DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT

Christoph Schmoeger

Communicated by Stevan Pilipović

Abstract

Let A be a bounded linear operator on a Banach space such that the resolvent of A is rational. If 0 is in the spectrum of A, then it is well known that A is Drazin invertible. We investigate spectral properties of the Drazin inverse of A. For example we show that the Drazin inverse of A is a polynomial in A.

1. Introduction and terminology

In this paper X is always a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. For $A \in \mathcal{L}(X)$ we write $N(A)$ for its kernel and $A(X)$ for its range. We write $\sigma(A), \rho(A)$ and $R_{\lambda}(A)$ for the spectrum, the resolvent set and the resolvent operator $(A-\lambda)^{-1}(\lambda \notin \sigma(A))$ of A, respectively. The ascent of A is denoted by $\alpha(A)$ and the descent of A is denoted by $\delta(A)$.

An operator $A \in \mathcal{L}(X)$ is Drazin invertible if there is $C \in \mathcal{L}(X)$ such that (i) $C A C=C$, (ii) $A C=C A$ and (iii) $A^{\nu+1} C=A^{\nu}$ for nonnegative integer ν.

In this case C is uniquely determined (see [2]) and is called the Drazin inverse of A. The smallest nonnegative integer ν such that (iii) holds is called the index $i(A)$ of A. Observe that

$$
0 \in \rho(A) \Leftrightarrow A \text { is Drazin invertible and } i(A)=0
$$

The following proposition tells us exactly which operators are Drazin invertible with index >0 :
1.1. Proposition. Let $A \in \mathcal{L}(X)$ and let ν be a positive integer. Then the following assertions are equivalent:
(1) A is Drazin invertible and $i(A)=\nu$.
(2) $\alpha(A)=\delta(A)=\nu$.
(3) $R_{\lambda}(A)$ has a pole of order ν at $\lambda=0$.

[^0]Key words and phrases: rational resolvent, Drazin inverse.

Proof. [2, § 5.2] and [3, Satz 101.2].
The next result we will use frequently in our investigations.
1.2. Proposition. Suppose that $A \in \mathcal{L}(X)$ is Drazin invertible, $i(A)=\nu \geqslant 1$, P is the spectral projection of A associated with the spectral set $\{0\}$ and that C is the Drazin inverse of A. Then

$$
\begin{aligned}
& P=I-A C, \quad N(C)=N\left(A^{\nu}\right)=P(X) \\
& C(X)=N(P)=A^{\nu}(X), \\
& C \text { is Drazin invertible, } \quad i(C)=1, \\
& A C A \text { is the Drazin inverse of } C, \\
& 0 \in \sigma(C) \text { and } \sigma(C) \backslash\{0\}=\left\{\frac{1}{\lambda}: \lambda \in \sigma(A) \backslash\{0\}\right\} .
\end{aligned}
$$

Proof. We have $P=I-A C, N\left(A^{\nu}\right)=P(X)$ and $\sigma(C) \backslash\{0\}=\left\{\frac{1}{\lambda}: \lambda \in\right.$ $\sigma(A) \backslash\{0\}\}$ by $[\mathbf{2}, \S 52]$. It is clear that $0 \in \sigma(C)$. From Proposition 1.1 and [3, Satz 101.2] we get $N(P)=A^{\nu}(X)$. If $x \in X$ then $C x=0 \Leftrightarrow P x=x$, hence $N(C)=P(X)$. From $P=I-A C=I-C A$ it is easily seen that $N(P)=C(X)$. Let $B=A C A$. Then

$$
\begin{aligned}
C^{2} B & =C B C=C A C A C=C A C=C \\
C B & =C A C A=A C A C=B C \\
B C B & =A C A C A C A=A C A C A=A C A=B
\end{aligned}
$$

This shows that C is Drazin invertible, B is the Drazin inverse of C and that $i(C)=1$.

Now we introduce the class of operators which we will consider in this paper. We say that $A \in \mathcal{L}(X)$ has a rational resolvent if

$$
R_{\lambda}(A)=\frac{P(\lambda)}{q(\lambda)}
$$

where $P(\lambda)$ is a polynomial with coefficients in $\mathcal{L}(X), q(\lambda)$ is polynomial with coefficients in \mathbb{C} and where P and q have no common zeros. We use the symbol $\mathcal{F}(X)$ to denote the subclass of $\mathcal{L}(X)$ consisting of those operators whose resolvent is rational. For $A \in \mathcal{L}(X)$ let $\mathcal{H}(A)$ be the set of all functions $f: \triangle(f) \rightarrow \mathbb{C}$ such that $\triangle(f)$ is an open set in $\mathbb{C}, \sigma(A) \subseteq \triangle(f)$ and f is holomorphic on $\triangle(f)$. For $f \in \mathcal{H}(A)$ the operator $f(A) \in \mathcal{L}(X)$ is defined by the usual operational calculus (see [3] or [4]).

The following proposition collects some properties of operators in $\mathcal{F}(X)$. An operator $A \in \mathcal{L}(X)$ is called algebraic if $p(A)=0$ for some nonzero polynomial p.
1.3. Proposition. Let $A \in \mathcal{L}(X)$. Then
(1) $A \in \mathcal{F}(X)$ if and only if $\sigma(A)$ consists of a finite number of poles of $R_{\lambda}(A)$.
(2) $A \in \mathcal{F}(X)$ if and only if A is algebraic.
(3) If $\operatorname{dim} A(X)<\infty$, then $A \in \mathcal{F}(X)$.
(4) If $A \in \mathcal{F}(X)$ and $f \in \mathcal{H}(A)$, then $f(A)=p(A)$ for some polynomial p.
(5) If $A \in \mathcal{F}(X)$, the $p(A) \in \mathcal{F}(X)$ for every polynomial p.

Proof. [4, Chapter V.11]
1.4. Corollary. Suppose that $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$. Then $A^{-1} \in \mathcal{F}(X)$ and A^{-1} is a polynomial in A.

Proof. Define the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ by $f(\lambda)=\lambda^{-1}$. Then $f \in \mathcal{H}(A)$ and $f(A)=A^{-1}$. Now apply Proposition 1.3 (4) and (5).

Remark. That $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$ implies $A^{-1} \in \mathcal{F}(X)$ is also shown in [1, Theorem 2]. In Section 2 we will give a further proof of this fact.

2. Drazin inverses of operators in $\mathcal{F}(X)$

Throughout this section A will be an operator in $\mathcal{F}(X)$ and $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, where $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct poles of $R_{\lambda}(A)$ of orders m_{1}, \ldots, m_{k} (see Proposition 1.3 (1)).

Recall that $m_{j}=\alpha\left(A-\lambda_{j}\right)=\delta\left(A-\lambda_{j}\right)(j=1, \ldots, k)$. Let

$$
\begin{equation*}
m_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{m_{k}} \tag{2.1}
\end{equation*}
$$

By [4, Theorem V.10.7],

$$
m_{A}(A)=0
$$

The polynomial m_{A} is called the minimal polynomial of A. It follows from [4, Theorem V.10.7] that m_{A} divides any other polynomial p such that $p(A)=0$. In what follows we always assume that m_{A} has degree n, thus $n=m_{1}+\cdots+m_{k}$ and that m_{A} has the representations (2.1) and

$$
\begin{equation*}
m_{A}(\lambda)=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{n-1} \lambda^{n-1}+\lambda^{n} \tag{2.2}
\end{equation*}
$$

Observe that

$$
0 \in \rho(A) \Leftrightarrow a_{0} \neq 0
$$

and that
0 is a pole of order $\nu \geqslant 1$ of $R_{\lambda}(A) \Leftrightarrow a_{0}=\cdots=a_{\nu-1}=0$ and $a_{\nu} \neq 0$.
Now we are in a position to state our first result. Recall from Proposition 1.1 that if $\lambda_{0} \in \sigma(A)$, then $A-\lambda_{0}$ is Drazin invertible.
2.1. Theorem. If $\lambda_{0} \in \sigma(A)$ and if C is the Drazin inverse of $A-\lambda_{0}$, then there is a scalar polynomial p such that $C=p(A)$.

Proof. Without loss of generality we can assume that $\lambda_{0}=\lambda_{1}=0$. Let $\nu=m_{1}$. Then we have

$$
m_{A}(\lambda)=a_{\nu} \lambda^{\nu}+a \nu+1 \lambda^{\nu+1}+\cdots+\lambda^{n-1}+\lambda^{n}
$$

and that $a_{\nu} \neq 0$. Let

$$
q_{1}(\lambda)=-\frac{1}{a_{\nu}}\left(a_{\nu+1}+a_{\nu+2} \lambda+\cdots+\lambda^{n-(\nu+1)}\right)
$$

Then

$$
\begin{aligned}
A^{\nu+1} q_{1}(A) & =-\frac{1}{a_{\nu}}\left(a_{\nu+1} A^{\nu+1}+a_{\nu+2} A^{\nu+2}+\cdots+A^{n}\right) \\
& =-\frac{1}{a_{\nu}}\left(m_{A}(A)-a_{\nu} A^{\nu}\right)=A^{\nu}
\end{aligned}
$$

Let $B=q_{1}(A)$. Then $A^{\nu+1} B=A^{\nu}$ and $B A=A B$. For the Drazin inverse C we have

$$
A^{\nu+1} C=A, \quad C A C=C \quad \text { and } \quad C A=A C
$$

Thus

$$
A^{\nu+1}(B-C)=A^{\nu+1} B-A^{\nu+1} C=A^{\nu}-A^{\nu}=0
$$

This shows that $(B-C)(X) \subseteq N\left(A^{\nu+1}\right)$. By Proposition 1.1, $\alpha(A)=\nu$, thus $(B-C)(X) \subseteq N\left(A^{\nu}\right)$, therefore $(B-C)(X) \subseteq P_{1}(X)$, where P_{1} denotes the spectral projection of A associated with the spectral set $\{0\}$ (see Proposition 1.2). Since $P_{1}=I-A C=I-C A$, it follows that

$$
\begin{aligned}
B-C & =P_{1}(B-C)=P_{1} B-P_{1} C=P_{1} B-(I-C A) C \\
& =P_{1} B-C+C A C=P_{1} B
\end{aligned}
$$

thus $C=B-P_{1} B$. We have $P_{1}=f(A)$ for some $f \in \mathcal{H}(A)$. By Proposition $1.3(4), f(A)=q_{2}(A)$ for some polynomial q_{2}. Now define the polynomial p by $p=q_{1}-q_{2} q_{1}$. It results that

$$
p(A)=q_{1}(A)-q_{2}(A) q_{1}(A)=B-P_{1} B=C
$$

2.2. Corollary. If $\lambda_{0} \in \sigma(A)$ and if C is the Drazin inverse of $A-\lambda_{0}$, then $C \in \mathcal{F}(X)$.

Proof. Theorem 2.1 and Proposition 1.3 (5).
2.3. Corollary. Let A be a complex square matrix and λ_{0} a characteristic value of A. Then the Drazin inverse of $A-\lambda_{0}$ is a polynomial in A.

Proof. Theorem 2.1 and Proposition 1.3 (3).
Let $T \in \mathcal{L}(X)$. An operator $S \in \mathcal{L}(X)$ is called a pseudo inverse of T provided that $T S T=T$. In general the set of all pseudo inverses of T is infinite and this set consists of all operators of the form $S T S+U-S T U T S$, where $U \in \mathcal{L}(X)$ is arbitrary (see [2, Theorem 2.3.2]). Observe that if T is Drazin invertible with $i(T)=1$, then the Drazin inverse of T is a pseudo inverse of T.
2.4. Corollary. If $\lambda_{0} \in \sigma(A)$, then the following assertions are equivalent:
(1) λ_{0} is a simple pole of $R_{\lambda}(A)$;
(2) there is a pseudo inverse B of $A-\lambda_{0}$ such that $B\left(A-\lambda_{0}\right)=\left(A-\lambda_{0}\right) B$;
(3) there is a polynomial p such that $p(A)$ is a pseudo inverse of $A-\lambda_{0}$.

Proof. (1) $\Leftrightarrow(2):$ Proposition 1.1.
$(1) \Rightarrow(3)$: We can assume that $\lambda_{0}=0$. Let q_{1} and B as in the proof of Theorem 2.1. Then $A^{2} B=A$ and $A B=B A$, hence $A B A=A$.
$(3) \Rightarrow(1)$: Again we can assume that $\lambda_{0}=0$. With $B=p(A)$ we have $A B A=A$ and $A B=B A$. Set $C=B A B$; then $A C A=A, C A C=C$ and $A C=C A$. This shows that C is the Drazin inverse of A and that $i(A)=1$. By Proposition 1.1, $\lambda_{0}=0$ is a simple pole of $R_{\lambda}(A)$.
2.5. Corollary. Let X be a complex Hilbert space and suppose that $N \in \mathcal{L}(X)$ is normal and that $\sigma(N)$ is finite. We have:
(1) $N \in \mathcal{F}(X)$,
(2) If $\lambda_{0} \in \sigma(N)$, then there is a polynomial p such that

$$
\left(N-\lambda_{0}\right) p(N)\left(N-\lambda_{0}\right)=N-\lambda_{0}
$$

Proof. By [3, Satz 111.2], each point in $\sigma(N)$ is a simple pole of $R_{\lambda}(N)$, thus $N \in \mathcal{F}(X)$. Now apply Theorem 2.4.

Our results suggest the following.
Question. If $A \in \mathcal{F}(X)$ and if B is a pseudo inverse such that $A B=B A$, does there exist a polynomial p with $B=p(A)$?

The answer is negative:
Example. Consider the square matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

It is easy to see that the minimal polynomial of A is given by $m_{A}(\lambda)=\lambda^{2}-3 \lambda=$ $\lambda(\lambda-3)$, hence $\sigma(A)=\{0,3\}$ and $A^{2}=3 A$. Let

$$
B=\frac{1}{3}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $A B=B A=\frac{1}{3} A$, thus $A B A=\frac{1}{3} A^{2}=A$, hence B is a pseudo inverse of A. Since $A^{2}=3 A$, any polynomial in A has the form $\alpha I+\beta A$ with $\alpha, \beta \in \mathbb{C}$. But there are no α and β such that $B=\alpha I+\beta A$. An easy computation shows that the Drazin inverse of A is given by $\frac{1}{9} A$ and that $i(A)=1$.

If 0 is a simple pole of $R_{\lambda}(A)$, then we have seen in Theorem 2.4 that A has a pseudo inverse. If 0 is a pole of $R_{\lambda}(A)$ of order $\geqslant 2$, then, in general A does not have a pseudo inverse, as the following example shows.

Example. Let $T \in \mathcal{L}(X)$ be any operator with $T(X)$ not closed (of course X must be infinite dimensional). Define the operator $A \in \mathcal{L}(X \oplus X)$ by the matrix

$$
A=\left(\begin{array}{cc}
0 & 0 \\
T & 0
\end{array}\right)
$$

Then the range of A is not closed. By [2, Theorem 2.1], A has no pseudo inverse. From $A^{2}=0$ it follows that $A \in \mathcal{F}(X \oplus X)$ and that 0 is a pole of order 2 of $R_{\lambda}(A)$.

Now we return to the investigations of our operator $A \in \mathcal{F}(X)$. To this end we need the following propositions.
2.6. Proposition. Suppose that $T \in \mathcal{L}(X), 0 \in \rho(T), \lambda \in \mathbb{C} \backslash\{0\}$ and that k is a nonnegative integer. Then:
(1) $\left.N(T-\lambda)^{k}\right)=N\left(\left(T^{-1}-\frac{1}{\lambda}\right)^{k}\right)$;
(2) $\alpha(T-\lambda)=\alpha\left(T^{-1}-\frac{1}{\lambda}\right)$.

Proof. We only have to show that $N\left((T-\lambda)^{k}\right) \subseteq N\left(\left(T^{-1}-\frac{1}{\lambda}\right)^{k}\right)$. Take $x \in N\left((T-\lambda)^{k}\right)$. Then $0=(T-\lambda)^{k} x$, thus $0=\left(T^{-1}\right)^{k}(T-\lambda)^{k} x=\left(1-\lambda T^{-1}\right)^{k} x$, hence $x \in N\left(\left(T^{-1}-\frac{1}{\lambda}\right)^{k}\right)$.
2.7. Proposition. Suppose that $T \in \mathcal{L}(X), 0 \in \sigma(T), \lambda \in \mathbb{C} \backslash\{0\}$ and k is a nonnegative integer. Furthermore suppose that T is Drazin invertible and that C is the Drazin inverse of T. Then:
(1) $N\left((T-\lambda)^{k}\right)=N\left(\left(C-\frac{1}{\lambda}\right)^{k}\right)$;
(2) $\alpha(T-\lambda)=\alpha\left(C-\frac{1}{\lambda}\right)$;

Proof. (2) follows from (1).
(2) Let $\nu=i(T)$. We use induction. First we show that $N(T-\lambda)=N\left(C-\frac{1}{\lambda}\right)$. Let $x \in N(T-\lambda)$, then $T x=\lambda x$ and $T^{\nu} x=\lambda^{\nu} x$. We have

$$
\lambda C^{2} x=C^{2} T x=C T C x=C x
$$

hence $C(1-\lambda C) x=0$, thus $(1-\lambda C) x \subseteq N(C)$. By Proposition $1.2, N(C)=N\left(T^{\nu}\right)$, therefore

$$
0=T^{\nu}(1-\lambda C) x=(1-\lambda C) T^{\nu} x=(1-\lambda C) \lambda^{\nu} x
$$

therefore $x \in N\left(C-\frac{1}{\lambda}\right)$. Now let $x \in N\left(C-\frac{1}{\lambda}\right)$. From $C x=\frac{1}{\lambda} x$ we see that $x \in C(X)=N(P)$, where P is as in Proposition 1.2. From $P=I-T C$ we get $x=T C x=T\left(\frac{1}{\lambda} x\right)$, thus $T x=\lambda x$, hence $x \in N(T-\lambda)$. Now suppose that n is a positive integer and that

$$
N\left((T-\lambda)^{n}\right)=N\left(\left(C-\frac{1}{\lambda}\right)^{n}\right)
$$

Take $x \in N\left((T-\lambda)^{n+1}\right)$. Then $(T-\lambda) x \in N\left((T-\lambda)^{n}\right)=N\left(\left(C-\frac{1}{\lambda}\right)^{n}\right)$, thus

$$
0=\left(C-\frac{1}{\lambda}\right)^{n}(T-\lambda) x=(T-\lambda)\left(C-\frac{1}{\lambda}\right)^{n} x
$$

This gives

$$
\left(C-\frac{1}{\lambda}\right)^{n} x \in N(T-\lambda)=N\left(C-\frac{1}{\lambda}\right)
$$

therefore $x \in N\left(\left(C-\frac{1}{\lambda}\right)^{n+1}\right)$. Similar arguments show that $N\left(\left(C-\frac{1}{\lambda}\right)^{n+1}\right) \subseteq$ $N\left((T-\lambda)^{n+1}\right)$.

In what follows we use the notation of the beginning of this section. Recall that we have $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$. If $0 \in \sigma(A)$, then we always assume that $\lambda_{1}=0$, hence $\sigma(A) \backslash\{0\}=\left\{\lambda_{2}, \ldots, \lambda_{k}\right\}$.

2.8. Proposition.

(1) If $0 \in \rho(A)$, then $\sigma\left(A^{-1}\right)=\left\{\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}\right\}$.
(2) If $0 \in \sigma(A)$ and if C is the Drazin inverse of A, then $0 \in \sigma(C)$ and $\sigma(C) \backslash\{0\}=\left\{\frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{k}}\right\}$.
Proof. (1) follows from the spectral mapping theorem.
(2) is a consequence of Proposition 1.2.

For our next result recall from Corollary 1.4 that if $0 \in \rho(A)$, then $A^{-1} \in \mathcal{F}(X)$.
2.9. Theorem. Suppose that $0 \in \rho(A)$. Then
(1) If the minimal polynomial m_{A} has the representation (2.1), then the minimal polynomial $m_{A^{-1}}$ of A^{-1} is given by

$$
m_{A^{-1}}(\lambda)=\left(\lambda-\frac{1}{\lambda_{1}}\right)^{m_{1}} \cdots\left(\lambda-\frac{1}{\lambda_{k}}\right)^{m_{k}}
$$

(2) If the minimal polynomial m_{A} has the representation (2.2), then $m_{A^{-1}}$ is given by

$$
m_{A^{-1}}(\lambda)=\frac{1}{a_{0}}+\frac{a_{n-1}}{a_{0}} \lambda+\cdots+\frac{a_{1}}{a_{0}} \lambda^{n-1}+\lambda^{n}
$$

Proof. Proposition 2.6 shows that

$$
\alpha\left(A^{-1}-\frac{1}{\lambda_{j}}\right)=\alpha\left(A-\lambda_{j}\right)=m_{j} \quad(j=1, \ldots, k)
$$

thus (1) is shown. Furthermore $m_{A^{-1}}$ has degree $m_{1}+\cdots+m_{k}=n$. Now define the polynomial q by

$$
q(\lambda)=\frac{1}{a_{0}}+\frac{a_{n-1}}{a_{0}} \lambda+\cdots+\frac{a_{1}}{a_{0}} \lambda^{n-1}+\lambda^{n}
$$

Then

$$
\begin{aligned}
a_{0} A^{n} q\left(A^{-1}\right) & =A^{n}\left(a_{0}\left(A^{-1}\right)^{n}+a_{1}\left(A^{-1}\right)^{n-1}+\cdots+a_{n-1} A^{-1}+1\right) \\
& =m_{A}(A)=0
\end{aligned}
$$

Since $a_{0} \neq 0$ and $0 \in \rho(A)$, it results that $q\left(A^{-1}\right)=0$. Because of degree of $q=n=$ degree of $m_{A^{-1}}$, we get $q=m_{A^{-1}}$.

Remark. The proof just given shows that there is a polynomial q such that $q\left(A^{-1}\right)=0$. Therefore we have a simple proof for the fact that $A^{-1} \in \mathcal{F}(X)$.
2.10. Theorem. Suppose that $0 \in \sigma(A)$ and that 0 is a pole of $R_{\lambda}(A)$ of order $\nu \geqslant 1$. Let C denote the Drazin inverse of A (recall from Corollary 2.2 that $C \in \mathcal{F}(X))$.
(1) If m_{A} has the representation (2.1), then

$$
m_{C}(\lambda)=\lambda\left(\lambda-\frac{1}{\lambda_{2}}\right)^{m_{2}} \cdots\left(\lambda-\frac{1}{\lambda_{k}}\right)^{m_{k}}
$$

(2) If m_{A} has the representation (2.2), then

$$
m_{C}(\lambda)=\frac{1}{a_{\nu}} \lambda+\frac{a_{n-1}}{a_{\nu}} \lambda^{2}+\cdots+\frac{a_{\nu+1}}{a_{\nu}} \lambda^{n+1-(\nu+1)}+\lambda^{n+1-\nu}
$$

Proof. Proposition 2.7 gives

$$
\alpha\left(C-\frac{1}{\lambda_{j}}\right)=\alpha\left(A-\lambda_{j}\right)=m_{j} \quad(j=2, \ldots, k)
$$

By Proposition 1.1 and Proposition $1.2, \alpha(C)=1$. Thus (1) is valid. We have

$$
m_{A}(\lambda)=a_{\nu} \lambda^{\nu}+a_{\nu+1} \lambda^{\nu+1}+\cdots+a_{n-1} \lambda^{n-1}+\lambda^{n}
$$

hence

$$
\begin{equation*}
0=m_{A}(A)=a_{\nu} A^{\nu}+a_{\nu+1} A^{\nu+1}+\cdots+a_{n-1} A^{n-1}+A^{n} \tag{2.3}
\end{equation*}
$$

If $\nu \leqslant l \leqslant n$, then

$$
\begin{aligned}
C^{n+1} A^{l} & =C^{n+1} C^{l} A^{l}=C^{n+1-l}(C A)^{l} \\
& =C^{n+1-l} C A=C^{n-l} C A C=C^{n+1-l} .
\end{aligned}
$$

Then multiplying (2.3) by C^{n+1}, it follows that

$$
0=a_{\nu} C^{n+1-\nu}+a_{\nu+1} C^{n+1-(\nu+1)}+\cdots+a_{n-1} C^{2}+C
$$

Now define the polynomial q by

$$
q(\lambda)=\frac{1}{a_{\nu}} \lambda+\frac{a_{n-1}}{a_{\nu}} \lambda^{2}+\cdots+\frac{a_{\nu+1}}{a_{\nu}} \lambda^{n+1-(\nu+1)}+\lambda^{n+1-\nu}
$$

Then $q(C)=0$. Since degree of $q=n+1-\nu=1+m_{2}+\cdots+m_{k}=$ degree of m_{C}, we get $q=m_{C}$.
2.11. Corollary. With the notation in Theorem 2.10 we have

$$
C\left(A-\lambda_{2}\right)^{m_{2}} \cdots\left(A-\lambda_{k}\right)^{m_{k}}=0
$$

Proof. Let $D=\left(A-\lambda_{2}\right)^{m_{k}} \cdots\left(A-\lambda_{k}\right)^{m_{k}}$. From $A^{\nu} D=m_{A}(A)=0$ we see that $D(X) \subseteq N\left(A^{\nu}\right)$. Since $N\left(A^{\nu}\right)=N(C)$ (Proposition 1.2), $C D=0$.

Notation. X^{*} denotes the dual space of X and we write T^{*} for the adjoint of an operator $T \in \mathcal{L}(X)$. Recall from [4, Theorem IV. 8.4] that

$$
\begin{equation*}
\overline{T(X)}=N\left(T^{*}\right)^{\perp} \quad(T \in \mathcal{L}(X)) \tag{2.4}
\end{equation*}
$$

2.12. Proposition. Suppose that $T \in \mathcal{L}(X), \lambda \in \mathbb{C} \backslash\{0\}$ and that j is a nonnegative integer. Then
(1) If $0 \in \rho(T)$, then $(T-\lambda)^{j}(X)=\left(T^{-1}-\frac{1}{\lambda}\right)^{j}(X)$.
(2) If $0 \in \sigma(T)$, if T is Drazin invertible and if C denotes the Drazin inverse of T, then $\overline{(T-\lambda)^{j}(X)}=\overline{\left(C-\frac{1}{\lambda}\right)^{j}(X)}$.
Proof. (1) Let $y=(T-\lambda)^{j} x \in(T-\lambda)^{j}(x) \quad(x \in X)$. Then

$$
\begin{aligned}
\left(T^{-1}-\frac{1}{\lambda}\right)^{j} T^{j} x & =\left(\left(T^{-1}-\frac{1}{\lambda}\right) T\right)^{j} x=\left(1-\frac{T}{\lambda}\right)^{j} x \\
& =\frac{(-1)^{j}}{\lambda^{j}}(T-\lambda)^{j} x=\frac{(-1)^{j}}{\lambda^{j}} y,
\end{aligned}
$$

therefore $y \in\left(T^{-1}-\frac{1}{\lambda}\right)^{j}(X)$.
(2) Let $\nu=i(T)$. Then $T^{\nu+1} C=T^{\nu}, T C=C T$ and $C T C=C$. Hence

$$
\left(T^{*}\right)^{\nu+1} C^{*}=\left(T^{*}\right)^{\nu}, \quad T^{*} C^{*}=C^{*} T^{*} \quad \text { and } \quad C^{*} T^{*} C^{*}=C^{*} .
$$

Thus T^{*} is Drazin invertible and C^{*} is the Drazin inverse of T^{*}. By Proposition 2.7,

$$
N\left(\left(T^{*}-\lambda\right)^{j}\right)=N\left(\left(C^{*}-\frac{1}{\lambda}\right)^{j}\right)
$$

therefore the result follows in view of (2.4).
2.13. Corollary.
(1) If $0 \in \rho(A)$, then $\left(A-\lambda_{j}\right)^{m_{j}}(X)=\left(A^{-1}-\frac{1}{\lambda_{j}}\right)^{m_{j}}(X) \quad(j=1, \ldots, k)$.
(2) If $0 \in \sigma(A)$ is a pole of order $\nu \geqslant 1$ of $R_{\lambda}(A)$ and if C is the Drazin inverse of A, then $A^{\nu}(X)=C(X)$ and

$$
\left(A-\lambda_{J}\right)^{m_{j}}(X)=\left(C-\frac{1}{\lambda_{j}}\right)^{m_{j}}(X) \quad(j=2, \ldots, k)
$$

Proof. (1) is a consequence of Proposition 2.12.
(2) That $A^{\nu}(X)=C(X)$ is a consequence of Proposition 1.2. Now let $j \leqslant$ $\{2, \ldots, k\}$. Because of Proposition 1.1 and Theorem 2.10 we see that

$$
\alpha\left(C-\frac{1}{\lambda_{j}}\right)=\delta\left(C-\frac{1}{\lambda_{j}}\right)=m_{j}=\alpha\left(A-\lambda_{j}\right)=\delta\left(A-\lambda_{j}\right)
$$

By [3, Satz 101.2], the subspaces $\left(A-\lambda_{j}\right)^{m_{j}}(X)$ and $\left(C-\frac{1}{\lambda_{j}}\right)^{m_{j}}(X)$ are closed. Now apply Proposition 2.12 .

For $j=1, \ldots, k$ let P_{j} denote the spectral projection of A associated with the spectral set $\left\{\lambda_{j}\right\}$. Observe that

$$
P_{i} P_{j}=0 \quad \text { for } \quad i \neq j \quad \text { and } \quad P_{1}+\cdots+P_{k}=1
$$

If $0 \in \rho(A)$, then denote by Q_{j} the spectral projection of A^{-1} associated with the spectral set $\left\{\frac{1}{\lambda_{j}}\right\}(j=1, \ldots, k)$. If $0 \in \sigma(A)$ and if C is the Drazin inverse, then denote by Q_{1} the spectral projection of C associated with the spectral set $\{0\}$ and by Q_{j} the spectral projection of C associated with the spectral set $\left\{\frac{1}{\lambda_{j}}\right\}$ $(j=2, \ldots, k)$.
2.14. Corollary. $P_{j}=Q_{j}(j=1, \ldots, k)$.

Proof. By [3, Satz 101.2], we have

$$
P_{j}(X)=N\left(\left(A-\lambda_{j}\right)^{m_{j}}\right) \quad \text { and } \quad N\left(P_{j}\right)=\left(A-\lambda_{j}\right)^{m_{j}}(X)
$$

$(j=1, \ldots, k)$. If $0 \in \rho(A)$, then

$$
Q_{j}(X)=N\left(\left(A^{-1}-\frac{1}{\lambda_{j}}\right)^{m_{j}}\right) \quad \text { and } \quad N\left(Q_{j}\right)=\left(A^{-1}-\frac{1}{\lambda_{j}}\right)^{m_{j}}(X)
$$

$(j=1, \ldots, k)$. Now apply Proposition 2.6 and Corollary 2.13 (1) to get

$$
P_{j}(X)=Q_{j}(X) \quad \text { and } \quad N\left(P_{j}\right)=N\left(Q_{j}\right)
$$

hence $P_{j}=Q_{j}(j=1, \ldots, k)$.
Now let $0 \in \sigma(A)$. By Proposition 1.2, Proposition 2.7, Corollary 2.13 (2) and [3, Satz 101.2], we derive

$$
\begin{aligned}
& P_{1}(X)=N(C)=Q_{1}(X), N\left(P_{1}\right)=C(X)=N\left(Q_{1}\right) \\
& P_{j}(X)=N\left(\left(C-\frac{1}{\lambda_{j}}\right)^{m_{j}}\right)=Q_{j}(X) \\
& N\left(P_{j}\right)=\left(C-\frac{1}{\lambda_{j}}\right)^{m_{j}}(X)=N\left(Q_{j}\right)
\end{aligned}
$$

$(j=2, \ldots, k)$. Hence $P_{j}=Q_{j}(j=1, \ldots, k)$.
For A we have the representation $A=\sum_{j=1}^{k} \lambda_{j} P_{j}+N$, where $N \in \mathcal{L}(X)$ is nilpotent and $N=\sum_{j=1}^{k}\left(A-\lambda_{j}\right) P_{j}$ (see [4, Chapter V. 11]). If $p=\max \left\{m_{1}, \ldots, m_{k}\right\}$, then it is easily seen that $N^{p}=0$. If A has only simple poles, then $N=0$.
2.15. Corollary.
(1) If $0 \in \rho(A)$, then there is a nilpotent operator $N_{1} \in \mathcal{L}(X)$ with

$$
A^{-1}=\sum_{j=1}^{k} \frac{1}{\lambda_{j}} P_{j}+N_{1}
$$

(2) If $0 \in \sigma(A)$ and if C is the Drazin inverse of A, then

$$
C=\sum_{j=2}^{k} \frac{1}{\lambda_{j}} P_{j}+N_{1}, \quad \text { where } N_{1} \in \mathcal{L}(X) \text { is nilpotent. }
$$

Proof. Corollary 2.14.
With the notation of Corollary 2.15 (2) we have $A C=1-P_{1}, C P_{1}=0$ (see Proposition 1.2) and

$$
A C A=\left(1-P_{1}\right)\left(\sum_{j=2} k \lambda_{j} P_{j}+N\right)=A-P_{1}\left(\sum_{j=2}^{k} \lambda_{j} P_{k}+N\right)=A-P_{1} N
$$

hence $A=A C A+P_{1} N, P_{1} N$ is nilpotent and

$$
(A C A) P_{1} N=A C P_{1} A N=0=N A C P_{1} A=P_{1} N(A C A)
$$

Recall that $A C A$ is the Drazin inverse of C and that $i(A C A)=1$. The following more general result holds:
2.16. Theorem. Suppose that $T \in \mathcal{L}(X)$ is Drazin invertible, $i(T)=\nu \geqslant 1$ and that C is the Drazin inverse of T. Then there is a nilpotent $N \in \mathcal{L}(X)$ such that $T=T C T+N, N(T C T)=(T C T) N=0$ and $N^{\nu}=0$.

This decomposition is unique in the following sense: if $S, N_{1} \in \mathcal{L}(X), S$ is Drazin invertible, $i(S)=1, N_{1}$ is nilpotent, $N_{1} S=S N_{1}=0$ and if $T=S+N_{1}$, then $S=T C T$ and $N=N_{1}$.

Proof. Let $N=T-T C T$; then

$$
\begin{aligned}
N^{\nu} & =(T(1-C T))^{\nu}=T^{\nu}(1-C T)^{\nu}=T^{\nu}(1-C T) \\
& =T^{\nu}-T^{\nu} C T=T^{\nu}-T^{\nu+1} C=T^{\nu}-T^{\nu}=0
\end{aligned}
$$

For the uniqueness of the decomposition we only have to show that $S=T C T$. There is $R \in \mathcal{L}(X)$ such that $S R S=S, R S R=R$ and $S R=R S$. Consequently,

$$
N_{1} R=N_{1} R S R=N_{1} S R^{2}=0=R^{S} S N_{1}=R N_{1}
$$

hence

$$
T R=\left(S+N_{1}\right) R=S R=R S=R\left(S+N_{1}\right)=R T
$$

Now let n be a nonnegative integer such that $N_{1}^{n}=0$. Since $S N_{1}=0=N_{1} S$, it follows that

$$
T^{n}=\left(S+N_{1}\right)^{n}=S^{n}+N_{1}^{n}=S^{n}
$$

We can assume that $n \geqslant \nu$. Thus

$$
T^{n+1} R=S^{n+1} R=S^{n-1} S R S=S^{n}=T^{n}
$$

Furthermore we have $T R=R T$ and

$$
R T R=R\left(S+N_{1}\right) R=R S R=R
$$

hence $R=C$. With $S_{1}=T C T$ we get

$$
\begin{aligned}
S_{1} R S_{1} & =T C T C T C T=T C T=S_{1} \\
R S_{1} R & =C T C T C=C T C=R T R=R \\
S_{1} R & =T C T C=C T C T=R S_{1}
\end{aligned}
$$

This shows that $S=S_{1}=T C T$.

References

[1] S. R. Caradus, On meromorphic operators, I, Canad. J. Math. 19, 723-736, 1967.
[2] S. R. Caradus, Operator theory of the pseudoinverse, Queen's Papers Pure Appl. Math. 38, Queen's University, Kingston, Ontario, 1974.
[3] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, 1986.
[4] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley and Sons, 1980.

Institut für Analysis
Universität Karlsruhe (TH)
Kaiserstrasse 89
76133 Karlsruhe
Germany
christoph.schmoeger@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification: Primary 47A10.

