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FINITE DIFFERENCE APPROXIMATION
OF STRONG SOLUTIONS OF
A PARABOLIC INTERFACE PROBLEM
ON DISCONNECTED DOMAINS

Bosko S. Jovanovi¢ and Lubin G. Vulkov

ABSTRACT. We investigate an initial boundary value problem for one dimen-
sional parabolic equation in two disconnected intervals. A finite difference
scheme for its solution is proposed and investigated. Convergence rate esti-
mate compatible with the smoothness of input data is obtained.

1. Introduction

Interface problems occur in many applications in science and engineering. From
the mathematical point of view, interface problems lead to partial differential equa-
tions whose input data and solutions have discontinuities across one or several hy-
persurfaces, which have lower dimension than the domain where the problem is
defined. Various forms of conjugation conditions satisfied by the solution and its
derivatives on the interface are known. The numerical methods designed for smooth
solutions do not work efficiently for interface problems. Problems of this type we
considered in [6, 7]

There exists another similar type of problems whose solutions are defined in
two (or more) disconnected domains. For example, such situation occurs when the
solution in the intermediate region is known or can be determined from a simpler
equation. Its effect can be modelled (see [2]) by means of nonlocal jump conditions
across the intermediate region (layer).

In this paper we consider the following initial-boundary-value problem (IBVP):
Find functions uq(z,t) and us(z,t) that satisfy the parabolic equations

0 0 1o}
W G- (m@5E) = A, ce = @b, >0
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38 JOVANOVIC AND VULKOV
Ous 0 Ouz . _
(2) W — % (pg(x)ax) = fQ(ZL',t), xT € QQ = ((1,2,[)2), t> 0,

where —00 < a1 < by < as < by < +00, the internal conjugation conditions of
Robin-Dirichlet type

(3) Pl(h)%?’t) + aquy (b, ) = Prug(az, t) +1(t),
(4) *PQ(%)W + agua(ag, t) = Baui(br,t) +72(t),
the simplest external Dirichlet boundary conditions

(5) ui(ai,t) =0, wuz(be,t) =0,

and initial conditions

(6) up(z,0) = uio(x), wua(z,0) = ug(x).

Throughout the paper we assume that the data satisfy the usual regularity and
ellipticity conditions

(7) pi(z) € Lo(2), 0 < pio < pi(z), ae in Q;, i=1,2.
We also assume that
(8) a; >0, 3;>0, =12 and [i1f2 < aiaz.

Similar problem is investigated in [8] and a finite difference scheme (FDS) for
its numerical solution is proposed. The convergence of FDS in the weak discrete
norm (H ;i/ 2) is proved. In this paper the properties of the strong solution of IBVP
(1)—(6) are examined and the convergence of the corresponding FDS is proved in
the strong discrete norm (H, Zi) To ensure the second order of convergence in the
space step-size h a special approximation for x = by and x = as was needed.

By C we shall denote a positive generic constant, independent of the solution
of IBVP and the mesh-sizes, which can take different values in different formulas.

The layout of the paper is as follows. Section 2 is devoted to the analysis of the
existence and the uniqueness of the strong solution of IBVP (1)—(6). In Section 3 we
introduce a FDS approximating IBVP (1)-(6) and investigate its convergence. A
convergence rate estimate compatible with the smoothness of input data is obtained.

2. Existence and uniqueness of the strong solution
Let the conditions (8) hold. We introduce the product space
L =1Ls(0) x La(Q2) = {v = (v1,v2) |v; € La(%)},
endowed with the inner product and associated norm
(u,0)1 = Bowr,01) () + P12, v2) @)y o)z = (v,0)1 ",
where

(ui,vi)LZ(Qi) = /uivi dl‘, 7, = 1,2.
Q;
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We also define the spaces
Hk:{v:(vl,vz)|vi€H’“(Qi)}7 k:172,...,

endowed with the inner products and norms

1/2
(u, v) e = Ba(ur, v1) gr(oy) + Bi(uz, va)pria,),  lvllar = (va)H/kv

where

k . .
djuz- d]’l)i .
i, Vi ) = =, . , =12, k=1,2,....
(wiy Vi) e () jzo(dfﬁj d )Lz(ﬂi) i

In particular, we set
H& = {U = (1}1,112) S H! | vl(al) =0, ’UQ(bQ) = O}
Finally, we define the bilinear form

duy dvg / duy dvs

(9) A(U7U)262/plﬁad$+ﬁl pg%%daj

Q1 Q2
+ B2aqv1 (b1)wi (b1) + Bragva(az)wa(az) — (152 [Ul(bl)w2(a2)+v2(a2)wl (b1)]-

LEMMA 2.1. [8] Under the conditions (7) and (8) the bilinear form A, defined
by (9), is symmetric and bounded on H' x H'. Moreover, this form is also coercive
on H}, i.e., there exists a constant cg > 0 such that A(v,v) > col|v||3:, Vv € Hf.

Let Q be a domain in R™ and u(t) a function mapping  into a Hilbert space
H. In a standard manner (see [9]) we define the Sobolev space of vector valued
functions H*(Q, H), endowed with the inner product

<u,u)Hk(Q’H):/ S (Du(t), Do) dt, k=0,1,2,...
Q lalsk

and with the usual modification for non-integer k. For k = 0 we set Lo(Q2, H) =
H°(Q, H).

We define the spaces H**/2 = Ly((0,T), H*)NH*/2((0,T), L). We also denote
Qi = Qi X (O,T), 1= 1,2

THEOREM 2.1. Let the assumptions (7) and (8) hold and ug = (u19,u20) € H¢,
[ = (fi,f2) € L2((0,T),L), vi € H1/4(07T)7 p; € Loo(), i = 1,2. Then the
IBVP (1)—(6) has a unique strong solution u = (uy,us) € H>' and the following a
priori estimate holds true

2
(10)  Nulyzs < €Y Boi (iollrs ey + 1illEacan) + il 0m))-

i=1

ProOF. Existence and uniqueness of the weak solution of IBVP (1)-(6) is
proved in [?, Theorems 2.1 and 3.1]. In such a way, it remains to prove that under
our assumptions this solution is strong, i.e., satisfies the a priori estimate (10).
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Multiplying the equation (1) by du; /0t and integrating by parts, we obtain

2
|50 75 G
2
+aqus (b, )‘95“ (b, 1) — ﬁlug(ag,t)%(bl,t)
(0 500) 0
% e >||L2(Ql> sG], o o e

and analogously

H8UQ 2 +/ 8UQ 82U2 da
Lo ) P20z 9tox
Qo

d

2

0 0
+ aug(az, t) %(G% t) — Boui (b1, 1) %(am t)

1 ou
<3 1f2C 12,50 + 72(2) 872((12’0'

t

Multiplying the first of these inequalities by 2035, the second by 23; and summing
up we get

|50, + g (At uto)
S IFCOI +2(Fn (0 Gt 1,8) + Bina(t) i a2.)).

Integrating this inequality on ¢ € (0,T) and using Lemma 2.1 one obtains

) |5 o sy <l + 171 0m00
T
2/(5271( ) 88t (by,t) + Biv2(t) %(@J))dt-
0
Analogously
(12) HAU||2L2((0,T),L) < ClluollF + ||f||%2((0,T),L)
T
2 [ (B0 G 00.0) + Brralt) G2 (aa.) ),
0

where we denoted Au = (Aju, Asus) and

Ay = —%(pi(x)%?;i), i=1,2.
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Let us estimate ||Aul|r = ||Au(-,t)||r. From the inequalities

[l O(IlAulz + fullr)

dp Ou
P, I,

-l 2

H8x2 H dx Ox

and
co lullf < A(u,u) = (Au,u)r, 4 Boya () ur (b1, t) + Biya2(t)ua(az, )
(Il + B2k (01, 0) + rud(an 1)) + 1= (14wl + 5o3(0) + Brrd(e))

< el + 1 (4l + 502 (0) + B3 ()

after taking € = co/(2C) one obtains

13l = | 24l < O(1Aul + 820 + B3 ).

Let us now estimate fOT 1(t) % uy #(b1,t)dt. Using Fourier sine and cosine ex-
pansions

o0

. gmt olu b,
t)=> bln] Sln%7 uy by 1) = SRR ‘1‘2%“1 b1, ") COS*

(where bj[y] and a;[uq(by,-)] are the corresponding Fourier coefficients) and the
orthogonality of sines, we obtain

T

[0 Gt e = =35 kululanlin (.
k=1

0
1/2

- 1/2
i
<3 (;kl/z bi[’h]) (Zk‘w a1 (b, 'ﬂ)

From this inequality, using Lemma 3.1 from [8] and the trace theorem for anisotropic
Sobolev spaces [9], one obtains

T
8’([;1
\ JENCE-(A >dt\ < Clnllssacoimy s (brs M rsracoury
0

c
< Clvllasenlullee) < lwlbziq,) + 7 Inlimsern

and analogously

C
(15) ‘/72 a2» )dt‘ € |luz|| 7. 1@t = ||’Y2||H1/4(0 T

Finally, for sufficiently small € > 0, from (11)—(15) we get the a priori estimate
(10). O
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3. Finite difference approximation

3.1. Meshes, finite differences and discrete norms. Let @, be an
uniform mesh in Q; with the step-size hy = (by — a1)/n1, Wik, = Win, N,
Wipy = Wiy U{a1} and wfhl = w1 p, U{b1}. Analogously, in Qs we define uniform
mesh ws j,, with the step-size ho = (ba—az)/n2 and its submeshes ws 5, = @2 1,NDa,
Wy p, = w2,n, U{az} and w;hz = wa p, U{b2}. Finally, in [0, T] we introduce uniform
mesh @, with the step-size 7 = T'//n and set w, = @, N (0,7), w; = w,; U {0} and
wl = w; U{T}. We will consider vector-functions of the form v = (v, v2) where
v; is mesh function defined on @; p, X W, ¢ = 1,2. We define finite differences in

the usual way [10]
vi(x + hi, t) — vi(z, t)

Vg (2,t) = 5 =v;z(x + hy, 1),
AT t — Ui\4y t
vio(at) = vi(z, t + TT) vi(z, t) viila t47),

Uy = (V1,0 V2,2), Uz = (V1,3,V23), U= (V1,4,02,4), vi= (V17 0a7)
We also introduce the discrete inner products and norms

(v,w)r, = B2 Z viwihy + B4 Z vowszha,
+

mewl,’u x€w27h2

(v, w)g,, =Bahy > viwi+Prhy Y vows,

+ +
wEthl a:Eu.JzJL2

oI, = (v, 0)z,,  WIE,, = @,0)z,, il =7 D o,

tij

Wl oty =7 D0 I0COIL,, olf, s p,, =7 D GBI,

tews tews

‘ULgl(w L) =T jg: ”Ut HLh

tEwr

HUHZEL}_ = ”UizHLz(er Ly) + ||'U:v||L2(w+ Lyr) + ”UH (wi,Ly) + ‘U|H1 (wi,Lp)?
where
hi:hi, IEGWih” i:172, hl(bl):hl/Q, hg(ag):hz/z,

V1,z2(b1,t) = ['Ul 2(b1,t) + afvy (by, t) — BYv2(as, t)} ,

1\3

By
2

V2. za (a2, t) = e
2

{7}2 2(az,t) — ajva(az, t) + Bovi(by, t)} ,

and
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3.2. Finite difference scheme. In this and subsequent sections we shall as-
sume that u; belongs to H*2(Q;), while p; € H3(£);). Consequently, f; € H>(Q;)
is continuous function. We approximate the equations (1) and (2) in the following
manner:

(16) V1§ — (plvl,i)z = fla T < W1,k te wja

(17) Vo i — (P2v2,2)e = f2, T Ewap,, tEWS,

where p;(z) = % [pi(x) + pi(x — h;)], i = 1,2. To ensure the same order of approxi-
mation for z = b; and x = as we set:

h hy pl(b
(18) vy (b1, t) — = v,z (b1, 1) + M piby)

2
v1,7(b1,t) + — {ﬁl (b1)v1,z(b1,1)

3 6 p1(b1) hi
B (phab) IO\
+ [1+ 12( pi(b)  p3(br) ﬂ( 1o, £) = ool Z’t))}
= fi(b1,t) — %fm(bl,t) + % 21523 fi(b1,t)

20 htpia(b) | (pi(b1))? B
+h1 [1—’— 12(]91(51) - p3(b1) ﬂ%(t)’ tEwr,

ha ha ps(az) 2 ([_
19 (a2, 1)+ 2 vy (@, ) — —2 H(as, t)— — ho)vs . (az, t
(19) woz(az,t)+ 3 Vg, (a2, 1) 6 p2(a2)v2,t(a23 ) Iy p2(az + h2)va (a2, 1)

_P+@C&M@+%wm2

)] f@avatan,) - gonn(or,0n)}

12\ pa(az) p3(az)
= fa(az,t) + % fa,z(az,t) — % iigzzi fa(az,t)

*2P*@ch@)ﬁmwwﬂ”” fewrt

ha 12\ pa(az)  p3laz)
The Dirichlet boundary conditions (5) and initial conditions (6) can be satisfied
exactly:

(20) U1 (al, t) =0, Ug(bg,t) =0, t e w;ﬂ

(21) vi(2,0) = uox), xE€@y, =12

In each time level ¢t = j7 FDS (16)—(21) reduces to a tridiagonal linear system
with n1 +ng unknowns. In such a way, FDS (16)—(21) is computationally efficient.
From the general theory of difference schemes [10] it follows that FDS (16)—(21) is
unconditionally stable.

3.3. Convergence of the finite difference scheme. Let u = (uy,us) be
the solution of the IBVP (1)—(6) and v = (v1, v2) the solution of the FDS (16)—(21).
Then the error z = u — v satisfies the following FDS:

(22) Zl,f - (ﬁlzl,a’c)x = ¥1, T e W1, hys te wj7
(23) 2.8 — (P222,2)x = P2, T E€wyp,, tews,
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(24)  z17(b1,t) — Z1 z(b1,t) + % ifgzii 2,7(b1,t) + h21 {Pl(bl) z(b1,1)
i |:1+;( Jc(é 1)) (];{%((ljbll))) ):| (alzl(bl,t)—ﬁlzg(ag,t))} = @1(()1, t), t e wi’,

h2p2( 2)
6 po(as)

)] (04222((12,75)—5221(1)1’0)} = pa(as,t), tews,

h
(25) 2 u(az, 1)+

[HhQ (pgm( 2) | (p3(a2))”

2
2o (a2, ) — 2 f(ag,t)—— {pz(az + ha)za 4 (asg,t)

ha

12\ pa(az)  p3(a2)
(26) z1(a1,t) =0, za(be,t) =0, te w;ﬁ
(27) zi(z,0) = 0, T € ip,, i=1,2,
where

©i=ti+Xi, TEwipn, tewf, i=12,

p1(b1,t) = P1(b1,t) — %wl,i(bh t)+ al plEIb)B Y1(b1,t) + X1(b1,1)
pa(az,t) = 1p2(az,t) + %1/)2,95(@,75) - };2 ]]ZEEGQ; VYa(ag, t) + Xa2(as,t),
Vi = up— %7 Xi = %(Pz %) — (Pi Wi,z) s
= 2 )+ 22
+ 5 (o gglp;ﬁ;;)f;g(m%@‘,
X2 = 5%(192 %) - }%(132(55 + ha)uz,z — D2 %)
i ) 5]

Analogously as in the continuous case one obtains the next assertion.

THEOREM 3.1. Let the assumptions (7) and (8) hold and let p; € C*(Q;), for
it = 1,2. Then, for sufficiently small hy and ha, the solution z of FDS (22)—(27)
satisfies the a priori estimate

Therefore, in order to determine the convergence rate of the FDS (16)—(21), it
is enough to estimate the right hand side term in the inequality (28).
From the integral representation

1 (x,t) = 1o, t) + P11 (2, t) = rhl// / 86;1 ' ") dx' dt” dt’

t—7 t' x—h;
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8'“1 1_% _aul 1y % / 1 g4l
Thl/ / [ S (1) = S ) + 0| e e

t—Tx—hq

we immediately obtain

t x
T 0%y
[10(z,t)] < i / / ’ 8t21 (')

t—7 :E—hl

|

dﬁfl dt, < W

T
vV Thl

La(e(z,t))

where e(z,t) = (x — hy,z) X (t — 7,t). Summation over the mesh yields

2) > 3 h1|w10\2<CT2H8;;1(

tij z@uihl

<Or?
L@ S leallis 2cqu-

The term of the same form as 11, is estimated in [5] wherefrom follows

(30) T Z Z hlyni]® < C(hT +77) ||“1||%14'2(Q1)'

tewd zewf,
For € wy p,, t € w] term x; can be represented in the following way
x1(z,t) = x10(z,t) + x11(2, t) + x12(2, 1) + x13(2, 1) + X14(2, 1)
‘x — ‘T| a U1 /// " "
_ 1 . )7 dt’ da'" dz” da’
e T Tt 0 ) 0
x—hy x x' t—T
p | ‘ 82 82
r —X Ul (5% ’
t) — t
Th1 / / hl ) |: (91'2 (37, ) 8302 (-’17 ’ )

x—hy t—T
9%y 0%u
— 21 ($7 t/) + 21
or or

6u1 /// " "
2h1 /// 83@3 t)dz"" dx" dx’

x—hy ' x"

z+hy

(2, t") |dt’ da’

hy " / |x’—x\ 82u1 / /
1—
R4l (2) ( I ) B (a',t) dx
:C—hl
z+hy x’ z”’ x+hla
1
Ty ( / //pllll(x///) da’" da dl‘/> ( / %(Z‘/,t) dx')
1

T

(] rreramacsd)( ] o2ieaer)

r—hy ' x' r—h1
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Summands 10 and x1; can be estimated in the same manner as 119 and t11:

0*uy 1|2
2 4 2 1
(31) hat 2 GZ 10" < Chy Ip1lleay) W’ La(@1)
tewl TEWL, hy
< O Ipallrs oy 1ua ez g,y
(32) mr Y Y0 Il <OML+72) Il llunllfseg,)-

tij TEWL,hq

Remaining terms can be estimated directly using Cauchy—Schwartz inequality and
Sobolev imbedding theorem:

(33) T D7 Il <O g, m

tewl TEWL by

o flua( 81l )

< Ch% ||p1HH3(Ql) Hu1||H4~2(Q1)7

(34) hy Z Z |X13|2 < thlL ||p1H%)2(Ql) ||u1||?)2(Q1)

tewl TEWL by

N

Ch% ”le}QLIB(Ql) HUIH%I‘”(Ql)’

35t Y Y baual® < O Ip gy 2o,

tewl TEWL ny

< Chillpiligs o) lualifrsz qu)-

Similarly, term 1 can be represented in the following manner

X1(b1,t) = X10(b1,t) + X11(b1,t) + X12(b1,t) + X13(b1,1) + Xx14(b1,1)
bl b1 bl bl Z//

2p1 a4u1 e !/ " " " 2 /
Th3 //// //83:4 S0 dt dx"" de"" da" dx' dx

bi—hi z’ x' by—hy x' t—T

2p1 b1 82’U,1 82U1 17
M { ///[ 1) = Gz (50

hlm’t T

- %(hl, ) + %2;21 (", t')} dt'dz" '
L 2
+— / // { — ha,t) — ‘98;; (2", 1)
b1 hy x/ t—71 82u1 l 82u1 o / } /
gz (b1 —hat) + 5 (e ,t)}dtdx dx}
1 by by 83
—I—{3< / p&(x’)da:’)( / ag?(x',t)dm’)

b1 —h1 b1 —h1

P (bl - hl) . 33%1
Nt SAE SRAELA 3 / 3 5 ( " t)da" dx’
T
by

—h1 x’/
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pl bl 0 ul /// "o
(///axa pasastar) |

bl hl x! x!

b1 by by
hy 2" " a2'“1
+{<3 / !(z") dx—i—f // dmd>82(bl7)

bi—h1 —hy x’
l 1
h1%< / /Plll(ir//) dx"dx') ( / /8 U ,t)dz’" dx )}
b1 —h1 x’ by —h1 x’
by by by 2
+ };( / / / /p/lu(x////) dz"" da’"" da”" dx/) %(b17t)~
b1 —hy1 ' by—hy z'’

Analogously as in the previous case one obtains:

(36) hr Y (b, O < C(h+72) 111 s 0y vl Fraz (g,

tewt

(37) hit Z |%1j(b17t)|2 < OhAll ”leiﬂ(Ql) Hul‘liﬂ’?(Ql)’ J=0,2,34

tewi

From (29)—(37), analogous inequalities for s, x2 and X2 and the a priori
estimate (28) one obtains the next result.

THEOREM 3.2. Let p; € H3(Q;), i = 1,2, and let assumptions (7) and (8) hold.
Let the functions v; and f; be continuous and sufficiently smooth to ensure that the
solution of IBVP (1)—(6) belongs to the space H*?. Let also the step sizes hy and
hs be sufficiently small so that the a priori estimate (28) holds. Then the solution
v of FDS (16)—(21) converges to the solution u of IBVP (1)—(6) in H}Qli and the
following convergence rate estimate holds true:

lu=vllgz1 < C02 +7) (1+ max|ipill s, ) lull oz, b= max{h, ha}.

REMARK 3.1. For u € H*%/2, 3.5 < s < 4, using Bramble-Hilbert lemma
[1, 3] and methodology proposed in [4], one can obtain convergence rate O(h*~?)
assuming 7 < h2. The same result holds for 2 < s < 3.5, but in this case a FDS with
averaged data must be used, because the right-hand sides f; may be discontinuous
functions.
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