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ORTHOGONAL POLYNOMIALS FOR THE
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Abstract. This is a continuation of our previous investigations on polyno-
mials orthogonal with respect to the linear functional L : P → C, where

L =
∫ 1
−1 p(x) dµ(x), dµ(x) = (1 − x2)λ−1/2 exp(iζx) dx, and P is a linear

space of all algebraic polynomials. Here, we prove an extension of our pre-
vious existence theorem for rational λ ∈ (−1/2, 0], give some hypothesis on
three-term recurrence coefficients, and derive some differential relations for our
orthogonal polynomials, including the second order differential equation.

1. Introduction

In this paper we continue our investigation on orthogonality with respect to
the oscillatory weight functions studied in [7], [8], and [9]. We are concerned with
the following measure dµ(x) = (1−x2)λ−1/2 exp(iζx) dx, supported on the interval
[−1, 1], where λ > −1/2 and where ζ ∈ R\{0}. Evidently, the corresponding weight
function

w(x) = wζ,λ(x) = (1− x2)λ−1/2 exp(iζx)
depends on two real parameters λ and ζ. We investigate the questions connected
with the existence of polynomials πn orthogonal with respect to the linear functional

(1.1) L[p] =
∫ 1

−1

p(x) dµ(x), p ∈ P,

where P is the space of all algebraic polynomials. As it has been proved in [9] it
is enough to consider only the case ζ > 0, and therefore we continue our discussion
only for such values of ζ. As we proved in [9] it can be easily inferred that the
orthogonal polynomials πn exist in the case λ ∈ Q with λ > 0 and ζ is positive zero
of the Bessel function of the first kind Jλ−1. The crucial ingredient in the proof is
the result which states that non-trivial zeros of Bessel functions of the first kind are
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transcendental provided their index is rational. In this paper we extend the results
from [9] for −1/2 < λ 6 0, λ ∈ Q, and ζ being the zero of the Bessel function Jλ−1.

Also, in this paper, we investigate the possibility of computation of three-term
recurrence coefficients for the given sequence of orthogonal polynomials {πn}n∈N0 ,
as well as some consequences of the weight function w being semiclassical. We
also find the second order differential equation for the corresponding orthogonal
polynomials.

2. Existence of orthogonal polynomials

According to (1.1), the moments

(2.1) µk = L[xk] =
∫ 1

−1

xk(1− x2)λ−1/2 exp(iζx) dx, k ∈ N0,

can be expressed in terms of Bessel functions Jν of the order ν defined by

Jν(z) =
+∞∑
m=0

(−1)m(z/2)ν+2m

m!Γ(ν + m + 1)
.

Using the initial conditions

µ0 = AJλ(ζ), µ1 = iA

(
2λ

ζ
Jλ(ζ)− Jλ−1(ζ)

)
,

µ2 = A

[(
1− 2λ(2λ + 1)

ζ2

)
Jλ(ζ) +

2λ + 1
ζ

Jλ−1(ζ)
]

,

where A = (2/ζ)λ
√

π Γ(λ + 1/2), we can see that the moments (2.1) satisfy the
following recurrence relation

µk+2 = −k + 2λ + 1
iζ

µk+1 + µk +
k

iζ
µk−1.

The following result is proved in [9].

Theorem 2.1. The moments µk can be expressed in the form

(2.2) µk =
A

(iζ)k

(
Pλ

k (ζ)Jλ(ζ) + Qλ
k(ζ)Jλ−1(ζ)

)
, k ∈ N0,

where A = (2/ζ)λ
√

π Γ(λ+1/2), and Pλ
k and Qλ

k are polynomials in ζ, which satisfy
the following four-term recurrence relation

yk+2 = −(k + 2λ + 1)yk+1 − ζ2yk − kζ2yk−1,

with the initial conditions

Pλ
0 (ζ) = 1, Pλ

1 (ζ) = −2λ, Pλ
2 (ζ) = 2λ(2λ + 1)− ζ2

and
Qλ

0 (ζ) = 0, Qλ
1 (ζ) = ζ, Qλ

2 (ζ) = −(2λ + 1)ζ,

respectively.

Some obvious properties of the polynomials Pλ
n and Qλ

n, n ∈ N0, are stated in
the following lemma.
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Lemma 2.1. For the degree of the polynomials Pλ
n and Qλ

n we have

deg(Pλ
2n, Pλ

2n+1) = 2n (n ∈ N0) and deg(Qλ
2n, Qλ

2n−1) = 2n (n ∈ N).

The free terms in the polynomials Pλ
n and Qλ

n are (−1)n(2λ)n and zero, respectively.
The free term in the polynomial Qn(ζ)/ζ, n ∈ N, equals (−1)n−1(2λ + 1)n−1.

The leading coefficients in the polynomials Pλ
2n, Pλ

2n−1, Qλ
2n+1 and Qλ

2n are
(−1)n, (−1)n(2nλ + n− 1), (−1)n and (−1)nn(2λ + 1), respectively.

Now we are ready to state and prove a stronger version of the existence theorem
than the one given in [9].

Theorem 2.2. Let λ ∈ Q, λ > −1/2 and let ζ 6= 0 be a zero of the Bessel
function Jλ−1. Then the sequence of monic polynomials {πn}n∈N0 orthogonal with
respect to the linear functional (1.1) exists.

Proof. As in [9] our result is based upon completely algebraic facts. Consider
the sequence of Hankel determinants defined by

∆n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
...

. . .
...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣
, n ∈ N.

The sequence of orthogonal polynomials {πn}n∈N0 with respect to L exists provided
∆n 6= 0, n ∈ N (see [4]). Thus, let ζ be a nontrivial zero of the Bessel function
Jλ−1. Then we can express the moments of the linear functional L in the following
form

µk =
A

(iζ)k
Pλ

k (ζ)Jλ(ζ), k ∈ N0.

Obviously, from the Hankel determinant we can factor (AJλ(ζ))n+1/(iζ)n(n+1) and
we are left with the sequence of Hankel determinants Hn, n ∈ N, made from the
new moment sequence µ′k = Pλ

k (ζ), k ∈ N0,

Hn =

∣∣∣∣∣∣∣∣∣

Pλ
0 (ζ) Pλ

1 (ζ) . . . Pλ
n−1(ζ)

Pλ
1 (ζ) Pλ

2 (ζ) . . . Pλ
n (ζ)

...
...

...
Pλ

n−1(ζ) Pλ
n (ζ) . . . Pλ

2n−2(ζ)

∣∣∣∣∣∣∣∣∣
.

Accordingly, all Hn, n ∈ N, are polynomials in ζ which have rational coefficients
since λ ∈ Q. If some Hn = 0, then ζ is the zero of the polynomial Hn with rational
coefficients and ζ is zero of the Bessel function Jλ−1. According to [13, p. 220],
based on the results by [11], [12] (see also [6]), non-trivial zeros of the Bessel
functions Jλ, λ ∈ Q, −λ /∈ N, are transcendental and cannot be the zeros of the
polynomials with rational coefficients unless polynomials are identically equal to
zero.

We have to prove that determinants Hn are not identically equal to zero. To
prove this fact we emphasize that, according to Lemma 2.1, the free coefficient in
the polynomial Pλ

n equals (−1)n(2λ)n, n ∈ N0, so that the free coefficient in the
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polynomial Hn equals to the value of the Hankel determinant H̃n made for the
sequence of moments µ′′k = (2λ)k, k ∈ N0. For λ > 0, we can easily recognize the
Hankel determinants H̃n as being the same, up to multiplicative factor (Γ(2λ))n, as
the Hankel determinants for the generalized Laguerre weight x2λ−1e−x on [0,+∞).
Hence, none of the determinants H̃n cannot be equal according to the existence
of the sequence of orthogonal polynomials with respect to the Laguerre weight
function. This establishes the proof for λ > 0 (cf. [9]).

Actually, we can calculate the determinant H̃n for λ > 0 in the form

H̃n =
n−1∏

l=0

(n− l)!
l∏

i=0

(2λ + l − i), n ∈ N.

We easily inspect that the same result about the values of the Hankel determinants
H̃n holds even in the case of −1/2 < λ 6 0. This due to the fact that Hankel deter-
minants H̃n as being polynomials are analytic functions of λ as well as expressions
representing their values. Inspecting values of the determinants H̃n, n ∈ N, we
easily conclude that H̃n 6= 0, n ∈ N, for λ 6= 0. This in turn implies that ∆n 6= 0,
n ∈ N. Case λ = 0 requires a special attention.

Consider now the case λ = 0. As we easily inspect we have that H̃n = 0, n ∈ N,
for λ = 0. Consider determinants Hn, we have Hn = (Γ(2λ))nH̃n, n ∈ N. Since
Hn, n ∈ N, are analytic functions of λ we can compute values of Hn, n ∈ N, for
λ = 0, as the limiting values of the expressions on the right hand side. We have

lim
λ→0

(Γ(2λ))n
n−1∏

l=0

(n− l)!
l∏

i=0

(2λ + l − i) = n!
n−1∏

l=1

(n− l)!
l−1∏

i=0

(l − i) 6= 0.

Thus, we have proved that if λ ∈ Q, λ > −1/2, and ζ is the zero of the Bessel
function Jλ−1, then the sequence of Hankel determinants

∆n = (AJλ(ζ))n/(iζ)n(n−1)Hn, n ∈ N,

contains no zero entry. Accordingly, the sequence of orthogonal polynomials with
respect to the linear functional L exists. ¤

Regarding Theorem 2.2, we suppose such parameters λ and ζ which pro-
vide the existence of orthogonal polynomials πn with respect to the linear func-
tional (1.1). The quasi inner-product (p, q) := L[pq], in our case has the prop-
erty (zp, q) = (p, zq), and because of that, the corresponding (monic) polynomials
{πn}n∈N0 satisfy the fundamental three-term recurrence relation

(2.3) πn+1(x) = (x− iαn)πn(x)− βnπn−1(x), n ∈ N,

with π0(x) = 1, π−1(x) = 0. The recursion coefficients αn and βn can be expressed
in terms of Hankel determinants as (cf. [9]).

iαn =
∆′

n+1

∆n+1
− ∆′

n

∆n
=

1
iζ

(
H ′

n+1

Hn+1
− H ′

n

Hn

)
(2.4)

βn =
∆n+1∆n−1

∆2
n

=
1

(iζ)2
Hn+1Hn−1

H2
n

,(2.5)
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where Hn is defined before and ∆′
n is the Hankel determinant ∆n+1 with the

penultimate column and the last row removed. The corresponding determinant H ′
n

is given by

H ′
n =

∣∣∣∣∣∣∣∣∣

Pλ
0 (ζ) Pλ

1 (ζ) . . . Pλ
n−2(ζ) Pλ

n (ζ)
Pλ

1 (ζ) Pλ
2 (ζ) . . . Pλ

n−1(ζ) Pλ
n+1(ζ)

...
...

...
...

Pλ
n−1(ζ) Pλ

n (ζ) . . . Pλ
2n−3(ζ) Pλ

2n−1(ζ)

∣∣∣∣∣∣∣∣∣
.

Although β0 can be arbitrary, as usual it is convenient to take β0 = µ0 = AJλ(ζ).
In this case, however, the values of Hankel determinants cannot be found easily,

but, it is clear that the recursion coefficients are rational functions in ζ. Using our
software package [5] we can generate coefficients even in symbolic form for some
reasonable small values of n (for n 6 2 see Table 1).

Table 1. Recursion coefficients αn and βn for n 6 2

n αn βn

0 2λ
ζ

(
2
ζ

)λ√
π Γ

(
λ + 1

2

)
Jλ(ζ)

1 4λ(1+λ)−ζ2

ζ(2λ−ζ2)
ζ2−2λ

ζ2

2 (7+6λ)ζ6−4λ(4+λ)(3+2λ)ζ4+32λ2(3+2λ)ζ2−32λ3(2+λ)
2ζ(ζ2−2λ)[ζ4−λ(5+2λ)ζ2+4λ2] − 2(1+2λ)[ζ4−λ(5+2λ)ζ2+4λ2]

ζ2(−2λ+ζ2)2

According to symbolic calculations we can conjecture that Hn is a polynomial
in ζ2 of degree m,

Hn = Sm(ζ2) =
m∑

ν=0

γν(λ)ζ2ν ,

where m = n2/4 for even n and m = (n2−1)/4 for odd n, so that, because of (2.5),

β2k = −Sk(k+1)(ζ2)Sk(k−1)(ζ2)
ζ2Sk2(ζ2)2

, β2k+1 = −S(k+1)2(ζ2)Sk2(ζ2)
ζ2Sk(k+1)(ζ2)2

.

In a similar way, we can conjecture that the numerator in (2.4) is a polynomial in
ζ2 of degree n(n + 1)/2,

H ′
nHn+1 −H ′

n+1Hn = Vn(n+1)/2(ζ2),

so that

α2k =
Vk(2k+1)(ζ2)

ζSk2(ζ2)Sk(k+1)(ζ2)2
, α2k+1 =

V(k+1)(2k+1)(ζ2)
ζSk(k+1)(ζ2)S(k+1)2(ζ2)

.

Increasing n, the complexity of expressions for αn and βn increases quite
rapidly. On the other side, using the Chebyshev algorithm, similarly as in [7],
an efficient numerical construction of recursion coefficients can be done.

According to µk = (−1)kµk, k ∈ N0 (see (2.2)) we can prove:
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Lemma 2.2. If the sequence of monic orthogonal polynomials {πn}n∈N0 exists,
then πn(z) = (−1)nπn(−z).

3. Differential-difference relations

In this section we consider some differential relations for (monic) polynomials
{πn}n∈N0 orthogonal with respect to the linear functional (1.1), i.e., to the the
(quasi) inner-product product

(p, q) := L[pq] =
∫ 1

−1

p(x) q(x)w(x) dx,

supposing such parameters λ and ζ, which provide the existence of our orthogonal
polynomials.

Our weight function w(x) = (1 − x2)λ−1/2eiζx satisfies the following Pearson
type differential equation

(φw)′ = ψw, φ = 1− x2, ψ = −(2λ + 1)x + iζ(1− x2).

As before, we put dµ(x) = w(x) dx.

Theorem 3.1. For every n ∈ N, we have

(3.1) φπ′n + ψπn =
n+2∑

k=n−1

θk
nπk,

where

θn+2
n = −iζ,

θn+1
n = ζ(αn+1 + αn)− (n + 2λ + 1),

2θn
n = −(2λ + 1)iαn + iζ(1− βn+1 − βn + α2

n),

θn−1
n = (n− 1)βn,

and αn and βn are coefficients in the recurrence relation (2.3).

Proof. Since
∫ 1

−1

(φwπn)′xkdx = φwπnxk
∣∣∣
1

−1
−k

∫ 1

−1

φπnxk−1dµ = −k

∫ 1

−1

φπnxk−1dµ = 0

for k < n − 1, in that case we conclude that (φwπn)′/w is orthogonal to xk.
Therefore, we have directly

(3.2)
(φwπn)′

w
= φπ′n + ψπn =

n+2∑

k=n−1

θk
nπk,

according to the fact that deg(ψ) = 2. Since we are concerned with the monic
polynomials it is readily seen that θn+2

n = −iζ.
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For θn−1
n , after multiplying (3.2) with πn−1 and integrating with respect to dµ,

we get

θn−1
n ‖πn−1‖2 =

∫ 1

−1

(φwπn)′πn−1dx = −
∫ 1

−1

φwπnπ′n−1dx = (n− 1)‖πn‖2,

and accordingly θn−1
n = (n− 1)βn.

We also have

θk
n‖πk‖2 + θn

k‖πn‖2 =
∫ 1

−1

[(φwπn)′πk + (φwπk)′πn] dx

=
∫ 1

1

[−φπnπ′k + φπ′kπn + ψπkπn]dµ =
∫ 1

1

ψπnπk dµ.

The last equality for k = n + 1 gives

θn+1
n = − θn

n+1

βn+1
+

1
‖πn+1‖2

∫ 1

−1

[−(2λ + 1)x + iζ(1− x2)
]
πnπn+1 dµ

= −(n + 2λ + 1)− iζ

‖πn+1‖2
∫ 1

−1

x2πnπn+1 dµ

= −(n + 2λ + 1) + (αn+1 + αn)ζ,

because of xπn = πn+1 + iαnπn + βnπn−1 and
∫ 1

−1

x2πnπn+1 dµ =
∫ 1

−1

(πn+1 + iαnπn + βnπn−1)(πn+2 + iαn+1πn+1 + βn+1πn)dµ

= iαn+1‖πn+1‖2 + iαnβn‖πn‖2.
Similarly, for k = n, we get

2θn
n =

1
‖πn‖2

∫ 1

−1

ψπ2
ndµ

=
1

‖πn‖2
{
−(2λ + 1)

∫ 1

−1

xπ2
ndµ + iζ

(
‖πn‖2 −

∫ 1

−1

x2π2
ndµ

)}

= i[−(2λ + 1)αn + ζ(1− βn+1 − βn + α2
n)],

because of ∫ 1

−1

x2π2
ndµ =

∫ 1

−1

(πn+1 + iαnπn + βnπn−1)2dµ

= ‖πn+1‖2 − α2
n‖πn‖2 + β2

n‖πn−1‖2.
Thus, the equality (3.1) is proved. ¤

Lemma 3.1. The monic polynomials orthogonal with respect to the linear func-
tional (1.1) satisfy the following differential-difference equation

φπ′n + ψπn = pn
2πn + qn

1 πn−1, n ∈ N,

where pn
2 and qn

1 are polynomials of the second and first degree, respectively.
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Proof. Starting with equation (3.1) and using the three-term recurrence re-
lation (2.3) we get

φπ′n + ψπn =
[
(θn+2

n (x− iαn+1) + θn+1
n )(x− iαn)− βn+1θ

n+2
n + θn

n

]
πn

+
[−βn(θn+2

n (x− iαn+1) + θn+1
n ) + θn−1

n

]
πn−1.

What is left to do is to read the respective polynomials. ¤

Theorem 3.2. The monic polynomials orthogonal with respect to the linear
functional (1.1) satisfy the following equation

(3.3) φπ′n = pn
1πn + qn

1 πn−1,

where

pn
1 = −nx− iζ

2
(
1− βn+1 + βn + α2

n

)
+

iαn

2
(2n + 2λ + 1),

qn
1 = βn [2(n + λ) + iζ(x + iαn)] .

Proof. Using expressions given in the proof of Lemma 3.1 and Theorem 3.1
we get exactly what is stated. ¤

Theorem 3.3. The polynomials pn
1 and qn

1 , which appear in (3.3), satisfy the
following recurrence relations

pn+1
1 = −qn

1

x− iαn

βn
+ pn−1

1 + qn−1
1

x− iαn−1

βn−1
,

qn+1
1 = (x− iαn)

[
pn
1 + qn

1

x− iαn

βn
− pn−1

1 − qn−1
1

x− iαn−1

βn−1

]
+ φ + qn−1

1

βn

βn−1
,

respectively.

Proof. We can prove this result using almost the same arguments from the
proof in [7]. Namely, we have

φπ′n+1 − φπn = (x− iαn)φπ′n − βnφπ′n−1

= (x− iαn)(pn
1πn + qn

1 πn−1)− βn(pn−1
1 πn−1 + qn−1

1 πn−2)

= −
(

qn
1

x− iαn

βn
− pn−1

1 − qn−1
1

x− iαn−1

βn−1

)
πn+1

+
{

(x− iαn)pn
1 + qn−1

1

βn

βn−1

+ (x− iαn)
(

qn
1

x− iαn

βn
− pn−1

1 − qn−1
1

x− iαn−1

βn−1

)}
πn,

from where we just need to read corresponding polynomials. ¤

In the sequel we derive a system of nonlinear recurrence relations for the recur-
sion coefficients αn and βn, which needs a few first coefficients as starting values
(see Table 1).
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Theorem 3.4. We have

(3.4) pn+1
1 + pn

1 + qn
1

x− iαn

βn
= (2λ− 1)x− iζ(1− x2), n ∈ N.

Proof. Starting with the previous theorem we can prove that quantity

pn+1
1 + pn

1 + qn
1

x− iαn

βn
,

is independent of n. Hence, using Table 1, we can prove that

p2
1 + p1

1 + q1
1

x− iα1

β1
= (2λ− 1)x− iζ(1− x2),

and hence finish the proof. ¤

Theorem 3.5. The three-term recurrence coefficients satisfy the following sys-
tem of nonlinear recurrence equations

βn+2 = βn + α2
n+1 − α2

n −
1
ζ

[
αn+1(2n + 2λ + 3)− αn(2n + 2λ− 1)

]
,

αn+2 =
1

2βn+2

[
2αnβn+1 + αn+1(2βn+1 − 2βn − βn+2 + α2

n+1 − α2
n)

]

+
1

ζβn+2

[
α2

n+1

(
n + λ + 1/2

)− αn+1αn

(
n + λ− 1/2

)

+ 2βn+2(n + λ + 2)− 2βn+1(n + λ)− 1
]

Proof. The first equation we prove quite easily. Namely, simply compare
coefficients with x0 in (3.4) and we have the stated equation.

For the proof of the second equation we have to use the second relation given
in Theorem 3.3. In the same way, comparing coefficients with the term x0 in this
relation we obtain the result. ¤

Now, we can prove a result concerning zeros of orthogonal polynomials πn.

Theorem 3.6. The polynomials π2n+1, n ∈ N0, have only simple zeros. The
even polynomials π2n, n ∈ N, have only simple zeros except possibly one zero of the
multiplicity two which is purely imaginary.

Proof. It is a trivial fact that polynomials πn and πn−1 cannot have zeros in
common. If x is multiple zero of πn, using equation (3.3), it must be qn

1 (x) = 0.
However, qn

1 is a polynomial of first degree and, therefore, the multiplicity of the
zero can be at most two. Using a symmetry property of polynomials, we see that
if x is a zero of the polynomial πn, then also −x is the zero of this polynomial πn.
Hence, we conclude that πn cannot have a multiple zero outside of the imaginary
axis. Finally, according to the symmetry we conclude that if polynomial of odd
degree has zero on the imaginary axis it must be of odd multiplicity. Hence, all
polynomials of odd degree have only simple zeros. ¤

We can now also state a result connected with a differential equation which
solutions are polynomials orthogonal with respect to the functional (1.1).
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Theorem 3.7. The polynomials πn orthogonal with respect to the functional
(1.1) satisfy the following second order differential equation

φqn
1 π′′n + (ψqn

1 − iζβnφ)π′n −
[
−nqn

1 − iζβnpn
1 −

qn
1 (p̂n

1 qn
1 − pn

1 q̂n
1 )

φ

]
πn = 0,

where we used the notation from Theorem (3.2) and

p̂n
1 = −qn−1

1 /βn−1 and q̂n
1 = pn−1

2 + (x− iαn−1)qn−1
1 /βn−1.

The term p̂n
1 qn

1 − pn
1 q̂n

1 must have the factor φ.

Proof. Starting with the equation (3.3) and the three-term recurrence rela-
tion, we compute easily

φπ′n−1 = − qn−1
1

βn−1
πn +

(
pn−1
1 + qn−1

1

x− iαn−1

βn−1

)
πn−1 = p̂n

1πn + q̂n
1 πn−1.

Combining this equation with the one for the polynomial πn, i.e. with equation
3.3, we get

φ

[
φπ′n − pn

1πn

qn
1

]′
= p̂n

1πn + q̂n
1

φπ′n − pn
1πn

qn
1

.

After some calculations we obtain the following differential equation

φqn
1 π′′n + [qn

1 (φ′ − pn
1 − q̂n

1 )− φ(qn
1 )′]π′n

+
[
−(pn

1 )′qn
1 + pn

1 (qn
1 )′ − qn

1

p̂n
1 qn

1 − pn
1 q̂n

1

φ

]
πn = 0.

If we use Theorems 3.4 and 3.2, for the term with π′n we got exactly what is stated.
Similarly we have the same for the term with πn.

Finally, it is clear that, since all other quantities are polynomials it must be
that qn

1 (p̂n
1 qn

1 − pn
1 q̂n

1 )/φ is polynomial, too. Obviously it cannot be that qn
1 has

zeros in common with φ since it can have only purely imaginary zero. ¤

This theorem can be used to give the following result:

Theorem 3.8. Let n be an odd integer and let xn
ν , ν = 1, . . . , n, be simple zeros

of the polynomial πn. Then

(3.5)
π′′n(xn

ν )
π′n(xn

ν )
+

λ + 1/2
xn

ν − 1
+

λ + 1/2
xn

ν + 1
+ iζ − 1

xn
ν + iαn + (2n + 2λ)/iζ

= 0,

for each ν = 1, . . . , n.

Proof. We start with the differential equation for polynomials πn, derived in
the previous theorem. We divide it with π′n(xn

ν ) 6= 0, ν = 1, . . . , n. This equality is
fulfilled due to the fact that for odd n, according to Theorem 3.6, the polynomial
πn has only simple zeros. Thus, by division and using the fact that πn(xn

ν ) = 0,
ν = 1, . . . , n, we have(

π′′n
π′n

+
ψ

φ
− iζβn

qn
1

)
(xn

ν ) = 0, ν = 1, . . . , n,

which after small calculation becomes exactly what is stated. ¤
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This theorem enables the computation of zeros of orthogonal polynomial πn of
the high degree using technique similar as given in [10].

4. Zero distribution

Here we want to present some consequences of Theorem 3.8 in the light of some
new results of Aptekarev and Van Assche (see [1]). Namely, provided that the
sequence of polynomials πn orthogonal with respect to the functional (1.1) exists,
they have proved that for λ = 0 the three term recurrence coefficients satisfy the
following asymptotic properties αn → 0 and βn → 1/4. Actually, we can use
this fact to give some interesting observations connected to the zero distribution of
polynomials πn. A direct consequence of the mentioned theorem is the boundness
of the zeros xn

ν , ν = 1, . . . , n, of polynomials πn uniformly in n ∈ N (see [2], [3]).

-1 -0.5 0.5 1

0.05

0.1

0.15

0.2

Figure 1. Zero distribution of πn, n = 10(10)100, for λ = 11 and
ζ ≈ 14.47550068655454123845163765541315197630481 (a zero of J10)
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Figure 2. Zero distribution of πn, n = 10(10)100, for λ = 11 and
ζ ≈ 100.71634047409274068436610723206019123535653 (a zero of J10)

According to the mentioned result and for n sufficiently large, our equation
(3.5) becomes

π′′n
π′n

(xn
ν ) +

(
λ +

1
2

) (
1

xn
ν − 1

+
1

xn
ν + 1

)
+ iζ + O(n−1) ≈ 0,
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for each ν = 1, . . . , n. If we compare it to the similar equation for the classical
Gegenbauer weight w0,λ (see [14]), we notice that there is only the difference in
the term iζ + O(n−1). Taking the imaginary part we get

2
∑

ν 6=k

Im(xk − xν)
|xk − xν |2 +

(
λ +

1
2

)(
Im(xk)
|xn

ν − 1|2 +
Im(xk)
|xn

k + 1|2
)
− ζ + O(n−1) ≈ 0,

which describes a property of zeros. Namely, for a fixed n and bigger ζ, zeros are
at the bigger distance from the x axis as presented in Figures 1 and 2.

References

[1] A. I. Aptekarev, W.V. Assche, Scalar and matrix Riemann-Hilbert approach to the strong
asymptotics of Pade approximants and complex orthogonal polynomials with varying weight,
J. Appox. Theory 129 (2004), 129–166.

[2] B. Beckermann, Complex Jacobi matrices, J. Comput. Appl. Math. 127 (2001), 17–65.
[3] B. Beckerman, M. Castro, On the determinacy of the comoplex Jacobi operators, Publication

ANNO 446, Universite Lille, 2002.
[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York,

1978.
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