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CONVOLUTED C -GROUPS

Marko Kostić

Abstract. We introduce and systematically analyze the class of convoluted
C-groups unifying the well known classes of fractionally integrated groups and
C-regularized groups. We relate convoluted C-groups to analytic convoluted
C-semigroups and present illustrative examples of differential operators which
generate exponentially bounded convoluted groups.

1. Introduction and preliminaries

The theory of convoluted C-semigroups is an attractive field of research of
many authors and becomes inevitable in the analysis of various kinds of ill-posed
abstract Cauchy problems in a Banach space setting.

Local convoluted C-semigroups were introduced and studied in the papers of
Ciorănescu and Lumer [11]–[13] as a unification concept for local integrated semi-
groups and local C-semigroups ([1], [48]). The class of exponentially bounded con-
voluted semigroups was introduced independently by Keyantuo, Müller and Vieten
[22] and the author [27] while global convoluted semigroups which are not neces-
sarily exponentially bounded have been recently analyzed in [27] and [29]. The
important researches of Bäumer, Lumer and Neubrander ([7]–[8], [40]) are related
to the use of asymptotic Laplace transform techniques in the theory of convoluted
semigroups. Of importance is also to stress that K-regularized resolvent families,
analyzed by Lizama and his collaborators ([37]–[39]), allow one to consider in a
unified treatment the notions of convoluted semigroups and cosine functions as well
as to enquire into the abstract Volterra equations of convolution type.

On the other hand, global integrated groups (cf. [2], [4]–[6], [15]–[16], [20]–
[21], [28] and [42]) were introduced and investigated by El-Mennaoui in his doc-
toral dissertation [16]. We especially refer the reader to the paper [21] where
Keyantuo briefly considered an abstract Laplacian in Lp(Rn)-type spaces as well
as the relations between exponentially bounded integrated cosine functions and
global integrated groups. Further study of global α-times integrated groups with
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corresponding growth order and smooth distribution groups ([4]–[5]) was obtained
by Miana in [42] by the use of fractional calculus. More generally, one-parameter
groups of regular quasimultipliers, introduced recently by Galé and Miana [20] in
the framework of the Esterle quasimultipliers theory [17], present a relevant tool
in the analysis of regularized and integrated groups. It is also worthwhile to accent
that many authors related global integrated groups to functional calculi and proved,
in such a way, different generalizations of Stone’s theorem. Some references on this
subject are [6], [14]–[15], [18] and [20]. Local fractionally integrated groups and
distribution groups have been recently investigated in [28].

In this paper, we deal with the notion of (local) convoluted C-groups and prove
several generalizations of results known for integrated groups and global regularized
groups (cf. [14], [20], [28] and [42]). In Section 1, we recall the definitions of a
local convoluted C-semigroup and an analytic convoluted C-semigroup which are
necessary in our further work. Several interesting properties of subgenerators of
convoluted C-semigroups are also proven in this section. Section 2 is devoted to the
study of structural properties of (exponentially bounded) convoluted C-groups and
their relations with analytic convoluted C-semigroups. Motivated by the analysis
of the backward heat equation given in [7] and [29]–[31], we discuss in Section 3 the
polyharmonic operator ∆2n, n ∈ N acting on L2[0, π] with appropriate boundary
conditions. We also connect (local) fractionally integrated cosine functions to global
differentiable regularized groups and prove that derivatives of constructed groups
possess some properties of vector-valued ultradifferentiable functions of the Beurling
type (cf. also [26] and [49]).

Finally, let us point out that convoluted C-groups can be used in the analysis
of different kinds of abstract Cauchy problems within the theory of generalized
function spaces.

Notation. In this paper, E and L(E) denote a complex Banach space and
Banach algebra of bounded linear operators on E. For a closed linear operator A
acting on E, D(A), N(A), R(A) and ρ(A) denote its domain, kernel, range and
resolvent set, respectively. We assume C ∈ L(E) and C is injective; recall, the
C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) := {λ ∈ C | R(C) ⊆ R(λ − A) and λ − A is injective} .

Suppose Y is a subspace of E and Y ⊆ D(A). Let us recall that Y is a core for
D(A) if for every x ∈ D(A) there exists a sequence (xn) in Y satisfying lim

n→∞xn = x
and lim

n→∞Axn = Ax.

Henceforth we assume that K is not identical to zero and put

Θ(t) :=
∫ t

0

K(s) ds, t ∈ [0, τ).

Definition 1.1. [31] Let A be a closed operator and let K be a locally
integrable, complex-valued function on [0, τ), 0 < τ � ∞. If there exists a
strongly continuous operator family (SK(t))t∈[0,τ) such that, for every t ∈ [0, τ),
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SK(t)C = CSK(t), SK(t)A ⊆ ASK(t),
∫ t

0
SK(s)x ds ∈ D(A), x ∈ E and

A

∫ t

0

SK(s)x ds = SK(t)x − Θ(t)Cx, x ∈ E,

then (SK(t))t∈[0,τ) is called a (local) K-convoluted C-semigroup having A as a
subgenerator. If τ = ∞, then it is said that (SK(t))t�0 is an exponentially bounded,
K-convoluted C-semigroup with a subgenerator A if, in addition, there exist M > 0
and ω ∈ R such that ‖SK(t)‖ � Meωt, t � 0.

We refer the reader to [31] for the notion of (local) K-convoluted C-cosine
functions.

Notice that the function Θ is absolutely continuous in [0, τ) and that Θ′(t) =
K(t), for a.e. t ∈ [0, τ). The following fact is easy to prove ([29]–[31]): If A is
a subgenerator of a K-convoluted C-semigroup (SK(t))t∈[0,τ), then SK(0) = 0,
CA ⊆ AC and SK(t)x ∈ D(A), t ∈ [0, τ), x ∈ E. Since K �= 0 in L1

loc([0, τ)), we
have that the semigroup (SK(t))t∈[0,τ) is non-degenerate, i.e.,

if SK(t)x = 0 for all t ∈ [0, τ), then x = 0.

The integral generator Â of (SK(t))t∈[0,τ) is defined by{
(x, y) ∈ E2 : SK(t)x − Θ(t)Cx =

∫ t

0

SK(s)yds, t ∈ [0, τ)
}

.

It is straightforward to see that Â is a closed linear operator which is an extension
of any subgenerator of (SK(t))t∈[0,τ). In what follows, we denote by ℘(SK) the
set of all subgenerators of a (local) K-convoluted C-semigroup (SK(t))t∈[0,τ). We
know that Â ∈ ℘(SK) and that C−1ÂC = Â ([31]). In general, ℘(SK) need not be
a singleton, and moreover, ℘(SK) can possess infinitely many elements ([31]).

Furthermore, it is well known that the semigroup (SK(σ))σ∈[0,τ) fulfills the
next composition property (cf. [27, Proposition 5.4] and [35, Proposition 2.4]):

SK(t)SK(s)x =
[∫ t+s

0

−
∫ t

0

−
∫ s

0

]
K(t + s − r)SK(r)Cxdr,

for every x ∈ E and t, s ∈ [0, τ) with t + s < τ . The strong continuity of
(SK(σ))σ∈[0,τ) implies SK(t)SK(s) = SK(s)SK(t), for t, s ∈ [0, τ) with t + s � τ
(cf. also [22, p. 400] and the assertion (a) given below).

The following proposition generalizes [27, Prop. 5.4 (1), Prop. 5.5 (3)–(4)], [51,
Coroll. 2.9, Prop. 3.3], some statements given in [31, Section 2] and has the natural
analog in the theory of convoluted C-cosine functions.

Proposition 1.1. Suppose Â is the integral generator of a (local) K-convoluted
C-semigroup (SK(t))t∈[0,τ) and {A,B} ⊆ ℘(SK). Then:

(i) The integral generator of (SK(t))t∈[0,τ) is C−1AC.
(ii) C−1AC = C−1BC, C(D(A)) ⊆ D(B) and A ⊆ B ⇔ D(A) ⊆ D(B).
(iii) If A �= Â, then ρ(A) = ∅.
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(iv) For every λ ∈ ρC(A):

(1.1) (λ − A)−1CSK(t) = SK(t)(λ − A)−1C, t ∈ [0, τ).

(v) A and B have the same eigenvalues.
(vi) If A ⊆ B, then ρC(A) ⊆ ρC(B).
(vii) |℘(SK)| = 1, if C(D(Â)) is a core for D(Â).

Proof. Obviously, CA ⊆ AC, A ⊆ C−1AC and C−1AC is closed. Assume
(x, y) ∈ Â, i.e.,

SK(t)x − Θ(t)Cx =
∫ t

0

SK(s)y ds, t ∈ [0, τ).

Consequently,

A

∫ t

0

SK(s)xds =
∫ t

0

SK(s)y ds, t ∈ [0, τ),

which simply implies SK(t)x ∈ D(A), ASK(t)x = SK(t)y and

A

[
Θ(t)Cx +

∫ t

0

SK(s)y ds

]
= SK(t)y, t ∈ [0, τ).

Since
∫ t

0
SK(s)yds ∈ D(A), t ∈ [0, τ) and Θ �= 0 in C([0, τ)), one gets Cx ∈ D(A)

and Θ(t)ACx + SK(t)y − Θ(t)Cy = SK(t)y, t ∈ [0, τ). This implies ACx = Cy,
(x, y) ∈ C−1AC and Â ⊆ C−1AC. Further,∫ t

0

SK(s)x ds ∈ D(A) ⊆ D(C−1AC)

and

C−1AC

∫ t

0

SK(s)x ds = A

∫ t

0

SK(s)x ds = SK(t)x − Θ(t)Cx, t ∈ [0, τ), x ∈ E.

Suppose now x ∈ D(C−1AC) and t ∈ [0, τ). Since Cx ∈ D(A) and SK(t)A ⊆
ASK(t), one obtains CSK(t)x = SK(t)Cx ∈ D(A) and

ACSK(t)x = ASK(t)Cx = SK(t)ACx

= SK(t)C[C−1AC]x = CSK(t)[C−1AC]x ∈ R(C)

and [C−1AC]SK(t)x = SK(t)[C−1AC]x. So, SK(t)[C−1AC] ⊆ [C−1AC]SK(t),
C−1AC is a subgenerator of (SK(t))t∈[0,τ) and C−1AC ⊆ Â. Therefore, Â =
C−1AC and the proof of (i) is completed.

(ii) and (iii) follow automatically from (i).
To prove (iv), assume λ ∈ ρC(A), t ∈ [0, τ) and x ∈ E. Then

(λ − A)−1Cx ∈ D(A), SK(t)(λ − A)−1Cx ∈ D(A),

(λ − A)SK(t)(λ − A)−1Cx = SK(t)(λ − A)(λ − A)−1Cx = SK(t)Cx = CSK(t)x.

This gives (1.1).
To prove (v) and (vi), observe only that N(λ − A) ⊆ N(λ − Â) and that

C−1BC = Â implies C(N(λ − Â)) ⊆ N(λ − B), λ ∈ C. Suppose now A ∈ ℘(SK),
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x ∈ D(Â) and C(D(Â)) is a core of D(Â). Let (xn) be a sequence in D(Â) such
that limn→∞ Cxn = x and that limn→∞ ÂCxn = Âx. Since C(D(Â)) ⊆ D(A), we
obtain that limn→∞ Cxn = x and that limn→∞ ACxn = Âx. The closedness of A
implies x ∈ D(A), D(Â) ⊆ D(A) and Â = A. �

Remark 1.1. Even if K(t) = t, there exists an example of a local twice inte-
grated C-semigroup whose integral generator has the empty C-resolvent set [35].

Let us recall that a function K ∈ L1
loc([0, τ)) is called a kernel if, for every

φ ∈ C([0, τ)), the assumption
∫ t

0
K(t − s)φ(s) ds = 0, t ∈ [0, τ) implies φ ≡ 0;

owing to Titchmarsh’s theorem, K is a kernel if 0 ∈ suppK. Suppose now that
(SK(t))t∈[0,τ) is a (local) K-convoluted C-semigroup and that K is a kernel. Then
we have:

(a) SK(t)SK(s) = SK(s)SK(t), 0 � t, s < τ .
(b) (SK(t))t∈[0,τ) is uniquely determined by one of its subgenerators.

Remark 1.2. (i) Define the operator A1 by:

D(A1) :=
{ m∑

k=1

∫ tk

0

SK(s)xk ds : xk ∈ E, tk ∈ [0, τ), k = 1, . . . ,m

}

A1

[ m∑
k=1

∫ tk

0

SK(s)xk ds

]
:=

m∑
k=1

[S(tk)xk − Θ(tk)Cxk].

It is straightforward to verify that A1 is well-defined and closable. Suppose, ad-
ditionally, τ = ∞ or K is a kernel. Then we know SK(t)SK(s) = SK(s)SK(t),
t, s ∈ [0, τ) and this enables one to see that:

SK(t)(D(A1)) ⊆ D(A1), SK(t)A1 ⊆ A1SK(t), SK(t)A1 ⊆ A1SK(t), t ∈ [0, τ)

and A1 ∈ ℘(SK). Obviously, A1 ⊆ A, if A ∈ ℘(SK).
(ii) Suppose |℘(SK)| < ∞. Proceeding as in [51, Section 2], one can prove the

existence of a non-negative integer n satisfying |℘(SK)| = 2n.

We use occasionally the following condition for K :
(P1) K is Laplace transformable, i.e., K ∈ L1

loc([0,∞)) and there exists β ∈ R

so that K̃(λ) = L(K)(λ) := lim
b→∞

∫ b

0
e−λtK(t) dt :=

∫ ∞
0

e−λtK(t) dt exists

for all λ ∈ C with Reλ > β. Put abs(K) := inf{Re λ : K̃(λ) exists}.
Suppose K satisfies (P1) and A is a closed linear operator. We know the

following [31]:
(α) A is a subgenerator of an exponentially bounded, Θ-convoluted C-semi-

group (SΘ(t))t�0 satisfying the condition

‖SΘ(t + h) − SΘ(t)‖ � Cheω(t+h), t � 0, h � 0, for some C > 0 and ω � 0,

if and only if there exists a � max(ω, abs(K)) such that

(1.2) {λ ∈ C : Re λ > a, K̃(λ) �= 0} ⊆ ρC(A),
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(1.3) λ 	→ K̃(λ)(λ − A)−1C, λ > a, K̃(λ) �= 0 is infinitely differentiable and

(1.4)
∥∥∥ dk

dλk

[
K̃(λ)(λ − A)−1C

]∥∥∥ � Mk!
(λ − ω)k+1

, k ∈ N0, λ > a, K̃(λ) �= 0.

(β) Assume additionally that A is densely defined. Then A is a subgenera-
tor of an exponentially bounded, K-convoluted C-semigroup (SK(t))t�0

satisfying ‖SK(t)‖ � Meωt, t � 0, ω � 0, if and only if there exists
a � max(ω, abs(K)) such that (1.2), (1.3) and (1.4) are fulfilled.

(γ) Suppose that A is a subgenerator of an exponentially bounded, K-convol-
uted C-semigroup (SK(t))t�0 satisfying ‖SK(t)‖ � Meωt, t � 0, ω � 0.
Put a = max(ω, abs(K)). Then:

(1.5) {λ ∈ C : Re λ > a, K̃(λ) �= 0} ⊆ ρC(A) and

(1.6) (λ − A)−1Cx =
1

K̃(λ)

∫ ∞

0

e−λtSK(t) dt, Re λ > a, K̃(λ) �= 0.

(δ) Let (SK(t))t�0 be a strongly continuous operator family and ‖SK(t)‖ �
Meωt, t � 0, ω � 0. Put a = max(ω, abs(K)). If (1.5) and (1.6) are
fulfilled, then (SK(t))t�0 is an exponentially bounded, K-convoluted C-
semigroup with a subgenerator A.

If θ ∈ (0, π], put Σθ := {λ ∈ C : λ �= 0, | arg λ| < θ}.
Definition 1.2. [29]–[31] Suppose α ∈ (0, π

2 ] and (SK(t))t�0 is a K-convoluted
C-semigroup with a subgenerator A. Then we say that (SK(t))t�0 is an analytic
K-convoluted C-semigroup of angle α having A as a subgenerator, if there exists
an analytic function SK : Σα → L(E) which satisfies:

(i) SK(t) = SK(t), t > 0 and
(ii) lim

z→0, z∈Σγ

SK(z)x = 0, for every γ ∈ (0, α) and x ∈ E.

It is said that A is a subgenerator of an exponentially bounded, analytic K-con-
voluted C-semigroup (SK(t))t�0 of angle α, if for every γ ∈ (0, α), there exist
Mγ > 0 and ωγ � 0 such that ‖SK(z)‖ � Mγeωγ Re z, z ∈ Σγ .

2. Convoluted C -groups

Definition 2.1. Let A and B be closed operators and let K be a locally
integrable, complex-valued function on [0, τ), 0 < τ � ∞. A strongly continuous
operator family (SK(t))t∈(−τ,τ) is called a (local, if τ < ∞) K-convoluted C-group
with a subgenerator A if:

(i) (SK,+(t) := SK(t))t∈[0,τ), resp. (SK,−(t) := SK(−t))t∈[0,τ), is a (local)
K-convoluted C-semigroup with a subgenerator A, resp. B, and

(ii) for every t, s ∈ (−τ, τ) with t < 0 < s and x ∈ E:

SK(t)SK(s)x = SK(s)SK(t)x

=

{ ∫ s

t+s
K(r − t − s)SK(r)Cxdr +

∫ 0

t
K(t + s − r)SK(r)Cxdr, t + s � 0,∫ t+s

t
K(t + s − r)SK(r)Cxdr +

∫ s

0
K(r − t − s)SK(r)Cxdr, t + s < 0.
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It is said that (SK(t))t∈R is exponentially bounded if there exist M > 0 and ω � 0
such that ‖SK(t)‖ � Meω|t|, t ∈ R.

A closed linear operator Â is the integral generator of (SK(t))t∈(−τ,τ) if Â is the
integral generator of (SK(t))t∈[0,τ). Put in Definition 2.1 C = I and K(t) = tα−1

Γ(α) ,
t ∈ [0, τ), where α > 0. Then (SK(t))t∈(−τ,τ) is an α-times integrated group
generated by A (cf. [20, Definition 3.6], [28, Definition 4.1] and [42, Definition 5]).

Suppose (SK(t))t∈(−τ,τ) is a (local) K-convoluted C-group. Then ℘(SK) des-
ignates the set of all subgenerators of (SK(t))t∈(−τ,τ), i.e., ℘(SK) = ℘(SK,+).
Let us observe that there exists an exponentially bounded, K-convoluted C-group
(SK(t))t∈R such that ℘(SK) has a continuum many elements ([31]).

The proof of the following proposition is omitted.

Proposition 2.1. Suppose (SK(t))t∈(−τ,τ) is a (local) K-convoluted C-group
and A ∈ ℘(SK). Put ŠK(t) := SK(−t), t ∈ (−τ, τ). Then (ŠK(t))t∈(−τ,τ) is a
K-convoluted C-group, B ∈ ℘(ŠK) and the integral generator of (ŠK(t))t∈(−τ,τ)

coincides with that of (SK,−(t))t∈[0,τ).

Proposition 2.2. Suppose τ ∈ (0,∞], K1 ∈ C([0, τ)), Â is the integral gen-
erator of a K-convoluted C-group (SK(t))t∈(−τ,τ) and A ∈ ℘(SK). Put

SK∗0K1(t)x =
∫ t

0

K1(t − s)SK(s)x ds, t ∈ [0, τ), x ∈ E

SK∗0K1(t)x =
∫ −t

0

K1(−t − s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E.

Then (SK∗0K1(t))t∈(−τ,τ) is a (K ∗0 K1)-convoluted C-group, A ∈ ℘(SK∗0K1) and
the integral generator of (SK∗0K1(t))t∈(−τ,τ) is Â.

Proof. It can be easily seen that (SK∗0K1,+(t) = SK∗0K1(t))t∈[0,τ) and that
(SK∗0K1,−(t) = SK∗0K1(−t))t∈[0,τ) are (K ∗0 K1)-convoluted C-semigroups whose
integral generators are Â and B̂ respectively. Furthermore, A ∈ ℘(SK∗0K1,+),
B ∈ ℘(SK∗0K1,−) and SK∗0K1(t)SK∗0K1(s) = SK∗0K1(s)SK∗0K1(t), τ < t < 0 <
s < τ . So, it is enough to prove the composition property for SK∗0K1(t)SK∗0K1(s),
τ < t < 0 < s < τ . We will do that only in the case t + s � 0 since the proof of
composition property in the case t + s < 0 can be derived similarly. Fix an x ∈ E.
Then:

SK∗0K1(t)SK∗0K1(s)x =
∫ −t

0

K1(−t − v)SK(−v)SK∗0K1(s)x dv

=
∫ −t

0

∫ s

0

K1(−t − v)K1(s − u)SK(−v)SK(u)x du dv

=
∫ −t

0

K1(−t − v)
[∫ v

0

K1(s − u)SK(−v)SK(u)x du

]
dv

+
∫ −t

0

K1(−t − v)
[∫ s

v

K1(s − u)SK(−v)SK(u)x du

]
dv
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=
∫ −t

0

K1(−t − v)
∫ v

0

K1(s − u)[∫ u−v

−v

K(u − v − r)SK(r)Cxdr +
∫ u

0

K(r − u + v)SK(r)Cxdr

]
du dv

+
∫ −t

0

K1(−t − v)
∫ s

v

K1(s − u)[∫ u

u−v

K(r − u + v)SK(r)Cxdr +
∫ 0

−v

K(u − v − r)SK(r)Cxdr

]
du dv

:= S1 + S2,

where

S1 :=
∫ −t

0

K1(−t − v)
∫ v

0

K1(s − u)
∫ u

0

K(r − u + v)SK(r)Cxdr du dv

+
∫ −t

0

K1(−t − v)
∫ s

v

K1(s − u)
∫ u

u−v

K(r − u + v)SK(r)Cxdr du dv,

S2 :=
∫ −t

0

K1(−t − v)
∫ v

0

K1(s − u)
∫ u−v

−v

K(u − v − r)SK(r)Cxdr du dv

+
∫ −t

0

K1(−t − v)
∫ s

v

K1(s − u)
∫ 0

−v

K(u − v − r)SK(r)Cxdr du dv.

The proof is completed if one shows:

S1 =
∫ s

t+s

(K ∗0 K1)(ξ − t − s)
∫ ξ

0

K1(ξ − z)SK(z)Cxdz dξ,(2.1)

S2 =
∫ 0

t

(K ∗0 K1)(t + s − ξ)
∫ −ξ

0

K1(−ξ − z)SK(−z)Cxdz dξ.(2.2)

To prove (2.1), one can use the equality∫ s

t+s

(K ∗0 K1)(ξ − t − s)
∫ ξ

0

K1(ξ − z)SK(z)Cxdz dξ

=
∫ s

t+s

[∫ ξ−t−s

0

K1(ξ − t − s − σ)K(σ) dσ

] ∫ ξ

0

K1(ξ − z)SK(z)Cxdz dξ

and the substitution v = s + σ − ξ, u = s + z − ξ and r = z; the proof of (2.2) can
be obtained along the same lines. �

Proposition 2.3. Suppose Â is the integral generator of a (local) K-convoluted
C-group (SK(t))t∈(−τ,τ), A ∈ ℘(SK), B ∈ ℘(SK,−) and B̂ is the integral generator
of (SK,−(t))t∈[0,τ). Then:

(i) ÂSK(t)x = SK(t)Ax, x ∈ D(A), t ∈ (−τ, 0] and
B̂SK(s)x = SK(s)Bx, x ∈ D(B), s ∈ [0, τ).

(ii) SK(t)Â ⊆ ÂSK(t), t ∈ (−τ, 0] and SK(s)B̂ ⊆ B̂SK(s), s ∈ [0, τ).
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Proof. Put Θ1(t) =
∫ t

0
Θ(s) ds, t ∈ [0, τ), SΘ1(t)x =

∫ t

0
(t − s)SK(s)x ds,

t ∈ [0, τ), x ∈ E and SΘ1(t)x =
∫ −t

0
(−t − s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E. By

Proposition 2.2, (SΘ1(t))t∈(−τ,τ) is a Θ1-convoluted C-group, A ∈ ℘(SΘ1), the inte-
gral generator of (SΘ1(t))t∈(−τ,τ) is Â and the integral generator of (SΘ1,−(t))t∈[0,τ)

is B̂. Clearly,

SΘ1(t)A
∫ s

0

SΘ1(r)x dr = SΘ1(t)
(

SΘ1(s)x −
∫ s

0

Θ1(r) drCx

)
= SΘ1(s)SΘ1(t)x −

∫ s

0

Θ1(r) drCSΘ1(t)x

= A

∫ s

0

SΘ1(r)SΘ1(t)x dr +
∫ s

0

Θ1(r) drCSΘ1(t)x −
∫ s

0

Θ1(r) drCSΘ1(t)x

= A

∫ s

0

SΘ1(r)SΘ1(t)x dr = ASΘ1(t)
∫ s

0

SΘ1(r)x dr,

t ∈ (−τ, 0), s ∈ [0, τ), x ∈ E.

Suppose now x ∈ D(A). We obtain SΘ1(t)
∫ s

0
SΘ1(r)Axdr = ASΘ1(t)

∫ s

0
SΘ1(r)x dr,

t ∈ (−τ, 0), s ∈ [0, τ). The previous equality and closedness of A imply

SΘ1(t)SΘ1(s)x ∈ D(A), t ∈ (−τ, 0), s ∈ [0, τ),

ASΘ1(t)SΘ1(s)x = SΘ1(t)SΘ1(s)Ax, t ∈ (−τ, 0), s ∈ [0, τ).

Suppose, for a moment, t ∈ (−τ, 0), s ∈ [0, τ) and t + s � 0. The composition
property of SΘ1(·) allows one to establish the following equality:∫ s

t+s

Θ1(r − t − s)SΘ1(r)CAxdr +
∫ 0

t

Θ1(t + s − r)SΘ1(r)CAxdr

= A

[∫ s

t+s

Θ1(r − t − s)SΘ1(r)Cxdr +
∫ 0

t

Θ1(t + s − r)SΘ1(r)Cxdr

]
.

Since SΘ1(r)A ⊆ ASΘ1(r), r ∈ [0, τ) and CA ⊆ AC, one gets∫ s

t+s

Θ1(r − t − s)SΘ1(r)Cxdr ∈ D(A),

A

∫ s

t+s

Θ1(r − t − s)SΘ1(r)Cxdr =
∫ s

t+s

Θ1(r − t − s)SΘ1(r)CAxdr.

Hence,
∫ 0

t
Θ1(t + s − r)SΘ1(r)Cxdr ∈ D(A) and:

(2.3) A

∫ 0

t

Θ1(t + s − r)SΘ1(r)Cxdr =
∫ 0

t

Θ1(t + s − r)SΘ1(r)CAxdr.

Put now Ω = {(t, s) ∈ (−τ, 0) × (0, τ) : t + s > 0} and

fy(t, s) =
∫ 0

t

Θ1(t + s − r)SΘ1(r)y dr, (t, s) ∈ Ω, y ∈ E.
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The dominated convergence theorem implies:

∂

∂t
fy(t, s) =

∫ 0

t

Θ(t + s − r)SΘ1(r)y dr − Θ1(s)SΘ1(t)y

∂

∂s
fy(t, s) =

∫ 0

t

Θ(t + s − r)SΘ1(r)y dr, (t, s) ∈ Ω, y ∈ E.

By the closedness of A and (2.3), one gets A ∂
∂sfCx(t, s) = ∂

∂sfCAx(t, s), (t, s) ∈ Ω.
In other words,

(2.4) A

∫ 0

t

Θ(t+ s− r)SΘ1(r)Cxdr =
∫ 0

t

Θ(t+ s− r)SΘ1(r)CAxdr, (t, s) ∈ Ω.

Analogously, A ∂
∂tfCx(t, s) = ∂

∂tfCAx(t, s), (t, s) ∈ Ω, i.e., for every (t, s) ∈ Ω,

(2.5) A

[∫ 0

t

Θ(t + s − r)SΘ1(r)Cxdr − Θ1(s)SΘ1(t)Cx

]
=

∫ 0

t

Θ(t + s − r)SΘ1(r)CAxdr − Θ1(s)SΘ1(t)CAxdr.

An employment of (2.4) and (2.5) gives Θ1(s)SΘ1(t)Cx ∈ D(A), (t, s) ∈ Ω and
A

(
Θ1(s)SΘ1(t)Cx

)
= Θ1(s)SΘ1(t)CAx, (t, s) ∈ Ω. Similarly, A

(
Θ1(s)SΘ1(t)Cx

)
=

Θ1(s)SΘ1(t)CAx, if (t, s) ∈ (−τ, 0) × (0, τ) and t + s � 0. Thus,

(2.6) A
(
Θ1(s)SΘ1(t)Cx

)
= Θ1(s)SΘ1(t)CAx, t ∈ (−τ, 0), s ∈ [0, τ).

It is evident that there exists s ∈ [0, τ) with Θ1(s) �= 0 and one can apply (2.6)
in order to conclude that A(SΘ1(t)Cx) = SΘ1(t)CAx, t ∈ (−τ, 0). Differentiate
the last equality twice with respect to t to obtain that SK(t)Cx ∈ D(A) and
that ASK(t)Cx = SK(t)CAx, t ∈ (−τ, 0). The last equality gives ACSK(t)x =
CSK(t)Ax, SK(t)x ∈ D(C−1AC) and [C−1AC]SK(t)x = SK(t)Ax, t ∈ (−τ, 0]. On
the other hand, Proposition 1.1 implies Â = C−1AC, and consequently, SK(t)x ∈
D(Â), x ∈ D(A), t ∈ (−τ, 0]. Since Â ∈ ℘(SK) and C−1ÂC = Â, one obtains that
SK(t)Âx = [C−1ÂC]SK(t)x = ÂSK(t)x, t ∈ (−τ, 0], x ∈ D(Â). The remnant of
the proof follows by the use of Proposition 2.1. �

Assume r > 0, (Sr(t))t∈R is an exponentially bounded, r-times integrated group
generated by A and B is the generator of (Sr(−t))t�0. Let us evoke that El-
Mennaoui proved in [16] that B = −A; the author has recently established in [28]
the validity of this assertion in the general case of a (local) r-times integrated group;
now we state:

Theorem 2.1. Suppose Â is the integral generator of a (local) K-convoluted
C-group (SK(t))t∈(−τ,τ), B̂ is the integral generator of (SK,−(t))t∈[0,τ), A ∈ ℘(SK)
and B ∈ ℘(SK,−). Then:

(i) SK(t)x ∈ D(B) and BSK(t)x = −SK(t)Âx, x ∈ D(Â), t ∈ (−τ, 0];
SK(s)x ∈ D(A) and ASK(s)x = −SK(s)B̂x, x ∈ D(B̂), s ∈ [0, τ),

(ii) B̂ = −Â,
(iii) BCx = −CÂx, x ∈ D(Â); ACx = −CB̂x, x ∈ D(B̂),
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(iv)
∫ t

0
SK(r)Cxdr ∈ D(A), t ∈ (−τ, 0] and∫ s

0
SK(r)Cxdr ∈ D(B), s ∈ [0, τ).

Proof. Let

Θi(t) =
∫ t

0

(t − s)i−1Θ(s) ds, i = 1, 2, t ∈ [0, τ),

SΘ1(t)x =
∫ t

0

(t − s)SK(s)x ds, t ∈ [0, τ), x ∈ E,

SΘ1(t)x =
∫ −t

0

(−t − s)SK(−s)x ds, t ∈ (−τ, 0), x ∈ E.

Suppose now t < 0 < s, t + s � 0 and x ∈ E. Proposition 2.3 and the composition
property of SΘ1(·) imply:

(2.7) SΘ1(t)(SΘ1(s)x −
∫ s

0

Θ1(r) drCx) = SΘ1(t)Â
∫ s

0

SΘ1(r)x dr

= ÂSΘ1(t)
∫ s

0

SΘ1(r)x dr = Â

∫ s

0

SΘ1(t)SΘ1(r)x dr

= Â

∫ s

0

[ ∫ t+r

t

Θ1(t + r − v)SΘ1(v)Cxdv +
∫ r

0

Θ1(v − t − r)SΘ1(v)Cxdv

]
dr

=
∫ t+s

t

Θ1(t+s−r)SΘ1(r)Cxdr+
∫ s

0

Θ1(r−t−s)SΘ1(r)Cxdr−
∫ s

0

Θ1(r) drSΘ1(t)Cx.

Differentiate (2.7) with respect to s in order to conclude that:

Â

[∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr +
∫ s

0

Θ1(r − t − s)SΘ1(r)Cxdr

]
=

∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr −
∫ s

0

Θ(r − t − s)SΘ1(r)Cxdr

+ Θ1(−t)SΘ1(s)Cx − Θ1(s)SΘ1(t)Cx.(2.8)

Further on, it is clear that
∫ s

0
Θ1(r − t − s)SΘ1(r)Cxdr ∈ D(Â) and that

Â

∫ s

0

Θ1(r − t − s)SΘ1(r)Cxdr =
∫ s

0

Θ1(r − t − s)Â
∫ r

0

SΘ(v)Cxdv dr

=
∫ s

0

Θ1(r − t − s)
(
SΘ(r)Cx − Θ1(r)C2x

)
dr

=
∫ s

0

Θ1(r − t − s)SΘ(r)Cxdr −
∫ s

0

Θ1(r − t − s)Θ1(r)C2x dr.

This equality and (2.8) imply
∫ t+s

t
Θ1(t + s − r)SΘ1(r)Cxdr ∈ D(Â) and:

(2.9) Â

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr =
∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr

−
∫ s

0

Θ(r − t − s)SΘ1(r)Cxdr −
∫ s

0

Θ1(r − t − s)SΘ(r)Cxdr
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+ Θ1(−t)SΘ1(s)Cx − Θ1(s)SΘ1(t)Cx +
∫ s

0

Θ1(r − t − s)Θ1(r) drC2x.

The partial integration gives

−
∫ s

0

Θ(r− t− s)SΘ1(r)Cxdr−
∫ s

0

Θ1(r− t− s)SΘ(r)Cxdr = −Θ1(−t)SΘ1(s)Cx

and, due to (2.9), one gets:

(2.10) Â

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr

=
∫ t+s

t

Θ(t+s−r)SΘ1(r)Cxdr+
∫ s

0

Θ1(r−t−s)Θ1(r) drC2x−Θ1(s)SΘ1(t)Cx.

Next,

B

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr = B

∫ t+s

t

Θ1(t + s − r)
∫ −r

0

SΘ(−v)Cxdv dr

=
∫ t+s

t

Θ1(t + s − r)
[
SΘ(r)Cx − Θ1(−r)C2x

]
dr

=
∫ t+s

t

Θ1(t + s − r)SΘ(r)Cxdr −
∫ t+s

t

Θ1(t + s − r)Θ1(−r)C2x dr

= Θ1(s)SΘ1(t)Cx −
∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr −
∫ t+s

t

Θ1(t + s − r)Θ1(−r)C2x dr,

where the last equality follows from integration by parts. Hence,

(2.11) B

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr

= Θ1(s)SΘ1(t)Cx−
∫ t+s

t

Θ(t+s−r)SΘ1(r)Cxdr−
∫ s

0

Θ1(r−t−s)Θ1(r)C2x dr.

By (2.10) and (2.11), we have:

(2.12) Â

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr = −B

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr.

Suppose x ∈ D(Â); then Cx ∈ D(Â). Proposition 2.3 and (2.12) yield:

(2.13)
∫ t+s

t

Θ1(t + s − r)SΘ1(r)ÂCx dr = −B

∫ t+s

t

Θ1(t + s − r)SΘ1(r)Cxdr.

Differentiate the previous equality with respect to s to conclude that∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr ∈ D(B),∫ t+s

t

Θ(t + s − r)SΘ1(r)ÂCx dr = −B

∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr.(2.14)
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On the other hand, differentiation of (2.13) with respect to t leads us to the follow-
ing: ∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr + Θ1(s)SΘ1(t)Cx ∈ D(B),∫ t+s

t

Θ(t + s − r)SΘ1(r)ÂCx dr + Θ1(s)SΘ1(t)ÂCx(2.15)

= −B

[∫ t+s

t

Θ(t + s − r)SΘ1(r)Cxdr + Θ1(s)SΘ1(t)Cx

]
.

One can employ (2.14) and (2.15) to see that Θ1(s)SΘ1(t)Cx ∈ D(B) and that
−B(Θ1(s)SΘ1(t)Cx) = Θ1(s)SΘ1(t)ÂCx. Using the similar arguments, one obtains
that the last equality remains true in the case: t + s � 0 and x ∈ D(Â). So,
Θ1(s)SΘ1(t)Cx ∈ D(B) and
(2.16)

−B
(
Θ1(s)SΘ1(t)Cx

)
= Θ1(s)SΘ1(t)ÂCx, t ∈ (−τ, 0], s ∈ [0, τ), x ∈ D(Â).

Choose a number s ∈ [0, τ) with Θ1(s) �= 0; (2.16) implies SΘ1(t)Cx ∈ D(B) and

(2.17) −B(SΘ1(t)Cx) = SΘ1(t)ÂCx, t ∈ (−τ, 0], x ∈ D(Â).

A consequence of (2.17) is

SΘ1(t)Cx − Θ2(−t)C2x = B

∫ −t

0

SΘ1(−v)Cxdv = −
∫ −t

0

SΘ1(−v)ÂCx dv

= −C

∫ −t

0

SΘ1(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â).

Therefore,

(2.18) SΘ1(t)x − Θ2(−t)Cx = −
∫ −t

0

SΘ1(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â),

which clearly implies

B

∫ −t

0

SΘ1(−v)x dv = −
∫ −t

0

SΘ1(−v)Âx dv, t ∈ (−τ, 0], x ∈ D(Â).

The closedness of B enables one to see that SΘ1(t)x ∈ D(B) and that BSΘ1(t)x =
−SΘ1(t)Âx, t ∈ (−τ, 0], x ∈ D(Â). Differentiate the last equality twice with respect
to t in order to conclude that SK(t)x ∈ D(B) and that BSK(t)x = −SK(t)Âx,
t ∈ (−τ, 0], x ∈ D(Â). This and Proposition 2.1 imply: ŠK(−s)x ∈ D(A)
and AŠK(−s)x = −ŠK(−s)B̂x, s ∈ [0, τ), x ∈ D(B̂), i.e., SK(s)x ∈ D(A) and
ASK(s)x = −SK(s)B̂x, x ∈ D(B̂), s ∈ [0, τ). The proof of (i) is completed.

Further on, it is evident that (2.18) implies −Â ⊆ B̂. Now one can apply
Proposition 2.1 and the first part of the proof to obtain that −B̂ ⊆ Â; hence,
B̂ = −Â and this ends the proof of (ii).

Finally, (iii) and (iv) are simple consequences of the assertion (ii) of this theo-
rem and Proposition 1.1(i)–(ii). �
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Proposition 2.4. Suppose K satisfies (P1) and Â is the integral generator of
an exponentially bounded, K-convoluted C-group (SK(t))t∈R. If there exist M > 0
and β > 0 such that |K(t)| � Meβt, t � 0, then C−1Â2C is the integral generator
of an exponentially bounded, analytic K1-convoluted C-semigroup (SK1(t))t�0 of
angle π

2 , where

K1(t) :=
∫ ∞

0

se−s2/4t

2
√

πt3/2
K(s) ds, t > 0,

SK1(t)x :=
1

2
√

πt

∫ ∞

0

e−s2/4t
(
SK(s)x + SK(−s)x

)
ds, t > 0, x ∈ E.

Proof. By Theorem 2.1, ±Â are the integral generators of exponentially
bounded, K-convoluted C-semigroups (SK,±(t))t�0. Now one can apply [31, Propo-
sition 8] to conclude that Â2 is a subgenerator of an exponentially bounded, K-
convoluted C-cosine function (CK(t))t∈R, where CK(t) = 1

2 (SK(t)+SK(−t)), t � 0.
By [31, Theorem 11], Â2 is a subgenerator of an exponentially bounded, analytic
K1-convoluted C-semigroup (SK1(t))t�0 of angle π

2 . The proof ends an application
of Proposition 1.1(i). �

Remark 2.1. It could be worth noting the following facts: K1 fulfills (P1),
abs(K1) � β2 and K̃1(λ) = K̃(

√
λ), Re λ > β2.

Theorem 2.2. Suppose τ ∈ (0,∞] and ±Â are the integral generators of K-
convoluted C-semigroups (SK,±(t))t∈[0,τ). Put SK(t) := SK,+(t), t ∈ [0, τ) and
SK(t) := SK,−(−t), t ∈ (−τ, 0). Then (SK(t))t∈(−τ,τ) is a K-convoluted C-group
whose integral generator is Â.

Proof. Suppose −τ < t < 0 < s < τ and t + s � 0. We will prove the
composition property for SK(t)SK(s). Fix an x ∈ E and define

f(r) = SK(t + s − r)
∫ r

0

SK(σ)x dσ, r ∈ [t + s, s].

Evidently, ÂSK(σ) ⊆ SK(σ)Â, σ ∈ (−τ, τ) and the semigroup property of a K-
convoluted C-semigroup implies:

d

dr
f(r) = SK(t + s − r)SK(r)x

− ÂSK(t + s − r)
∫ r

0

SK(σ)x dσ + K(r − s − t)C
∫ r

0

SK(σ)x dσ

= Θ(r)SK(t + s − r)Cx + K(r − s − t)C
∫ r

0

SK(σ)xdσ,

for a.e. r ∈ (t + s, s). Integrate the last equality with respect to r from t + s to s
to obtain:

SK(t)
∫ s

0

SK(σ)xdσ =
∫ s

t+s

Θ(r)SK(t + s − r)Cxdr

+
∫ s

t+s

K(r − s − t)C
∫ r

0

SK(σ)xdσ dr.
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Since Â ∈ ℘(SK,+), the last equality allows one to conclude that:

(2.19) SK(t)SK(s)x = SK(t)
[
Â

∫ s

0

SK(σ)x dσ + Θ(s)Cx

]
= Â

[∫ s

t+s

Θ(r)SK(t+s−r)Cxdr+
∫ s

t+s

K(r−s−t)C
∫ r

0

SK(σ)x dσ dr

]
+Θ(s)SK(t)Cx

= Â

∫ s

t+s

Θ(r)SK,−(r − t − s)Cxdr +
∫ s

t+s

K(r − s − t)
[
SK(r)Cx − Θ(r)C2x

]
dr

+ Θ(s)SK(t)Cx.

Furthermore,

(2.20) Â

∫ s

t+s

Θ(r)SK,−(r − t − s)Cxdr = Â

∫ −t

0

Θ(v + t + s)SK,−(v)Cxdv

= Â

[
Θ(s)

∫ −t

0

SK,−(r)Cxdr −
∫ −t

0

K(t + s + r)
∫ r

0

SK,−(v)Cxdv dr

]
= −Θ(s)

[
SK(t)Cx − Θ(−t)C2x

]
+

∫ −t

0

K(t + s + r)
[
SK(−r)Cx − Θ(r)C2x

]
dr.

A consequence of (2.19) and (2.20) is:

SK(t)SK(s)x

= −Θ(s)
[
SK(t)Cx − Θ(−t)C2x

]
+

∫ −t

0

K(t + s + r)
[
SK(−r)Cx − Θ(r)C2x

]
dr

+
∫ s

t+s

K(r − s − t)
[
SK(r)Cx − Θ(r)C2x

]
dr + Θ(s)SK(t)Cx

=
∫ s

t+s

K(r − t − s)SK(r)Cxdr +
∫ 0

t

K(t + s − r)SK(r)Cxdr

+
[
Θ(s)Θ(−t)C2x +

∫ 0

−t

K(t + s + r)Θ(r)C2x dr −
∫ s

t+s

K(r − s − t)Θ(r)C2x dr

]
,

and the composition property for SK(t)SK(s) follows from the next computation:

Θ(s)Θ(−t)C2x +
∫ 0

−t

K(t + s + r)Θ(r)C2x dr −
∫ s

t+s

K(r − s − t)Θ(r)C2x dr

= Θ(s)Θ(−t)C2x −
∫ s

t+s

K(r)Θ(r − t − s)C2x dr −
∫ s

t+s

K(r − s − t)Θ(r)C2x dr

= Θ(s)Θ(−t)C2x −
[
Θ(s)Θ(−t)C2x −

∫ s

t+s

K(r − s − t)Θ(r)C2x dr

]
−

∫ s

t+s

K(r − s − t)Θ(r)C2x dr = 0.
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The proof of composition property in the case t + s < 0 can be derived as follows.
Since Â

∫ r

0
SK(σ)xdσ = SK(r)x − Θ(−r)Cx, r ∈ (−τ, 0], we obtain

d

dr
f(r) = SK(t + s − r)SK(r)x − ÂSK(t + s − r)

∫ r

0

SK(σ)x dσ

+ K(r − s − t)C
∫ r

0

SK(σ)x dσ

= Θ(|r|)SK(t + s − r)Cx + K(r − s − t)C
∫ r

0

SK(σ)x dσ,

for a.e. r ∈ (t + s, s). Integrate the last equality with respect to r from t + s to s
to obtain

(2.21) SK(t)
∫ s

0

SK(σ)xdσ

=
∫ 0

t+s

Θ(−r)SK(t + s − r)Cxdr +
∫ 0

t+s

K(r − t − s)
∫ r

0

SK(σ)Cxdσ dr

+
∫ s

0

Θ(r)SK(t + s − r)Cxdr +
∫ s

0

K(r − s − t)
∫ r

0

SK(σ)Cxdσ dr.

Clearly,

SK(t)SK(s)x = SK(t)
[
Â

∫ s

0

SK(σ)x dσ + Θ(s)Cx

]
= ÂSK(t)

∫ s

0

SK(σ)x dσ + Θ(s)SK(t)Cx,

and a tedious computation involving (2.21) leads us to the next equality:

(2.22) SK(t)SK(s)x =
∫ t+s

t

K(t + s − r)S(r)Cxdr +
∫ s

0

K(r − t − s)S(r)Cxdr

+
[
Θ(s)Θ(−t) −

∫ t+s

t

K(t + s − r)Θ(−r) dr −
∫ s

0

K(r − s − t)Θ(r) dr

]
C2x.

Since

Θ(s)Θ(−t) −
∫ t+s

t

K(t + s − r)Θ(−r) dr −
∫ s

0

K(r − s − t)Θ(r) dr

= Θ(s)Θ(−t) +
∫ 0

s

K(r)Θ(r − t − s) dr −
[
Θ(−t)Θ(s) −

∫ s

0

Θ(r − t − s)K(r) dr

]
= 0,

(2.22) implies the composition property for SK(t)SK(s). By the foregoing,
SK(s)SK(t)x = ŠK(−s)ŠK(−t)x

=

{∫ −t

−t−s
K(r + t + s)ŠK(r)Cxdr +

∫ 0

−s
K(−t − s − r)ŠK(r)Cxdr, t + s < 0,∫ −t−s

−s
K(−t − s − r)ŠK(r)Cxdr +

∫ −t

0
K(r + t + s)ŠK(r)Cxdr, t + s � 0,

=

{∫ t+s

t
K(t + s − r)SK(r)Cxdr +

∫ s

0
K(r − t − s)SK(r)Cxdr, t + s < 0,∫ s

t+s
K(r − t − s)SK(r)Cxdr +

∫ 0

t
K(t + s − r)SK(r)Cxdr, t + s � 0,
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for every x ∈ E. The composition property for SK(t)SK(s) and previous equality
imply SK(t)SK(s) = SK(s)SK(t), t < 0 < s, finishing the proof of the theorem. �

Questions. (i) Suppose Â is the integral generator of a (local) K-convoluted
C-group (SK(t))t∈(−τ,τ), A ∈ ℘(SK) and A �= Â. Is −A a subgenerator of
(SK,−(t))t∈[0,τ)?

(ii) Suppose A is the integral generator of a (local) K-convoluted group
(SK(t))t∈(−τ,τ). Does there exist an injective operator C ∈ L(E) such that A
generates a global C-group?

Corollary 2.1. Let τ ∈(0,∞], Â be a closed linear operator and (SK(t))t∈(−τ,τ)

a strongly continuous operator family. Then Â is the integral generator of a K-con-
voluted C-group (SK(t))t∈(−τ,τ) iff ±Â are the integral generators of K-convoluted
C-semigroups (SK,±(t))t∈[0,τ).

The following theorem is a straightforward application of Corollary 2.1 and the
assertions (α)–(δ) quoted in the first section.

Theorem 2.3. Let K satisfies (P1) and let Â be a closed linear operator. Then:
(α1) Â is the integral generator of an exponentially bounded, Θ-convoluted

C-group (SΘ(t))t∈R satisfying the condition

‖SΘ(±t ± h) − SΘ(±t)‖ � Cheω(t+h), t � 0, h � 0, for some C > 0 and ω � 0,

iff there exists a � max(ω, abs(K)) such that

{λ ∈ C : Re λ > a, K̃(λ) �= 0} ⊆ ρC(±Â),(2.23)

λ 	→ K̃(λ)(λ ± Â)−1C, λ > a, K̃(λ) �= 0 is infinitely differentiable,(2.24) ∥∥∥ dk

dλk

[
K̃(λ)(λ ± Â)−1C

]∥∥∥ � Mk!
(λ − ω)k+1

, k ∈ N0, λ > a, K̃(λ) �= 0.(2.25)

(β1) Suppose, in addition, that Â is densely defined. Then Â is the integral
generator of an exponentially bounded, K-convoluted C-group (SK(t))t∈R satisfying
‖SK(t)‖ � Meω|t|, t ∈ R, ω � 0 iff there exists a � max(ω, abs(K)) such that
(2.23), (2.24) and (2.25) are fulfilled.

(γ1) Suppose that Â is the integral generator of an exponentially bounded, K-
convoluted C-group (SK(t))t∈R satisfying ‖SK(t)‖ � Meω|t|, t ∈ R, ω � 0. Put
a = max(ω, abs(K)). Then:

{λ ∈ C : Re λ > a, K̃(λ) �= 0} ⊆ ρC(±Â),(2.26)

(λ ± Â)−1Cx =
1

K̃(λ)

∫ ∞

0

e−λtSK(∓t) dt, Re λ > a, K̃(λ) �= 0.(2.27)

(δ1) Suppose (SK(t))t∈R is a strongly continuous operator family and ‖SK(t)‖
� Meω|t|, t ∈ R, ω � 0. Put a = max(ω, abs(K)). If (2.26) and (2.27) are fulfilled,
then Â is the integral generator of an exponentially bounded, K-convoluted C-group
(SK(t))t∈R.

Finally, let us also observe that Proposition 1.1 can be easily transferred to
convoluted C-groups.
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3. Applications

We employ the next auxiliary notations.
1. Let a > 0 and b > 0. The exponential region E(a, b) is primarily defined

as E(a, b) := {λ ∈ C | Re λ � b, | Im λ| � ea Re λ} by Arendt, El-Mennaoui and
Keyantuo in [1]. Put E2(a, b) := {λ2 | λ ∈ E(a, b)}.

2. Suppose s > 1. Following Chazarain [9] (cf. also [10], [25] and [41, Sec-
tion 2.3]), we use the ultra-logarithmic regions of type l:

Λα,β,l :=
{
λ ∈ C : Re λ � αM(l| Im λ|) + β

}
, l > 0, α > 0, β ∈ R,

where M(t) := supp∈N0
ln(tp/p!s), t > 0 and M(0) = 0.

3. If θ ∈ (0, π] and d ∈ (0, 1], put Bd := {λ ∈ C : |λ| � d} and Ωθ,d := Σθ ∪Bd.
4. We recall a family of continuous kernels (cf. [2, p. 107]):

Kδ(t) :=
1

2πi

∫ r+i∞

r−i∞
eλt−λδ

dλ, t � 0, δ ∈ (0, 1), r > 0, where 1δ = 1.

Put, for c > 0 and δ ∈ (0, 1), Kδ,c(t) := Kδ(ct), t � 0. It is well known that, for
every δ ∈ (0, 1), c > 0 and s = 1/δ:

|K̃δ,c(λ)| =
∣∣∣∣1c K̃δ

(λ

c

)∣∣∣∣ =
1
c

∣∣e−(λ/c)δ ∣∣ =
1
c

e− cos(δ arg(λ/c))|λ/c|δ

� 1
c

e−(cos(π/2s)c−1/s)|λ|1/s

, Re λ > 0.

For the sake of simplicity, in the following theorem, we consider only Gevrey
type sequences p!s, s ∈ (1, 2) and the functions K1/s, c, c > 0. Actually, the argu-
mentation given in [26] and [41, Section 1.3] can be applied in proving a more
general result.

Theorem 3.1. Suppose α > 0 and A generates a local α-times integrated cosine
function. Then:
(i) For every b ∈ (1

2 , 1) and γ ∈ (
0, arctan(cos( bπ

2 ))
)
, there exist two analytic

operator families (Tb,+(t))t∈Σγ
⊆ L(E) and (Tb,−(t))t∈Σγ

⊆ L(E) which satisfies:
(i1) For every t ∈ Σγ , Tb,+(t) and Tb,−(t) are injective operators.
(i2)

∥∥t
α+1
2b Tb,±(t)

∥∥ = O(1), t → 0+.
(i3) For every t1 ∈ Σγ and t2 ∈ Σγ , iA is the generator of a global

(Tb,+(t1)Tb,−(t2))-group (Sb,t1,t2(r))r∈R.
(i4) For every x ∈ E, t1 ∈ Σγ and t2 ∈ Σγ , the mapping r 	→ Sb, t1, t2(r)x,

r ∈ R is infinitely differentiable in (−∞, 0) ∪ (0,∞).
(i5) Suppose K is a compact subset of R and 0 /∈ K. Then, for every h > 0

and s ∈ (1
b , 2):

sup
p∈N0, r∈K

hp
∥∥ dp

drp Sb, t1, t2(r)x
∥∥

p!s
< ∞.

(ii) For every s ∈ (1, 2) and τ ∈ (0,∞), there exists cτ > 0 such that A generates
a local K1/s, cτ

-convoluted group (SK1/s, cτ
(t))t∈(−τ,τ) which satisfies:

(ii1) The mappings t 	→ SK1/s, cτ
(±t), t ∈ [0, τ) are infinitely differentiable.
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(ii2) There exists h > 0 such that

sup
t∈(−τ, τ)�{0}, p∈N0

hp
∥∥ dp

dtp SK1/s,cτ
(t)

∥∥
p!s

< ∞.

Proof. The operator A ≡ ( 0 I
A 0 ) generates a local (α + 1)-times integrated

semigroup in E2 (cf. [30]) and an application of [34, Theorem 2.1] gives the
existence of positive real numbers a, b and M satisfying E(a, b) ⊆ ρ(A) and
‖R(λ : A)‖ � M |λ|α+1, λ ∈ E(a, b). This implies E2(a, b) ⊆ ρ(A),

R(λ : A)
(

x

y

)
=

(
R(λ2 : A)(λx + y)

AR(λ2 : A)x + λR(λ2 : A)y

)
, x, y ∈ E, λ ∈ E(a, b),

and ‖R(λ2 : A)‖ � ‖R(λ : A)‖ � M |λ|α+1, λ ∈ E(a, b). Hence, E2(a, b) ⊆ ρ(A)
and ‖R(λ : A)‖ � M |λ|α+1

2 , λ ∈ E2(a, b). Suppose now s ∈ ( 1
b , 2). Proceeding as

in the proof of [30, Theorem 4.3], we get the existence of numbers δ > 0, ε ∈ R

and l � 1 (cf. also [9] and [10, Theorem 1.5]) which fulfill:

Λδ,ε,l ⊆ ρ(±iA) and ‖R(λ : ±iA)‖ � M |λ|α+1
2 , λ ∈ Λδ,ε,l.

Further on, it is clear that there exist numbers a ∈ (0, π
2 ), d ∈ (0, 1] and ω ∈ R

so that: b ∈ (0, π
2(π−a) ), γ ∈ (0, arctan(cos(b(π − a)))) and Ωa,d ⊆ Λδ,ε−ω,l ⊆

ρ(±iA − ω) (cf. [26]). Let the curve Γa,d = ∂(Ωa,d) be upwards oriented. Define
Tb,±(t), t ∈ Σγ by:

Tb,±(t)x :=
1

2πi

∫
Γa,d

e−t(−λ)b

R(λ : ±iA − ω)x dλ, x ∈ E.

The arguments given in [46, Section 2] show that (Tb,±(t))t∈Σγ
are analytic operator

families which fulfill the claimed properties (i1) and (i2). Assume K is a compact
subset of (0,∞), t ∈ Σγ and x ∈ E. Arguing as in [26, Section 2], we get that
±iA generate global Tb,±(t)-semigroups (Sb,t,±(r))r�0. Furthermore, the mappings
r 	→ Sb,t,±(r)x, r > 0 are infinitely differentiable and, for every h > 0:

(3.1) sup
p∈N0, r∈K

hp
∥∥ dp

drp Sb,t,±(r)x
∥∥

p!s
< ∞.

Let t1 ∈ Σγ , t2 ∈ Σγ and x ∈ E be fixed. Evidently, Tb,+(t1)(±iA) ⊆ (±iA)Tb,+(t1),
Tb,−(t2)(±iA) ⊆ (±iA)Tb,−(t2) and Tb,+(t1)Tb,−(t2) = Tb,−(t2)Tb,+(t1). One ob-
tains

Tb,−(t2)(Sb,t1,+(r)x − Tb,+(t1)x) = Tb,−(t2)iA
∫ r

0

Sb,t1,+(v)x dv

= iATb,−(t2)
∫ r

0

Sb,t1,+(v)x dv,

and consequently,

iA

∫ r

0

Tb,−(t2)Sb,t1,+(v)x dv = Tb,−(t2)Sb,t1,+(r)x − Tb,+(t1)Tb,−(t2)x, r � 0.
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Clearly, we have [Tb,−(t2)Sb,t1,+(r)]Tb,+(t1) = Tb,+(t1)[Tb,−(t2)Sb,t1,+(r)], r � 0,
and [Tb,−(t2)Sb,t1,+(r)]iA ⊆ iA[Tb,−(t2)Sb,t1,+(r)], r � 0. The above given ar-
guments simply imply that (Tb,−(t2)Sb,t1,+(r))r�0 is a global (Tb,+(t1)Tb,−(t2))-
semigroup generated by iA. Analogously, we have that (Tb,+(t1)Sb,t2,−(r))r�0 is a
global (Tb,+(t1)Tb,−(t2))-semigroup generated by −iA. Hence, iA generates a global
(Tb,+(t1)Tb,−(t2))-group (Sb,t1,t2(r))r∈R given by: Sb,t1,t2(r) = Tb,−(t2)Sb,t1,+(r),
r � 0 and Sb,t1,t2(r) = Tb,+(t1)Sb,t2,−(−r), r < 0. This yields (i3) and (i4), while
the proof of (i5) follows immediately from (i4) and (3.1).

To prove (ii), choose arbitrarily numbers τ ∈ (0,∞) and s ∈ (1, 2). Denote by
Γl the upwards oriented boundary of Λδ,ε,l and notice that there exists an appro-
priate constant d1 > 0 such that M(λ) � d1λ

1/s, λ � 0. Put

cτ =
1
2

[
1

cos( π
2s )

τδd1l
1/s

]−s

,

SK1/s, cτ ,±(t) =
1

2πi

∫
Γl

eλtK̃1/s, cτ
(λ)R(λ : ±iA) dλ, t ∈ [0, τ),

SK1/s, cτ
(t) = SK1/s, cτ ,+(t), t ∈ [0, τ) and SK1/s, cτ

(t) = SK1/s, cτ ,−(−t), t ∈ (−τ, 0).
By [41, Theorem 1.3.2, p. 58], one obtains that SK1/s, cτ ,±(t) ∈ L(E), t ∈ [0, τ)
and that ±iA generate local K1/s, cτ

-convoluted semigroups (SK1/s, cτ ,±(t))t∈[0,τ).
Further, an employment of Theorem 2.2 shows that iA generates a local K1/s, cτ

-
convoluted group (SK1/s, cτ

(t))t∈(−τ,τ). The elementary inequality |eλh − 1| �
h|λ|eRe λh, λ ∈ C, h > 0 and the dominated convergence theorem imply that
the mappings t 	→ SK1/s, cτ

(±t), t ∈ [0, τ) are infinitely differentiable and that
(3.2)

dp

dtp
SK1/s, cτ

(±t) =
1

2πi

∫
Γl

λpeλtK̃1/s, cτ
(λ)R(λ : ±iA) dλ, t ∈ [0, τ), p ∈ N0.

Due to the choice of cτ , there is a number h ∈ (0,∞) satisfying:

(3.3) d1h
1/s + τδd1l

1/s < cos(π/2s) c−1/s
τ .

Taking into account (3.2) and (3.3), one gets:

sup
t∈(−τ,τ)�{0}, p∈N0

hp
∥∥ dp

dtp SK1/s,cτ
(t)

∥∥
p!s

� C sup
t∈(−τ,τ)�{0}, p∈N0

∫
Γl

(h|λ|)p

p!s
eRe λ|t|∣∣K̃1/s, cτ (λ)

∣∣ ‖R(λ : ±iA)‖ |dλ|

� C sup
t∈(−τ,τ)�{0}

∫
Γl

eM(h|λ|)e|t|(δM(l| Im λ|)+ε)e− cos(π/2s)c−1/s
τ |λ|1/s|λ|(α+1)/2|dλ|

� C sup
t∈(−τ,τ)�{0}

∫
Γl

ed1h1/s|λ|1/s

e|t|(δd1l1/s|λ|1/s+ε)e− cos(π/2s)c−1/s
τ |λ|1/s |λ|(α+1)/2|dλ|

� Ce|ε|τ
∫

Γl

e(d1h1/s+τδd1l1/s−cos(π/2s)c−1/s
τ )|λ|1/s |λ|(α+1)/2|dλ| < ∞.

where C = const. �
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Remark 3.1. Suppose, additionally, that A is densely defined. Then −(ω∓iA)b

are generators of analytic semigroups (Tb,±(t))t∈Σγ
of growth order α+1

2b (cf. the
formulation of Theorem 3.1 and [46]–[47]).

The next example is inspired by [31, Example 6.1].

Example 3.1. Suppose E := L2[0, π] and A := −∆ with the Dirichlet bound-
ary conditions (cf. [2, Section 7.2]). It is well known that there exists an exponen-
tially bounded kernel K ∈ C([0,∞)) so that A generates a K-convoluted semigroup
(SK(t))t�0 with ‖SK(t)‖ = O(t + t2), t � 0 ([7], [29]). This fact has been essen-
tially utilized in [31, Section 6] where the authors proved that, for every n ∈ N,
there is an exponentially bounded kernel Kn ∈ C([0,∞)) so that the polyharmonic
operator ∆2n

generates an exponentially bounded, analytic Kn-convoluted semi-
group of angle π

2 . On the other hand, an old result of Goldstein (see [14, p. 215]
and [31, Section 6]) says that −∆2n generates an analytic C0-semigroup of angle
π
2 . This enables one to see that there exists an injective operator Cn ∈ L(L2[0, π])
such that ∆2n generates an entire Cn-regularized group (cf. [14, Section VII, Theo-
rem 8.2]) and that ∆2n

generates an exponentially bounded Kn-convoluted group.
Finally, it is also worth noting that the operator −∆, considered in the first part of
this example, generates an exponentially bounded, convoluted group and that, in
the meantime, −∆ cannot be generator of any exponentially bounded, convoluted
cosine function [31].

It is an open problem to obtain further properties of polynomials of −∆ in
the framework of the theory of convoluted operator families, even in the case of
Hurwitz polynomials.
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[45] S. Ōuchi, Hyperfunction solutions of the abstract Cauchy problems, Proc. Japan Acad. 47
(1971), 541–544.

[46] B. Straub, Fractional powers of operators with polynomially bounded resolvent and the semi-
groups generated by them, Hiroshima Math. J. 24 (1994), 529–548.

[47] N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups, Semigroup Forum 38
(1989), 253–261.

[48] N. Tanaka, T. Okazawa, Local C-semigroups and local integrated semigroups, Proc. London
Math. Soc. 61 (1990), 63–90.

[49] T. Ushijima, On the generation and smothness of semi-groups of linear operators, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 65–126.

[50] S. Wang, Quasi-distribution semigroups and integrated semigroups, J. Funct. Anal. 146
(1997), 352–381.

[51] S. Wang, Properties of subgenerators of C-regularized semigroups, Proc. Am. Math. Soc. 126
(1998), 453–460.

[52] T.-J. Xiao, J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations,
Springer-Verlag, Berlin, 1998.

Faculty of Technical Sciences

University of Novi Sad

21000 Novi Sad
Serbia
marco.s@verat.net


