence of Proposition 2.12.

(2) That $A^{\nu}(X) = C(X)$ is a consequence of Proposition 1.2. Now let $j \leq \{2, \ldots, k\}$. Because of Proposition 1.1 and Theorem 2.10 we see that

$$\alpha(C - \frac{1}{\lambda_j}) = \delta(C - \frac{1}{\lambda_j}) = m_j = \alpha(A - \lambda_j) = \delta(A - \lambda_j).$$

By [3, Satz 101.2], the subspaces $(A - \lambda_j)^{m_j}(X)$ and $(C - \frac{1}{\lambda_j})^{m_j}(X)$ are closed. Now apply Proposition 2.12.

For j = 1, ..., k let P_j denote the spectral projection of A associated with the spectral set $\{\lambda_j\}$. Observe that

$$P_i P_j = 0$$
 for $i \neq j$ and $P_1 + \dots + P_k = 1$.

If $0 \in \rho(A)$, then denote by Q_j the spectral projection of A^{-1} associated with the spectral set $\{\frac{1}{\lambda_j}\}$ (j = 1, ..., k). If $0 \in \sigma(A)$ and if C is the Drazin inverse, then denote by Q_1 the spectral projection of C associated with the spectral set $\{0\}$ and by Q_j the spectral projection of C associated with the spectral set $\{\frac{1}{\lambda_j}\}$ (j = 2, ..., k).

2.14. COROLLARY. $P_j = Q_j \ (j = 1, ..., k).$

PROOF. By $[\mathbf{3}, \text{Satz 101.2}]$, we have

$$P_j(X) = N((A - \lambda_j)^{m_j})$$
 and $N(P_j) = (A - \lambda_j)^{m_j}(X)$

 $(j = 1, \ldots, k)$. If $0 \in \rho(A)$, then

$$Q_j(X) = N((A^{-1} - \frac{1}{\lambda_j})^{m_j})$$
 and $N(Q_j) = (A^{-1} - \frac{1}{\lambda_j})^{m_j}(X)$

(j = 1, ..., k). Now apply Proposition 2.6 and Corollary 2.13 (1) to get

$$P_j(X) = Q_j(X)$$
 and $N(P_j) = N(Q_j)$,

hence $P_j = Q_j \ (j = 1, ..., k).$

Now let $0 \in \sigma(A)$. By Proposition 1.2, Proposition 2.7, Corollary 2.13 (2) and [3, Satz 101.2], we derive

$$P_{1}(X) = N(C) = Q_{1}(X), N(P_{1}) = C(X) = N(Q_{1}),$$
$$P_{j}(X) = N\left((C - \frac{1}{\lambda_{j}})^{m_{j}}\right) = Q_{j}(X)$$
$$N(P_{j}) = \left(C - \frac{1}{\lambda_{j}}\right)^{m_{j}}(X) = N(Q_{j})$$

(j = 2, ..., k). Hence $P_j = Q_j$ (j = 1, ..., k).

For A we have the representation $A = \sum_{j=1}^{k} \lambda_j P_j + N$, where $N \in \mathcal{L}(X)$ is nilpotent and $N = \sum_{j=1}^{k} (A - \lambda_j) P_j$ (see [4, Chapter V. 11]). If $p = \max\{m_1, \ldots, m_k\}$, then it is easily seen that $N^p = 0$. If A has only simple poles, then N = 0.

2.15. Corollary.

46

(1) If $0 \in \rho(A)$, then there is a nilpotent operator $N_1 \in \mathcal{L}(X)$ with

$$A^{-1} = \sum_{j=1}^{k} \frac{1}{\lambda_j} P_j + N_1$$

(2) If $0 \in \sigma(A)$ and if C is the Drazin inverse of A, then

$$C = \sum_{j=2}^{k} \frac{1}{\lambda_j} P_j + N_1, \quad \text{where } N_1 \in \mathcal{L}(X) \text{ is nilpotent.}$$

PROOF. Corollary 2.14.

With the notation of Corollary 2.15 (2) we have $AC = 1 - P_1$, $CP_1 = 0$ (see Proposition 1.2) and

$$ACA = (1 - P_1) \left(\sum_{j=2} k \lambda_j P_j + N \right) = A - P_1 \left(\sum_{j=2}^k \lambda_j P_k + N \right) = A - P_1 N;$$

hence $A = ACA + P_1N$, P_1N is nilpotent and

 $(ACA)P_1N = ACP_1AN = 0 = NACP_1A = P_1N(ACA).$

Recall that ACA is the Drazin inverse of C and that i(ACA) = 1. The following more general result holds:

2.16. THEOREM. Suppose that $T \in \mathcal{L}(X)$ is Drazin invertible, $i(T) = \nu \ge 1$ and that C is the Drazin inverse of T. Then there is a nilpotent $N \in \mathcal{L}(X)$ such that T = TCT + N, N(TCT) = (TCT)N = 0 and $N^{\nu} = 0$.

This decomposition is unique in the following sense: if $S, N_1 \in \mathcal{L}(X)$, S is Drazin invertible, i(S) = 1, N_1 is nilpotent, $N_1S = SN_1 = 0$ and if $T = S + N_1$, then S = TCT and $N = N_1$.

PROOF. Let N = T - TCT; then

$$N^{\nu} = (T(1 - CT))^{\nu} = T^{\nu}(1 - CT)^{\nu} = T^{\nu}(1 - CT)$$
$$= T^{\nu} - T^{\nu}CT = T^{\nu} - T^{\nu+1}C = T^{\nu} - T^{\nu} = 0.$$

For the uniqueness of the decomposition we only have to show that S = TCT. There is $R \in \mathcal{L}(X)$ such that SRS = S, RSR = R and SR = RS. Consequently,

$$N_1 R = N_1 R S R = N_1 S R^2 = 0 = R^S S N_1 = R N_1,$$

hence

$$TR = (S + N_1)R = SR = RS = R(S + N_1) = RT.$$

Now let n be a nonnegative integer such that $N_1^n = 0$. Since $SN_1 = 0 = N_1S$, it follows that

$$T^n = (S + N_1)^n = S^n + N_1^n = S^n.$$

We can assume that $n \ge \nu$. Thus

$$T^{n+1}R = S^{n+1}R = S^{n-1}SRS = S^n = T^n$$

Furthermore we have TR = RT and

 $RTR = R(S + N_1)R = RSR = R,$

hence R = C. With $S_1 = TCT$ we get

$$S_1RS_1 = TCTCTCT = TCT = S_1,$$

$$RS_1R = CTCTC = CTC = RTR = R$$

$$S_1R = TCTC = CTCT = RS_1.$$

This shows that $S = S_1 = TCT$.

References

[1] S.R. Caradus, On meromorphic operators, I, Canad. J. Math. 19, 723–736, 1967.

- S. R. Caradus, Operator theory of the pseudoinverse, Queen's Papers Pure Appl. Math. 38, Queen's University, Kingston, Ontario, 1974.
- [3] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
- [4] A.E. Taylor and D.C. Lay, *Introduction to Functional Analysis*, 2nd ed., Wiley and Sons, 1980.

(Received 17 04 2006)

Institut für Analysis Universität Karlsruhe (TH) Kaiserstrasse 89 76133 Karlsruhe Germany christoph.schmoeger@math.uni-karlsruhe.de