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ON THE FUNCTIONAL–INTEGRAL EQUATION
OF VOLTERRA TYPE
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Abstract. We give sufficient conditions for the existence of Lp-solution of
a Volterra functional–integral equation in a Banach space. Our assumptions
and proofs are expressed in terms of measures of noncompactness.

1. Introduction

Let E,F be Banach spaces, D = [0, d1] × · · · × [0, dm] and

D(t) = {s = (s1, . . . , sm) ∈ Rm : 0 � si � ti, i = 1, . . . , m}
for t = (t1, . . . , tm) ∈ D. Denote by Lp(D,E) (p > 1) the space of all strongly
measurable functions x : D �→ E with

∫
D
‖x(t)‖pdt < ∞, provided with the norm

‖x‖p =
(∫

D
‖x(t)‖pdt

)1/p.
We consider the following functional–integral equation of Volterra type

(1) x(t) = φ

(
t,

∫
D(t)

K(t, s) g(s, x(s)) ds

)

with the kernel K(t, s) = A(t,s)
|t−s|r , 0 < r < n (t, s ∈ D, t �= s). We give sufficient

conditions for the existence of a solution x ∈ Lp(D,E) of (1). Moreover, for r < 1
we present one-dimensional result involving a generalized Osgood condition. Our
considerations are inspirated by a paper of Darwish [5] concerning the functional–
integral equation of Hammerstein type. The existence of L1-solution of functional–
integral equation of Hammerstein type was studied in [4] and when g(s, x) = x we
get an equation considered in [3]. In [15] Szufla has established the existence of
Lp-solution of Hammerstein integral equation with weakly singular kernel.

Throughout this paper we shall assume that:
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1◦ (t, x) �→ φ(t, x) is a function from D × E into E such that
(i) φ is strongly measurable in t and continuous in x;
(ii) ‖φ(t, x)− φ(τ, y)‖ � |a1(t)− a1(τ)|+ b1‖x− y‖ for t, τ ∈ D and x, y ∈ E,

where a1 ∈ Lp(D,R) and b1 � 0;
(iii) φ(0, 0) = 0;

2◦ A is a bounded strongly measurable function from D × D into the space of
continuous linear mappings F �→ E;

3◦ (t, x) �→ g(t, x) is a function from D × E into F such that
(i) g is strongly measurable in t and continuous in x;
(ii) ‖g(t, x)‖ � a2(t) + b2‖x‖ for s ∈ D and x ∈ E, where a2 ∈ Lp(D,R) and

b2 � 0.
In what follows we shall need the following lemmas:

Lemma 1. The linear integral operator

(Sx)(t) =
∫
D

K(t, s)x(s) ds (x ∈ Lp(D,E), t ∈ D)

maps Lp(D,E) into itself continuously. Moreover,

‖S‖ � aQ, where a = sup{‖A(t, s)‖ : t, s ∈ D}
and

(2)
2πn/2(diam D)n−r

(n − r)Γ(n/2)
= Q �

∫
D

ds

|t − s|r for all t ∈ D.

Lemma 2. Put G(x)(t) = g(t, x(t)) for x ∈ Lp(D,E) and t ∈ D. Then G is a
continuous mapping of Lp(D,E) into itself.

For the proofs we refer for example to [15].
Denote by α and α1 the Kuratowski measures of noncompactness in E and

L1(D,E), respectively. For any set V of functions belonging to L1(D,E) denote
by v the function defined by v(t) = α(V (t)) for t ∈ D (under the convention that
α(X) = ∞ if X is unbounded), where V (t) = {x(t) : x ∈ V }. The next lemma
clarifies the relation between α and α1.

Lemma 3. ([7, Th.2.1]; and [16, Th.1]) Assume that V is a countable set of
strongly measurable functions D �→ E and there exists an integrable function µ such
that ‖x(t)‖ � µ(t) for all x ∈ V and t ∈ D. Then the corresponding function v is
integrable on D and

α

({∫
D

x(t) dt : x ∈ V

})
� 2

∫
D

v(t) dt.

If, in addition lim
h→∞

sup
x∈V

∫
D

‖x(t + h) − x(t)‖ dt = 0, then

α1(V ) � 2
∫
D

v(t) dt.
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2. The main results

Let H : D �→ R+ be a measurable function such that the function (t, s) �→
‖A(t, s)‖H(s) is bounded on D × D.

Theorem 1. Let 1◦ − 3◦ hold and 0 < r < n. If

(3) α(g(s,X)) � H(s)α(X)

for any s ∈ D and for any bounded subset X of E, then the equation (1) has a
solution x ∈ Lp(D,E).

In the case, when r < 1, we can apply the famous Mydlarczyk theorem [12,
Th.3.1], and consequently we obtain a stronger theorem if we replace (3) by the
condition (5) given below.

Theorem 2. Let ω : R+ �→ R+ be a continuous nondecreasing function such
that ω(0) = 0, ω(t) > 0 for t > 0 and

(4)

δ∫
0

1
s

[
s

ω(s)

] 1
1−r

ds = ∞ (δ > 0). (cf. [12])

Let 1◦– 3◦ hold, 0 < r < 1 and J = [0, d] be a compact interval in R. If

(5) α(g(s,X)) � ω(α(X))

for any s ∈ J and for any bounded subset X of E, then the equation (1) has a
solution x ∈ Lp(J,E).

Proof. By the theory of scalar linear Volterra integral equations it follows
that there exists a nonnegative solution u(t) of the equation

u(t) = a1(t) + b1

∫
D(t)

‖K(t, s)‖a2(s) ds + b1b2

∫
D(t)

‖K(t, s)‖u(s) ds.

More precisely, as the spectral radius r(K) of the Volterra integral operator

(6) Ku(t) =
∫

D(t)

‖K(t, s)‖u(s) ds

is equal to 0, by Theorem 2.2 from [10] the sequence of successive approximations
un(t) for (6) is convergent; obviously all un(t) are nonnegative.

Put B = {x ∈ Lp(D,E) : ‖x(t)‖ � u(t) for a.e. t ∈ D}. Define F : B �→
Lp(D,E) by

(Fx)(t) = φ

(
t,

∫
D(t)

K(t, s)g(s, x(s)) ds

)
for x ∈ B and t ∈ D.
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Since

‖(Fx)(t)‖ = ‖φ(t, SGx(t))‖ � a1(t) + b1‖SGx(t)‖

� a1(t) + b1

∥∥∥∥∥
∫

D(t)

K(t, s) g(s, x(s)) ds

∥∥∥∥∥
� a1(t) + b1

∫
D(t)

‖K(t, s)‖(a2(s) + b2‖x(s)‖) ds

� a1(t) + b1

∫
D(t)

‖K(t, s)‖ a2(s) ds + b1b2

∫
D(t)

‖K(t, s)‖u(s) ds = u(t)

for x ∈ B and t ∈ D, Lemmas 1 and 2 prove that F is a continuous mapping
B �→ B.

Without loss of generality we shall always assume that all functions from
Lp(D,E) are extended to Rn by putting x(t) = 0 outside D. Moreover, by 1◦(ii)
we obtain

‖F (x)(t + h) − F (x)(t)‖ � d(t, h) for x ∈ B, t ∈ D and small |h|,
where

d(t, h) =

⎧⎪⎪⎨
⎪⎪⎩

u(t) if t ∈ D and t + h /∈ D

‖a1(t + h) − a1(t)‖
+ b1

∫
D

‖K(t + h, s) − K(t, s)‖(a2(s) + b2u(s)
)
ds if t, t + h ∈ D.

From (2) it follows that for each z ∈ L1(D,R) we have

(7)
∫∫

D×D

|z(s)|
|t − s|r ds dt =

∫
D

(∫
D

dt

|t − s|r
)
|z(s)| ds � Q

∫
D

|z(s)| ds.

In view of (7) the function (t, s) �→ W (t, s) = K(t, s)(a2(s) + b2u(s)) is integrable
on D × D. Therefore

lim
h→0

∫
D

d(t, h) dt = lim
h→0

∫
D

(∫
D

‖K(t + h, s) − K(t, s)‖ (a2(s) + b2u(s)
)
ds

)
dt

= lim
h→0

∫
D

∫
D

‖W (t + h, s) − W (t, s)‖ ds dt = 0

for t ∈ D. Hence

(8) lim
h→0

sup
x∈B

∫
D(t)

‖(Fx)(t + h) − (Fx)(t)‖ dt = 0.

Next, let V be a countable subset of B such that

(9) V ⊂ conv(F (V ) ∪ {0}).
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Then V (t) ⊂ conv
(
F (V )(t) ∪ {0}) for a.e. t ∈ D, so that

(10) α(V (t)) � α(F (V )(t)) for a.e. t ∈ D.

Put v(t) = α(V (t)) for t ∈ D. From (8) and (9) we deduce that

lim
h→0

sup
x∈V

∫
D

‖x(t + h) − x(t)‖ dt = 0.

Moreover, ‖x(t)‖ � u(t) for all x ∈ V and a.e. t ∈ D. Consequently, by Lemma 3,
v ∈ Lp(D,R) and

(11) α1(V ) � 2
∫
D

v(t) dt.

According to 1◦(ii), we have ‖φ(t, x)− φ(t, y)‖ � b1‖x− y‖ for t ∈ D and x, y ∈ E.
Then α(φ(t,X)) � b1α(X) for any bounded subset X of E.

From (7) it is clear that

(12)
∫
D

a2(s) + b2u(s)
|t − s|r ds < ∞ for a.e. t ∈ D.

Fix t ∈ D such that the integral (12) is finite. Next, we have

‖K(t, s)g(s, x(s))‖ � a
a2(s) + b2u(s)

|t − s|r for x ∈ B and s ∈ D.

Case 1. Suppose that the assumptions of Theorem 1 hold. Thus, by (10), (3)
and Lemma 3, we get

α(V (t)) � α((FV )(t)) = α(φ(t, SGV (t)))

� b1α

({ ∫
D(t)

K(t, s) g(s, x(s)) ds : x ∈ V

})

� 2b1

∫
D(t)

α
({K(t, s) g(s, x(s)) ds : x ∈ V }) ds

� 2b1

∫
D(t)

‖K(t, s)‖α(g(s, V (s)) ds � 2b1

∫
D(t)

‖K(t, s)‖H(s)α(V (s)) ds

i.e.
v(t) � 2b1

∫
D(t)

‖K(t, s)‖H(s) v(s) ds.

Putting

w(t) = 2b1c

∫
D(t)

v(s)
|t − s|r ds,

where c = sup
{‖A(t, s)‖H(s) : t, s ∈ D

}
, we see that w(t) is a continuous function

such that v(t) � w(t) for t ∈ D. Hence
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(13) w(t) � 2b1c

∫
D(t)

w(s)
|t − s|r ds.

Arguing similarly as in [8; p. 134–135] we can prove that w(t) = 0 for t ∈ D. Since
v(t) � w(t), we have v(t) = 0 for t ∈ D.

Case 2. Suppose that the assumptions of Theorem 2 hold. Thus, by (10), (5)
and Lemma 3, we get

α(V (t)) � α((FV )(t)) = α

(
φ(t, SGV (t))

)

� b1α

({ t∫
0

K(t, s) g(s, x(s)) ds : x ∈ V

})

� 2b1

t∫
0

α
({K(t, s) g(s, x(s)) ds : x ∈ V }) ds

� 2b1

t∫
0

‖K(t, s)‖α
(
g(s, V (s))

)
ds � 2b1

t∫
0

‖K(t, s)‖ω
(
α(V (s))

)
ds,

i.e.

v(t) � 2b1a

t∫
0

ω(v(s))
(t − s)r

ds for t ∈ J.

Putting

w(t) = 2b1a

t∫
0

ω(v(s))
(t − s)r

ds for t ∈ J

we see that w is a continuous function such that v(t) � w(t) for t ∈ J . Hence

(14) w(t) � 2b1a

t∫
0

ω(w(s))
(t − s)r

ds for t ∈ J.

By the Mydlarczyk theorem [12, Th. 3.1] and assumption (4), the integral equation

z(t) = 2b1a

t∫
0

ω(z(s))
(t − s)r

ds for ∈ J

has the unique continuous solution z(t) ≡ 0. Applying now theorem on integral
inequalities [1, Th. 2], from (14) we deduce that w(t) ≡ 0. Thus v(t) = 0 for t ∈ J .

In view of (11) this shows that α1(V ) = 0, so that V is relatively compact in
L1(D,E). On the other hand, the set B has equiabsolutely continuous norms in
Lp(D,E) and V ⊂ B. Consequently, V is relatively compact in Lp(D,E).

Applying now the following Mönch fixed point theorem [11]:
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Theorem 3. Let B be a closed, convex, and bounded subset of a Banach space
such that 0 ∈ B. If F : B �→ B is a continuous mapping such that for each countable
subset V of B the following implication holds

V ⊂ conv(F (V ) ∪ 0) =⇒ V is relatively compact,

then F has a fixed point.

we conclude that there exists x ∈ B such that x = F (x). Obviously x is a solution
of (1). �
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