APPLICATION OF THE MEAN ERGODIC THEOREM TO CERTAIN SEMIGROUPS

Gerd Herzog and Christoph Schmoeger

Communicated by Stevan Pilipović

Abstract

We study the asymptotic behaviour of solutions of the Cauchy problem $u^{\prime}=\left(\sum_{j=1}^{n}\left(A_{j}+A_{j}^{-1}\right)-2 n I\right) u, u(0)=x$ as $t \rightarrow \infty$, for invertible isometries A_{1}, \ldots, A_{n}.

1. Introduction

Let E be a complex Banach space, $L(E)$ the Banach algebra of all bounded linear operators on E, and let $A_{1}, \ldots, A_{n} \in L(E)$ be invertible, pairwise commuting, and such that $\left\|A_{k}\right\|=\left\|A_{k}^{-1}\right\|=1(k=1, \ldots, n)$. Let $T_{1}, \ldots, T_{n} \in L(E)$ be defined by $T_{k}=A_{k}+A_{k}^{-1}-2 I$, and let $T=T_{1}+\cdots+T_{n}$. The aim of this paper is to clear the asymptotic behaviour of the Cauchy problem

$$
\begin{equation*}
u^{\prime}(t)=T u(t), \quad u(0)=u_{0} \tag{1.1}
\end{equation*}
$$

that is of $t \mapsto \exp (t T) u_{0}$ for $t \rightarrow \infty$. Such problems occur in a natural way by semidiscretization of the parabolic Cauchy problem $v_{t}=\Delta v, v(0, x)=v_{0}(x)$: For example, if $v_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is bounded, the longitudinal line method, see for example[4], with step size 1 leads to a linear Cauchy problem of type (1.1) in $l^{\infty}\left(\mathbb{Z}^{n}\right)$ with

$$
A_{k} x=\left(x\left(j_{1}, j_{2}, \ldots, j_{k-1}, j_{k}+1, j_{k+1}, \ldots, j_{n}\right)\right)_{j \in \mathbb{Z}^{n}}
$$

The corresponding problem for the heat equation was studied in [1].

2. Notations and preliminaries

For $A \in L(E)$ let $N(A), A(E), \sigma(A)$ and $r(A)$ denote the kernel, the range, the spectrum and the spectral radius of A, respectively. Let \mathbb{D} denote the complex unit circle $\{z \in \mathbb{C}:|z|<1\}$.

Proposition 2.1. Let $A \in L(E), 0 \notin \sigma(A)$ and $\|A\|=\left\|A^{-1}\right\|=1$. Then:
(1) A is an isometry;

[^0](2) $\left\|A^{n}\right\|=\|A\|^{n}=1(n \in \mathbb{N})$, hence A is normaloid;
(3) $r(A)=1$ and $\sigma(A) \subseteq \partial \mathbb{D}$;
(4) $N(A-I) \cap \overline{(A-I)(E)}=\{0\}$;
(5) $(A-I)(E)=\left(A^{-1}-I\right)(E)$;
(6) $N(A-I)=N\left((A-I)^{2}\right)$;
(7) $N(A-I) \oplus \overline{(A-I)(E)}$ is closed;
(8) if $(A-I)(E)$ is closed then $E=N(A-I) \oplus(A-I)(E)$.

Proof. (1) and (2) are obvious.
(3) From (2) we get $r(A)=1$. Next, it is clear that $\sigma(A) \cup \sigma\left(A^{-1}\right) \subseteq \overline{\mathbb{D}}$. Since $\sigma(A)=\left\{z \in \mathbb{C}: z^{-1} \in \sigma\left(A^{-1}\right)\right\}$, we conclude $\sigma(A) \subseteq \partial \mathbb{D}$.
(4) Let $x \in N(A-I) \cap \overline{(A-I)(E)}$, let $\varepsilon>0$ and choose $z \in E$ such that $\|x-(A-I) z\|<\varepsilon$. According to [2, Satz 102.3], we have $\|x\| \leqslant\|x-(A-I) z\|<\varepsilon$, hence $x=0$.
(5) Follows from $(A-I) x=\left(I-A^{-1}\right)(A x)$.
(6) Follows from [2, Satz 102.3].
(7) Choose a sequence $\left(x_{n}\right)$ in $N(A-I) \oplus \overline{(A-I)(E)}$ with $x_{n} \rightarrow x_{0}$ and corresponding decompositions $x_{n}=y_{n}+z_{n}$. According to [2, Satz 102.3] we have

$$
\left\|y_{n}-y_{m}\right\| \leqslant\left\|x_{n}-x_{m}\right\| \quad(n, m \in \mathbb{N})
$$

hence $\left(y_{n}\right)$ is convergent to a vector $y_{0} \in N(A-I)$. Thus

$$
z_{n}=x_{n}-y_{n} \rightarrow x_{0}-y_{0} \in \overline{(A-I)(E)},
$$

and therefore $x_{0} \in N(A-I) \oplus \overline{(A-I)(E)}$.
(8) Follows from [2, Satz 72.4 and 102.4].

Proposition 2.2. Let $A \in L(E)$ be as in Proposition 2.1, $\operatorname{let} T=A+A^{-1}-2 I$, and let $c:[0, \infty) \rightarrow \mathbb{R}$ denote the function

$$
c(t)=\exp (-t)\left(1+\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left|1-\frac{t}{n+1}\right|\right)
$$

We have
(1) $\|\exp (t T)\| \leqslant 1(t \geqslant 0)$;
(2) $t \mapsto \sqrt{t} c(t)$ is bounded on $[0, \infty)$ and

$$
\|\exp (t T)(A-I) x\| \leqslant c(t)\|x\| \quad(t \geqslant 0, x \in E)
$$

(3) $\lim _{t \rightarrow \infty} \exp (t T) y=0(y \in(A-I)(E))$;
(4) if $y \in E$ then

$$
\lim _{t \rightarrow \infty} \exp (t T) y=0 \Longleftrightarrow y \in \overline{(A-I)(E)}
$$

(5) $N(A-I)=\{x \in E: \exp (t T) x=x(t \geqslant 0)\}$.

Proof. (1) For each $t \geqslant 0$ we have

$$
\begin{aligned}
\|\exp (t T)\| & =\left\|\exp (-2 t) \exp (t A) \exp \left(t A^{-1}\right)\right\| \\
& \leqslant \exp (-2 t) \exp (t\|A\|) \exp \left(t\left\|A^{-1}\right\|\right)=1
\end{aligned}
$$

(2) Since $T=\left(A^{-1}-I\right)+(A-I)$ we have

$$
\exp (t T)(A-I)=\exp \left(t\left(A^{-1}-I\right)\right) \exp (t(A-I))(A-I) \quad(t \in \mathbb{R})
$$

and

$$
\begin{aligned}
\exp (t(A-I))(A-I) x & =\exp (-t) \sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(A^{n+1}-A^{n}\right) x \\
& =\exp (-t)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(1-\frac{t}{n+1}\right)\right) A^{n+1} x-\exp (-t) x
\end{aligned}
$$

Hence, since $\|A\|=1$,

$$
\begin{array}{r}
\|\exp (t T)(A-I) x\| \leqslant\left\|\exp \left(t\left(A^{-1}-I\right)\right)\right\|\|\exp (t(A-I))(A-I) x\| \leqslant c(t)\|x\| \\
(t \geqslant 0, x \in E) .
\end{array}
$$

To see that $t \mapsto \sqrt{t} c(t)$ is bounded on $[0, \infty)$ let $N \in \mathbb{N}$ and $N \leqslant t \leqslant N+1$. Then

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left|1-\frac{t}{n+1}\right|=\sum_{n=0}^{N-1} \frac{t^{n}}{n!}\left(\frac{t}{n+1}-1\right)+\sum_{n=N}^{\infty} \frac{t^{n}}{n!}\left(1-\frac{t}{n+1}\right)=2 \frac{t^{N}}{N!}-1
$$

and therefore

$$
\begin{aligned}
\sqrt{t} c(t) & =\sqrt{t} \exp (-t)\left(1+\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left|1-\frac{t}{n+1}\right|\right) \\
& \leqslant \sqrt{N+1} \exp (-N)\left(1+2 \frac{(N+1)^{N}}{N!}-1\right)=\frac{2(N+1)^{N+1 / 2} \exp (-N)}{N!}
\end{aligned}
$$

which is bounded according to Stirling's formula.
(3) Follows from (2).
(4) The implication \Leftarrow follows from (3). Now suppose that $\exp (t T) y \rightarrow 0$ as $t \rightarrow \infty$. Since

$$
\exp (t T) y=y+\sum_{n=1}^{\infty} \frac{t^{n}}{n!} T^{n} y=y+(A-I) \sum_{n=1}^{\infty} \frac{t^{n}}{n!}(A-I)^{n-1}\left(I-A^{-1}\right)^{n} y
$$

we conclude $y \in \overline{(A-I)(E)}$.
(5) The inclusion

$$
N(A-I) \subseteq\{x \in E: \exp (t T) x=x(t \geqslant 0)\}
$$

is obvious. Now suppose that $x \in E$ and $\exp (t T) x=x(t \geqslant 0)$. By differentiation $0=T \exp (t T) x(t \geqslant 0)$, thus $A^{-1}(A-I)^{2} x=T x=0$. Part (6) of Proposition 2.1 now shows that $x \in N(A-I)$.

3. The asymptotic behaviour of $\exp (t T)$

Theorem 3.1. Let A and T be as in Proposition 2.1. For $x \in E$ the following assertions are equivalent:
(1) $\lim _{t \rightarrow \infty} \exp (t T) x$ exists in $E\left[\right.$ resp. $\left.\lim _{t \rightarrow \infty} \exp (t T) x=0\right]$;
(2) $x \in N(A-I) \oplus \overline{(A-I)(E)}[$ resp. $x \in \overline{(A-I)(E)}]$;
(3) the sequence

$$
\left(\frac{x+A x+\cdots+A^{m} x}{m+1}\right)_{m \in \mathbb{N}}
$$

is convergent [resp. is convergent with limit 0].
Proof. That (2) implies (1) follows from Proposition 2.2.
Now, assume that (1) holds, and let $z=\lim _{t \rightarrow \infty} \exp (t T) x$. As in the proof of part (4) of Proposition 2.2

$$
\exp (t T) x=x+(A-I) \sum_{n=1}^{\infty} \frac{t^{n}}{n!}(A-I)^{n-1}\left(I-A^{-1}\right)^{n} x
$$

hence $x-z \in \overline{(A-I)(E)}$. [In particular, if $z=0$ then $x \in \overline{(A-I)(E)}$.] From part (3) of Proposition 2.2 we obtain

$$
(A-I) z=\lim _{t \rightarrow \infty} \exp (t T)(A-I) x=0
$$

and therefore $x=z+(x-z) \in N(A-I) \oplus \overline{(A-I)(E)}$.
The equivalence of (2) and (3) is proved in [3, Ch.2, Theorem 1.3].
According to part (8) of Proposition 2.1 the following corollary shows, that $\lim _{t \rightarrow \infty} \exp (t T) x$ exists for each $x \in E$ if $T(E)$ is closed:

Corollary 3.1. We have
(1) $T(E)=(A-I)^{2}(E) \subseteq(A-I)(E) \subseteq \overline{T(E)}$;
(2) $T(E)=\overline{T(E)} \Longleftrightarrow(A-I)^{2}(E)=(A-I)(E)$

$$
\Longleftrightarrow(A-I)(E)=(A-I)(E)
$$

Proof. (1) Part (5) of Proposition 2.1 gives

$$
T(E)=(A-I)^{2}(E) \subseteq(A-I)(E)
$$

As in the proof of Theorem 3.1 we obtain $(A-I)(E) \subseteq \overline{T(E)}$. Now, (2) follows by [2, Satz 102.4].

4. The general case

Now, let $A_{1}, \ldots, A_{n}, T_{1}, \ldots, T_{n}$ and T be as in section 1 . Moreover we introduce the following subspaces of E :

$$
X_{1}=\bigcap_{j=1}^{n} N\left(A_{j}-I\right), \quad X_{2}=\overline{\sum_{j=1}^{n}\left(A_{j}-I\right)(E)}, \quad X=X_{1}+X_{2}
$$

Theorem 4.1. Under the assumptions above
(1) $X_{2}=\left\{x \in E: \lim _{t \rightarrow \infty} \exp (t T) x=0\right\}$;
(2) $X_{1}=\{x \in E: \exp (t T) x=x(t \geqslant 0)\}$;
(3) $X=\left\{x \in E: \lim _{t \rightarrow \infty} \exp (t T) x\right.$ exists in $\left.E\right\}$;
(4) $X_{1} \cap X_{2}=\{0\}$, and X is closed.

Proof. (1) Let $x \in X_{2}$. Then $x=\lim _{m \rightarrow \infty} x_{m}$, where $x_{m} \in \sum_{j=1}^{n}\left(A_{j}-I\right)(E)$. By part (1) and part (3) of Proposition 2.2 we obtain

$$
\lim _{t \rightarrow \infty} \exp (t T) x_{m}=0 \quad(m \in \mathbb{N})
$$

Let $\varepsilon>0$, and choose $N \in \mathbb{N}$ such that $\left\|x-x_{N}\right\|<\varepsilon / 2$. Next, choose $t_{0} \in[0, \infty)$ such that $\left\|\exp (t T) x_{N}\right\|<\varepsilon / 2\left(t \geqslant t_{0}\right)$. Then

$$
\begin{aligned}
\|\exp (t T) x\| & =\left\|\exp (t T)\left(x-x_{N}\right)+\exp (t T) x_{N}\right\| \\
& \leqslant\left\|x-x_{N}\right\|+\left\|\exp (t T) x_{N}\right\|<\varepsilon \quad\left(t \geqslant t_{0}\right)
\end{aligned}
$$

Thus $\lim _{t \rightarrow \infty} \exp (t T) x=0$.
Now suppose that $x \in E$ and $\lim _{t \rightarrow \infty} \exp (t T) x=0$. Set

$$
h(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{n!} T^{n} x
$$

Since $T_{j}=\left(A_{j}-I\right)\left(I-A_{j}^{-1}\right)(j=1, \ldots, n)$, we have

$$
T x=\sum_{j=1}^{n}\left(A_{j}-I\right)\left(I-A_{j}^{-1}\right) x \in \sum_{j=1}^{n}\left(A_{j}-I\right)(E)
$$

hence

$$
h(t) \in \sum_{j=1}^{n}\left(A_{j}-I\right)(E)
$$

Thus, $\exp (t T) x=x+h(t)$ and $\lim _{t \rightarrow \infty} \exp (t T) x=0$ imply $x \in X_{2}$.
(2) The inclusion \subseteq is obvious. For the reversed inclusion let $x \in E$ be such that $\exp (t T) x=x(t \geqslant 0)$. Then by part (1) we obtain

$$
\left(A_{j}-I\right) x=\exp (t T)\left(A_{j}-I\right) x \rightarrow 0(t \rightarrow \infty) \quad(j=1, \ldots, n)
$$

hence $x \in X_{1}$.
(3) Here, the inclusion \subseteq follows from parts (1) and (2) directly. Now, assume that $x \in E$ is such that $\lim _{t \rightarrow \infty} \exp (t T) x=z$. As in the proof of part (1)

$$
\exp (t T) x=x+h(t), \quad h(t) \in X_{2}
$$

Therefore $x-z \in X_{2}$. From part (1) we derive

$$
\left(A_{j}-I\right) z=\lim _{t \rightarrow \infty} \exp (t T)\left(A_{j}-I\right) x=0 \quad(j=1, \ldots, n)
$$

Thus $z \in X_{1}$, and so $x=z+(x-z) \in X_{1} \oplus X_{2}=X$.
(4) Let $x \in X_{1} \cap X_{2}$. Then, by parts (1) and (2), we have

$$
\exp (t T) x=x(t \geqslant 0), \quad \exp (t T) x \rightarrow 0(t \rightarrow \infty)
$$

thus $x=0$. Next, if $\left(x_{m}\right)$ is a sequence in X with limit x_{0}, then there exist sequences $\left(y_{m}\right)$ and $\left(z_{m}\right)$ in X_{1} and X_{2}, respectively, with $x_{m}=y_{m}+z_{m}$. From part (1) and part (2) we obtain

$$
\exp (t T)\left(x_{m}-x_{k}\right) \rightarrow y_{m}-y_{k}(t \rightarrow \infty)
$$

Since $\left\|\exp (t T)\left(x_{m}-x_{k}\right)\right\| \leqslant\left\|x_{m}-x_{k}\right\|(t \geqslant 0)$, we have $\left\|y_{m}-y_{k}\right\| \leqslant\left\|x_{m}-x_{k}\right\|$, thus $\left(y_{m}\right)$ is convergent. Let $y_{0}=\lim _{m \rightarrow \infty} y_{m}$. Then $z_{m}=x_{m}-y_{m} \rightarrow x_{0}-y_{0}$. Hence we have $y_{0} \in X_{1}, x_{0}-y_{0} \in X_{2}$, and therefore $x_{0} \in X_{1} \oplus X_{2}=X$.

The following result provides sufficient conditions for the convergence of $\exp (t T) x$.

Theorem 4.2. Let $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$, and set $B=A_{1}^{k_{1}} \ldots A_{n}^{k_{n}}$. We have
(1) $\bigcap_{j=1}^{n}\left(N\left(A_{j}-I\right) \oplus \overline{\left(A_{j}-I\right)(E)}\right) \subseteq X$;
(2) $\overline{(B-I)(E)} \subseteq X_{2}$;
(3) if $x \in E$ and if the sequences

$$
\left(\frac{x+A_{j} x+\cdots+A_{j}^{m} x}{m+1}\right)_{m \in \mathbb{N}}
$$

are convergent $(j=1, \ldots, n)$, then $\lim _{t \rightarrow \infty} \exp (t T) x$ exists in E;
(4) if $x \in E$ and if the sequence

$$
\left(\frac{x+B x+\cdots+B^{m} x}{m+1}\right)_{m \in \mathbb{N}}
$$

is convergent to 0 in E, then $\lim _{t \rightarrow \infty} \exp (t T) x=0$.
Proof. According to Theorem 3.1 we see that (3) follows from (1), and (4) follows from (2).

For the proof of (1) we use induction. If $n=1$ the result follows by Theorem 3.1. Suppose that $n \in \mathbb{N}$ and that (1) holds. In the case of $n+1$ operators T_{1}, \ldots, T_{n+1} we write $T_{0}=T_{1}+\cdots+T_{n}$, so $T=T_{0}+T_{n+1}$. Let

$$
x \in \bigcap_{j=1}^{n+1}\left(N\left(A_{j}-I\right) \oplus \overline{\left(A_{j}-I\right)(E)}\right) .
$$

Then

$$
x \in \bigcap_{j=1}^{n}\left(N\left(A_{j}-I\right) \oplus \overline{\left(A_{j}-I\right)(E)}\right), \quad x \in N\left(A_{n+1}-I\right) \oplus \overline{\left(A_{n+1}-I\right)(E)},
$$

and therefore the limits $\lim _{t \rightarrow \infty} \exp \left(t T_{0}\right) x$ and $\lim _{t \rightarrow \infty} \exp \left(t T_{n+1}\right) x$ exist in E. From

$$
\begin{aligned}
& \|\exp (t T) x-\exp (s T) x\|=\left\|\exp \left(t T_{0}\right) \exp \left(t T_{n+1}\right) x-\exp \left(s T_{0}\right) \exp \left(s T_{n+1}\right) x\right\| \\
& \quad=\left\|\exp \left(t T_{0}\right)\left(\exp \left(t T_{n+1}\right)-\exp \left(s T_{n+1}\right)\right) x+\exp \left(s T_{n+1}\right)\left(\exp \left(t T_{0}\right)-\exp \left(s T_{0}\right)\right) x\right\| \\
& \quad \leqslant\left\|\exp \left(t T_{n+1}\right) x-\exp \left(s T_{n+1}\right) x\right\|+\left\|\exp \left(t T_{0}\right) x-\exp \left(s T_{0}\right) x\right\|
\end{aligned}
$$

we see that $\lim _{t \rightarrow \infty} \exp (t T) x$ exists.

Next, we prove (2) for $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$, without loss of generality. Let $p(z)=$ $z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}-1\left(z=\left(z_{1}, \ldots, z_{n}\right)\right)$, and note that there are polynomials $q_{1}, \ldots, q_{n} \in$ $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ such that

$$
p(z)=\left(z_{1}-1\right) q_{1}(z)+\cdots+\left(z_{n}-1\right) q_{n}(z)
$$

Hence

$$
(B-I) x \in \sum_{j=1}^{n}\left(A_{j}-I\right)(E) \quad(x \in E)
$$

and therefore $\overline{(B-I)(E)} \subseteq X_{2}$.

5. Example

Let us return to the semidiscretization of $v_{t}=\Delta v$ in \mathbb{R}^{2}, that is we consider $E=l^{\infty}\left(\mathbb{Z}^{2}\right)$ and

$$
A_{1} x=(x(i+1, j))_{(i, j) \in \mathbb{Z}^{2}}, \quad A_{2} x=(x(i, j+1))_{(i, j) \in \mathbb{Z}^{2}}
$$

Let $k_{1}, k_{2} \in \mathbb{N}$, and assume that $x \in l^{\infty}\left(\mathbb{Z}^{2}\right)$ is such that the sequence

$$
\left(\left(\frac{x(i, j)+x\left(i+k_{1}, j+k_{2}\right)+\cdots+x\left(i+m k_{1}, j+m k_{2}\right)}{m+1}\right)_{(i, j) \in \mathbb{Z}^{2}}\right)_{m \in \mathbb{N}}
$$

tends to 0 as $m \rightarrow \infty$ in $l^{\infty}\left(\mathbb{Z}^{2}\right)$. Then

$$
\exp (t T) x \rightarrow 0 \quad(t \rightarrow \infty)
$$

(apply part (4) of Theorem 4.2 with $B=A_{1}^{k_{1}} A_{2}^{k_{2}}$).

References

[1] G. Herzog, R. Lemmert, A note on discrete heat conduction, Arch. Math. 75 (2000), 147-152.
[2] H. Heuser, Funktionalanalysis, 2. Auflage. Mathematische Leitfäden. Stuttgart: Teubner (1986).
[3] U. Krengel, Ergodic theorems. De Gruyter Studies in Mathematics, 6. Berlin-New York: Walter de Gruyter. VIII (1985).
[4] W. Walter, Some new aspects of the line method for parabolic differential equations, Lect. Notes Math. 280 (1972), 181-189.

Institut für Analysis
(Received 2610 2006)
Universität Karlsruhe (TH)
76133 Karlsruhe
Kaiserstrasse 89
Germany
Gerd.Herzog@math.uni-karlsruhe.de
Christoph.Schmoeger@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification: Primary 34G10; Secondary 47A35.

