
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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COMPARISON OF SOME SOLUTION CONCEPTS
FOR LINEAR FIRST-ORDER HYPERBOLIC

DIFFERENTIAL EQUATIONS WITH
NON-SMOOTH COEFFICIENTS

Simon Haller and Günther Hörmann

Abstract. We discuss solution concepts for linear hyperbolic equations with
coefficients of regularity below Lipschitz continuity. Thereby our focus is on
theories which are based either on a generalization of the method of charac-
teristics or on refined techniques concerning energy estimates. We provide a
series of examples both as simple illustrations of the notions and conditions
involved but also to show logical independence among the concepts.

0. Introduction

According to Hurd and Sattinger in [23] the issue of a systematic investigation
of hyperbolic partial differential equations with discontinuous coefficients as a re-
search topic has been raised by Gelfand in 1959. Here, we attempt a comparative
study of some of the theories on that subject which have been put forward since.
More precisely, we focus on techniques and concepts that build either on the geo-
metric picture of propagation along characteristics or on the functional analytic
aspects of energy estimates.

In order to produce a set-up which makes the various methods comparable at
all, we had to stay with the special situation of a scalar partial differential equation
with real coefficients. As a consequence, for example, we do not give full justice to
theories whose strengths lie in the application to systems rather than to a single
equation. A further limitation in our choices comes from the restriction to concepts,
hypotheses and mathematical structures which (we were able to) directly relate to
distribution theoretic or measure theoretic notions.

To illustrate the basic problem in a simplified lower dimensional situation for
a linear conservation law, we consider the following formal differential equation for
a density function (or distribution, or generalized function) u depending on time t
and spatial position x

∂tu(t, x) + ∂x(a(t, x)u(t, x)) = 0.
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Here, a is supposed to be a real function (or distribution, or generalized function)
and the derivatives shall be interpreted in the distributional or weak sense. This
requires either to clarify the meaning of the product a · u or to avoid the strict
meaning of “being a solution”.

An enormous progress has been made in research on nonlinear conservation laws
(cf., e.g., [17, 2] and references therein) of the form ∂tu(t, x) + ∂x(g(u(t, x))) = 0,
where g is a (sufficiently) smooth function and u is such that g(u) can be defined in
a suitable Banach space of distributions. Note however, that this equation does not
include linear operators of the form described above as long as the nonlinearity g
does not include additional dependence on (t, x) as independent variables (i.e., is not
of the more general form g(t, x, u(t, x))). Therefore the theories for linear equations
described in the present paper are typically not mere corollaries of the nonlinear
theories. Essentially for the same reason we have also not included methods based
on Young measures (cf. [17, Chapter V]).

Further omissions in our current paper concern hyperbolic equations of second
order. For advanced theories on these we refer to the energy method developed by
Colombini–Lerner in [7]. An overview and illustration of non-solvability or non-
uniqueness effects with wave equations and remedies using Gevrey classes can be
found in [31].

Of course, also the case of first-order equations formally “of principal type” with
non-smooth complex coefficients is of great interest. It seems that the borderline
between solvability and non-solvability is essentially around Lipschitz continuity of
the coefficients (cf. [24, 21, 22]). Moreover, the question of uniqueness of solutions
in the first-order case has been addressed at impressive depth in [8].

Our descriptive tour with examples consists of two parts: Section 1 describes
concepts and theories extending the classical method of characteristics, while Sec-
tion 2 is devoted to theories built on energy estimates. All but two of the theories
or results (namely, in Subsections 1.3 and 2.3.2) we discuss and summarize are not
ours. However, we have put some effort into unifying the language and the set-up,
took care to find as simple as possible examples which are still capable of distin-
guishing certain features, and have occasionally streamlined or refined the original
or well-known paths in certain details.

In more detail, Subsection 1.1 starts with Caratheodory’s theory of generalized
solutions to first-order systems of (nonlinear) ordinary differential equations and
adds a more distribution theoretic view to it. In Subsection 1.2 we present the
generalization in terms of Filippov flows and the application to transport equations
according to Poupaud–Rascle. Subsection 1.3 provides a further generalization
of the characteristic flow as Colombeau generalized map with nice compatibility
properties when compared to the Filippov flow. In Subsection 1.4 we highlight
some aspects or examples of semigroups of operators on Banach spaces stemming
from underlying generalized characteristic flows on the space-time domain. We
also describe a slightly exotic concept involving the measure theoretic adjustment of
coefficients to prescribed characteristics for (1+1)-dimensional equations according
to Bouchut–James in Subsection 1.5.
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Subsection 2.1 presents a derivation of energy estimates under very low regular-
ity assumptions on the coefficients and also discusses at some length the functional
analytic machinery to produce a solution and a related weak solution concept for
the Cauchy problem. Subsection 2.2 then compares those three theories, namely by
Hurd–Sattinger, Di Perna–Lions, and Lafon–Oberguggenberger, which are based on
regularization techniques combined with energy estimates. Finally, Subsection 2.3
briefly describes two related results obtained by paradifferential calculus, the first
concerning energy estimates and the solution of the Cauchy problem for a restricted
class of operators, the second is a method to reduce equations to equivalent ones
with improved regularity of the source term.

As it turns out in summary, none of the solution concepts for the hyperbolic
partial differential equation is contained in any of the others in a strict logical
sense. However, there is one feature of the Colombeau theoretic approach: it is
always possible to model the coefficients and initial data considered in any of the
other theories (by suitable convolution regularization) in such a way that the cor-
responding Cauchy problem becomes uniquely solvable in Colombeau’s generalized
function algebra. In many cases the Colombeau generalized solution can be shown
to have the appropriate distributional aspect in the sense of heuristically reasonable
solution candidates.

0.1. Basic notation and spaces of functions, distributions, and gen-
eralized functions. Let Ω denote an open subset of R

n. We use the notation
K � Ω, if K is a compact subset of Ω. The letter T will always be used for real
number such that T > 0. We often write ΩT to mean ]0, T [ × Rn with closure
ΩT = [0, T ] × R

n.
The space C∞(Ω) consists of smooth functions on Ω all whose derivatives have

continuous extensions to Ω. For any s ∈ R and 1 � p � ∞ we have the Sobolev
space W s,p(Rn) (such that W 0,p = Lp), in particular Hs(Rn) = W s,2(Rn). Our
notation for Hs-norms and inner products will be ‖.‖s and 〈., .〉s, in particular, this
reads ‖.‖0 and 〈., .〉0 for the standard L2 notions.

We will also make use of the variants of Sobolev and Lp spaces of functions
on an interval J ⊆ R with values in a Banach space E, for which we will employ
a notation as in L1(J ;E), for example. (For a compact treatment of the basic
constructions we refer to [36, Sections 24 and 39].) Furthermore, as usually the
subscript ‘loc’ with such spaces will mean that upon multiplication by a smooth
cutoff we have elements in the standard space. We occasionally write AC(J ;E)
instead of W 1,1

loc (J ;E) to emphasize the property of absolute continuity.
The subspace of Distributions of order k on Ω (k ∈ N, k � 0) will be denoted

by D′k(Ω). We identify D′0(Ω) with the space of complex Radon measures µ on Ω,
i.e., µ = ν+ − ν− + i(η+ − η−), where ν± and η± are positive Radon measures on
Ω, i.e., locally finite (regular) Borel measures.

As an alternative regularity scale with real parameter s we will often refer to
the Hölder–Zygmund classes Cs

∗(R
n) (cf. [17, Section 8.6]). In case 0 < s < 1 the

corresponding space comprises the continuous bounded functions u such that there
is C > 0 with the property that for all x �= y in Rn we have |u(x)−u(y)|

|x−y|s � C.
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Special types of distributions on R will be used in several of our examples to
follow: the Heaviside function will be understood to be the L∞(R) class of the
function defined almost everywhere by H(x) = 0 (x < 0), H(x) = 1 (x > 0),
and will again be denoted by H; the signum function is sign(x) = H(x) −H(−x);
furthermore, x+ denotes the continuous function with values x+ = 0 (x < 0),
x+ = x (x � 0), x− = x+ − x; δ denotes the Dirac (point) measure at 0 (in any
dimension).

Model product of distributions: A whole hierarchy of coherent distributional
products has been discussed in [28, Chapter II], each of these products yielding the
classical pointwise multiplication when both factors are smooth functions. The most
general level of this hierarchy is that of the so-called model product of distributions
u and v, denoted by [u · v] if it exists.

We first regularize both factors by convolution with a model delta net (ρε)ε>0,
where ρε(x) = ρ(x/ε)/εn with ρ ∈ D(Rn) such that

∫
ρ(x) dx = 1. Then the

product of the corresponding smooth regularizations may or may not converge in
D′. If it does, the model product is defined by [u · v] = limε→0(u ∗ ρε)(v ∗ ρε). In
this case, it can be shown that the limit is independent of the choice of ρ. For
example, we have [H · δ] = δ/2 and [δ · δ] does not exist.

Colombeau generalized functions: Our standard references for the foundations
and some applications of Colombeau’s nonlinear theory of generalized functions are
[4, 5, 28, 12]. We will employ the so-called special variant of Colombeau algebras,
denoted by Gs in [12], although here we shall simply use the letter G instead.

Let us briefly recall the basic constructions and properties. Colombeau general-
ized functions on Ω are defined as equivalence classes u = [(uε)ε] of nets of smooth
functions uε ∈ C∞(Ω) (regularizations) subjected to asymptotic norm conditions
with respect to ε ∈ (0, 1] for their derivatives on compact sets: in more detail, we
have

• moderate nets EM(Ω): (uε)ε ∈ C∞(Ω)(0,1] such that for all K � Ω and α ∈ Nn

there exists p ∈ R such that

(0.1) ‖∂αuε‖L∞(K) = O(ε−p) (ε→ 0);

• negligible nets N (Ω): (uε)ε ∈ EM(Ω) such that for all K � Ω and for all q ∈ R

an estimate ‖uε‖L∞(K) = O(εq) (ε→ 0) holds;
• EM(Ω) is a differential algebra with operations defined at fixed ε, N (Ω) is an
ideal, and G(Ω) := EM(Ω)/N (Ω) is the (special) Colombeau algebra;
• there are embeddings, C∞(Ω) ↪→ G(Ω) as a subalgebra and D′(Ω) ↪→ G(Ω) as a
linear subspace, commuting with partial derivatives;
• Ω → G(Ω) is a fine sheaf and Gc(Ω) denotes the subalgebra of elements with
compact support; by a cut-off in a neighborhood of the support one can always
obtain representing nets with supports contained in a joint compact set;
• in much the same way, one defines the Colombeau algebra G(Ω) on the closure of
the open set Ω using representatives which are moderate nets in C∞(Ω) (estimates
being carried out on compact subsets of Ω);
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• two Colombeau functions u = [(uε)ε] and v = [(vε)ε] are said to be associated, we
write u ≈ v, if uε − vε → 0 in D′ as ε→ 0; furthermore, we call u associated to the
distribution w ∈ D′, if uε → w in D′ as ε → 0; w is then called the distributional
shadow of u and we also write u ≈ w;
• assume that Ω is of the form Ω = ]T1, T2[ × Ω′, where Ω′ ⊆ R

n open and
−∞ � T1 < T2 � ∞; then we may define the restriction of u = [(uε)ε] ∈ G(Ω)
to the hyperplane {t0} × Ω′ (T1 < t0 < T2) to be the element u|t=t0G(Ω′) defined
by the representative (uε(t0, .))ε; similarly, we may define the restriction of u ∈
G([T1, T2] × Ω′) to t = t0 for T1 � t0 � T2 and obtain an element u|t=t0G(Ω′).
• the set R̃ of Colombeau generalized real numbers is defined in a similar way
via equivalence classes r = [(rε)ε] of nets of real numbers rε ∈ R subjected to
moderateness conditions |rε| = O(ε−p) (ε → 0, for some p) modulo negligible nets
satisfying |rε| = O(εq) (ε → 0, for all q); if A ⊂ R we denote by Ã the set of
all generalized numbers having representatives contained in A (for all ε ∈ ]0, 1]).
Similarly, if B ⊂ R

n we construct B̃ ⊂ R̃
n from classes of nets (xε)ε with xε ∈ B

for all ε;
• a Colombeau generalized function u = [(uε)ε] ∈ G(Ω)d is said to be c-bounded
(compactly bounded), if for all K1 � Ω there is K2 � R

d and ε0 > 0 such that
uε(K1) ⊆ K2 holds for all ε > ε0.

1. Solution concepts based on the characteristic flow

In this section we introduce solution concepts for first order partial differential
equations, which are based on solving the system of ordinary differential equations
for the characteristics and using the resulting characteristic flow to define a solution.
To illustrate the basic notions we consider the following special case of the Cauchy
problem in conservative form

Lu := ∂tu+
n∑

k=1

∂xk
(ak(t, x)u) = 0, u(0) = u0 ∈ D′(Rn),

where the coefficients ak are real-valued bounded smooth functions. The associated
system of ordinary differential equations for the characteristic curves reads

ξ̇k(s) = ak(s, ξ(s)), ξk(t) = xk (k = 1, . . . , n).

We use the notation ξ(s; t, x) = (ξ1(s; t, x), . . . , ξn(s; t, x)), where the variables after
the semicolon indicate the initial conditions x = (x1, . . . , xn) at t. We define the
smooth characteristic forward flow

χ : [0, T ] × R
n → R

n, (s, x) �→ ξ(s; 0, x)

Note that χ satisfies the relation (dx denoting the Jacobian with respect to the x
variables)

∂tχ(t, x) = dxχ(t, x) · a(t, x), ∀(t, x) ∈ [0, T ] × R
n,

which follows upon differentiation of the characteristic differential equations and the
initial data with respect to t and xk (k = 1, . . . , n). Using this relation a straight-
forward calculation shows that the distributional solution u ∈ C∞(

[0, T ];D′(Rn)
)
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to Lu = 0, u(0) = u0 ∈ D′(Rn) is given by

〈u(t), ψ〉 := 〈u0, ψ(χ(t, .))〉, ∀ψ ∈ D(Rn), 0 � t � T.

If there is a further zero order term b·u in the differential operator L, then the above
solution formula is modified by an additional factor involving b and χ accordingly.

In a physical interpretation the characteristic curves correspond to the trajec-
tories of point particles. This provides an idea for introducing a generalized solution
concept when the partial differential operator has non-smooth coefficients: As long
as a continuous flow can be defined, the right-hand side in the above definition of
u is still meaningful when we assume u0 ∈ D′0(Rn). The distribution u defined in
such a way belongs to AC([0, T ];D′0(Rn)) and will be called a measure solution.

This approach is not limited to classical solutions of the characteristic system
of ordinary differential equations, but can be extended to more general solution
concepts in ODE theory (for example, solutions in the sense of Filippov). Although
such a generalized solution will lose the property of solving the partial differential
equation in a distributional sense it is a useful generalization with regard to the
physical picture.

1.1. Caratheodory theory. Let T > 0 and ΩT = ]0, T [ × R
n. Classical

Caratheodory theory (cf. [11, Chapter 1]) requires the coefficient a = (a1, . . . , an)
to satisfy

(1) a(t, x) is continuous in x for almost all t ∈ [0, T ],
(2) a(t, x) is measurable in t for all fixed x ∈ Rn and
(3) supx∈Rn |a(t, x)| � β(t) almost everywhere for some positive function β ∈

L1([0, T ]).

Then the existence of an absolutely continuous characteristic curve ξ = (ξ1, . . . , ξn),
which fulfills the ODE almost everywhere, is guaranteed. Note that the first two
Caratheodory conditions ensure Lebesgue measurability of the composition s �→
a(s, f(s)) for all f ∈ AC([0, T ])n, while the third condition is crucial in the existence
proof.

A sufficient condition for forward uniqueness of the characteristic system is the
existence of a positive α ∈ L1([0, T ]), such that (〈., .〉 denoting the standard inner
product on R

n)
〈a(t, x) − a(t, y), x− y〉 � α(t)|x− y|2

for almost all (t, x), (t, y) ∈ ΩT (cf. [1, Theorem 3.2.2]). As well-known from classi-
cal ODE theory, forward uniqueness of the characteristic curves yields a continuous
forward flow

χ : [0, T ] × R
n → R

n, (s, x) �→ ξ(s; 0, x)

It is a proper map and for fixed time χ(t, .) is onto. For the sake of simplicity we
assume a ∈ C([0, T ] × R

n)n and b ∈ C([0, T ] × R
n).

Let

hb(t, x) := exp
(
−

∫ t

0

b(τ, χ(τ, x)) dτ
)

;
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then u ∈ D′(ΩT ) defined by

(1.1) 〈u, ϕ〉D′(ΩT ) :=
∫ T

0

〈
u0, ϕ(t, χ(t, ·))hb(t, ·)

〉
D′0(Rn)

dt

(note that u can be regarded as element in AC([0, T ];D′0(Rn)), so the restriction
u(0) is well-defined and equal to u0 ∈ D′0(Rn)) solves the initial value problem

Lu := ∂tu+
n∑

k=1

∂xk
(ak · u) + bu = 0, u(0) = u0

on ΩT , where ak · u and b · u denotes the distributional product defined by

· : C(ΩT ) ×D′0(ΩT ) → D′0(ΩT ), (f, u) �→ (
ϕ �→ 〈u, f · ϕ〉D′0(ΩT )

)
.

Applying L on u we obtain

〈Lu,ϕ〉D′(ΩT ) =
〈
u,−∂tϕ−

n∑
k=1

ak∂xk
ϕ+ bϕ

〉
D′(ΩT )

=
∫ T

0

〈
u0,

(
−∂tϕ−

n∑
k=1

ak∂xk
ϕ+ bϕ

)
(t, χ(t, ·))hb(t, ·)

〉
D′0(Rn)

dt.

Set φ(t, x) := ϕ(t, χ(t, x)) and ψ(t, x) := φ(t, x) · hb(t, x), then we have

∂tφ(t, x) = ∂tϕ(t, χ(t, x)) =
(
∂tϕ+

n∑
k=1

ak(t, x)∂xk
ϕ

)
(t, χ(t, x)),

and

∂tψ(t, x) = ∂tφ(t, x)hb(t, x) + φ(t, x) ∂thb(t, x)

=
(
∂tϕ+

n∑
k=1

ak(t, x)∂xk
ϕ

)
(t, χ(t, x)) · hb(t, x) − ϕ(t, χ(t, x)) b(t, χ(t, x))hb(t, x)

=
(
∂tϕ+

n∑
k=1

ak(t, x)∂xk
ϕ− bϕ

)
(t, χ(t, x)) · hb(t, x),

thus

〈Lu,ϕ〉D′(ΩT ) = −
∫ T

0

〈u0, ∂tψ(t, ·)〉D′0(Rn)dt = −
∫ T

0

∂t〈u0, ψ(t, ·)〉D′0(Rn)dt = 0.

for all ϕ ∈ D(ΩT ). The initial condition u(0) = u0 is satisfied, since χ(0, x) = x,
thus hb(0, x) = 1.

Remark 1.1. In this sense, we can obtain a distributional solution for the
Cauchy problem

Pv := ∂tv +
n∑

k=1

ak∂xk
v + cv = 0, v(0) = v0,

whenever a ∈ C
(
[0, T ] × R

n
)n and c ∈ D′([0, T ] × R

n
)
, such that −div(a) + c ∈

C
(
[0, T ] × R

n
)

and v0 ∈ D′0(Rn). We simply set b := −div(a) + c and construct
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the solution as above. In other words, such a solution solves the equation in a
generalized sense, relying on the definition of the action of Q :=

∑n
k=1 ak∂k + c on

a distribution of order 0 by

〈Qv,ϕ〉D′(ΩT ) := −
〈
v,

n∑
k=1

ak∂xk
ϕ

〉
D′0(ΩT )

− 〈
v, (−div(a) + c)ϕ

〉
D′0(ΩT )

.

In case where div(a) and c are both continuous, we can define the operator Q
classically by using the product · : D′0(ΩT ) × C(ΩT ) → D′0(ΩT ) as above.

1.2. Filippov generalized characteristic flow. As we have seen in the pre-
vious subsection, forward unique characteristics give rise to a continuous forward
flow. But in order to solve the characteristic differential equation in the sense of
Caratheodory, we needed continuity of the coefficient a in the space variables for al-
most all t. In case of more general coefficients a ∈ L1

loc(R, L
∞(Rn))n we can employ

the notion of Filippov characteristics, which replaces the ordinary system of dif-
ferential equations by a system of differential inclusions (cf. [11]). The generalized
solutions are still absolutely continuous functions. Again, the forward-uniqueness
condition on the coefficient a〈

a(s, x) − a(s, y), x− y
〉

� α(s)|x− y|2(1.2)

almost everywhere yields unique solutions in the Filippov generalized sense. The
generated Filippov flow is again continuous and will enable us to define measure-
valued solutions of the PDE (cf. [30]), as before.

In the Filippov solution concept the coefficient is replaced by a set-valued func-
tion (t, x) → At,x ⊆ R

n. It has to have some basic properties which imply the
solvability of the resulting system of differential inclusions

˙ξF (s) ∈ As,ξF (s), a.e., ξF (t) = x,

with ξF ∈ AC([0,∞[)n. These basic conditions are

(1) At,x is non-empty, closed, bounded and convex for all x ∈ Rn and almost
all t ∈ [0, T ],

(2)
{
t ∈ [0, T ] | supa∈At,x

〈a,w〉 < ρ
}

is Lebesgue measurable for all x ∈ R
n,

w ∈ Rn, ρ ∈ R,
(3) for almost all t ∈ [0, T ], the set

⋃
x∈K{x} × At,x is a compact subset of

R
n × R

n for K � R
n, and

(4) there exist a positive function β ∈ L1([0, T ]) such that supa∈At,x
|a| � β(t)

for almost all t ∈ [0, T ] and all x ∈ R
n.

There are several ways to obtain such a set-valued function A from a coefficient a ∈
L1

(
[0, T ];L∞(Rn)

)n, such that the classical theory is extended in a compatible way.
Thus the corresponding set-valued function A should fulfill At0,x0 := {a(t0, x0)}
whenever a is continuous at (t0, x0) ∈ [0,∞[ × Rn.

A way to obtain a set-valued function corresponding to a ∈ L1
(
[0, T ];L∞(Rn)

)n

is by means of the essential convex hull ech(a). It is defined at (t, x) ∈ [0, T ] × R
n
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by
(ech(a))t,x :=

⋂
δ>0

⋂
N⊆R

n

λ(N)=0

ch(a(t, Bδ(x)/N))

where ch(M) denotes the convex hull of a set M ⊆ R
n and λ is the Lebesgue

measure on R
n.

Another way is to use a mollifier ρ ∈ S(Rn) with
∫
ρ(x) dx = 1, put ρε(x) =

ε−nρ(ε−1x) and Aε := ã ∗ ρε|[0,T ]×Rn , where ã ∈ L∞(Rn+1)n is the extension of a
function a ∈ L∞([0, T ]×R

n)n by zero. Then the concept of a generalized graph CA

as defined in [13] yields a set-valued function satisfying the above basic properties.
1.2.1. Measure solutions according to Poupaud–Rascle. Let Ω∞ := ]0,∞[×R

n.
We assume a ∈ L1

loc(R+;L∞(Rn))n to be a coefficient satisfying the forward unique-
ness criterion(1.2). Let Lu := ∂tu +

∑n
i=1 ∂xi

(aiu) and ξF be the unique solution
to

(1.3) ˙ξF (s) ∈ ech(a)s,ξF (s), ξF (t) = x.

The map
χF : R+ × R

n → R
n, (t, x) �→ ξF (t; 0, x)

is the continuous Filippov (forward) flow.

Definition 1.1 (Solution concept according to Poupaud–Rascle). Let u0 ∈
Mb(R)n be a bounded Borel measure, then the image measure at t ∈ [0,∞[ is

u(t)(B) :=
∫

Rn

1B(χF (t, x)) du0(x),(1.4)

where B ⊆ R
n is some Borel set. The map u : [0,∞[ → Mb(Rn)) belongs to

C([0,∞[ ;Mb(Rn)) and is called a measure solution in the sense of Poupaud–Rascle
of the initial value problem

(1.5) Lu := ∂tu+
n∑

k=1

∂xk
(ak · u) = 0, u(0) = u0.

Note that u defines a distribution of order 0 in D′(Ω∞) by

〈u, ϕ〉D′(Ω∞)
:=

∫ ∞

0

〈
u0, ϕ(t, χF (t, x))

〉
D′0(Rn)

dt, ∀ϕ ∈ D′(Ω∞).

The solution concept of Poupaud–Rascle does not directly solve the partial
differential equation in a distributional sense, but it still reflects the physical picture
of a “transport process” as imposed by the properties of the Filippov characteristics.
Nevertheless, in the cited paper of Poupaud–Rascle [30] the authors present an a
posteriori definition of the particular product a ·u, which restore the validity of the
PDE in a somewhat artificial way. We investigate this in the sequel in some detail.

Definition 1.2 (A posteriori definition of a distributional product in the
sense of Poupaud–Rascle). Let u ∈ D′(Rn) be a distribution of order 0 and a ∈
L1

loc

(
[0,∞[ , L∞(Rn)

)n, satisfying the forward uniqueness condition (1.2), such that
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there exists a continuous Filippov flow χF . Furthermore we assume that u is a gen-
eralized solution of the initial value problem as defined in (1.4). Then we define
the product a • u = (ak · u)k in D′( ]0,∞[ × R

n
)n by

〈a • u, ϕ〉D′(Ω∞)
:=

〈
u0,

∫ ∞

0

∂tχF (t, x)ϕ(t, χ(t, x))dt
〉
D′0(Rn)

, ϕ ∈ D(Ω∞).

Remark 1.2. Note that the product a · u is defined only for distributions u
that are a generalized solutions (according to Poupaud–Rascle) of the initial value
problem (1.5) with the coefficient a. The domain of the product map (a, u) �→ a •u,
as subspace of D′0(Rn) ×D′0(Rn) has a complicated structure: Just note that the
property to generate a continuous characteristic Filippov flow χF is not conserved
when the sign of the coefficient a changes, as we have seen for the coefficient a(x) =
sign(x).

Example 1.1. Consider problem (1.5) with the coefficient a(x) := −sign(x)
subject to the initial condition u0 = 1. Then the continuous Filippov flow is given
by χF (t, x) = −(t+x)−H(−x)+ (x− t)+H(x). We have χF (t, 0) = t+ − (−t)− = 0
and ∂tχF (t, x) = −H(−t − x)H(−x) − H(x − t)H(x) for almost all t ∈ [0,∞[ .
The generalized solution u is defined by

〈u, ϕ〉 :=
∫ ∞

0

〈u0, φ(t, x)〉 dt, where φ(t, x) := ϕ(t, χ(t, x)).

We have that

φ(t, x) :=

⎧⎨⎩
ϕ(t, x+ t) x � 0, 0 � t � −x
ϕ(t, 0), t � |x|
ϕ(t, x− t), x � 0, 0 � t � x,

thus

〈u, ϕ〉D′0(Ω∞) :=
∫ ∞

0

〈u0, φ(t, x)〉 dt =
∫ ∞

0

∫ ∞

−∞
φ(t, x) dx dt

= 2
∫ ∞

0

ϕ(t, 0)t dt+
∫ ∞

0

∫ −t

−∞
ϕ(t, x+ t) dx dt+

∫ ∞

0

∫ ∞

t

ϕ(t, x− t) dx dt

= 2
∫ ∞

0

ϕ(t, 0)t dt+
∫ ∞

0

∫ 0

−∞
ϕ(t, z) dz dt+

∫ ∞

0

∫ ∞

0

ϕ(t, z) dz dt

= 〈1 + 2tδ, ϕ(t, ·)〉D′0(Rn)

This generalized solution gives rise to the following product〈
(−sign(x)) •(1 + 2tδ(x)), ϕ

〉
D′(Ω∞)

:=
〈

1,
∫ ∞

0

∂tξF (t, x)ϕ(t, ξF (t, x)) dt
〉

D′0(Rn)

in D′(Ω∞). Evaluating the right-hand side we obtain〈
1,

∫ ∞

0

∂tχF (t, x)ϕ(t, χF (t, x)) dt
〉

=
∫ ∞

−∞

(
−

∫ ∞

0

H(−x)H(−x− t)ϕ(t, x+ t) dt
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−
∫ ∞

0

H(x)H(x− t)ϕ(t, x− t) dt
)
dx.

Since H(−x)H(−x − t) = H(−x − t) and H(x)H(x − t) = H(x − t) for t � 0 the
latter gives upon substitution〈

1,
∫ ∞

0

∂tχF (t, x)ϕ(t, χF (t, x)) dt
〉

= −
∫ ∞

−∞
sign(z)

∫ ∞

0

ϕ(t, z) dt dz,

hence (−sign(x)) •(1 + 2tδ(x)) = −sign(x). However, we cannot define the product
if −sign(x) is replaced by +sign(x), since the Filippov characteristics ξF (t; 0, x) are
no longer forward unique and thus do not generate a continuous Filippov flow χF .

Example 1.2. We consider the same coefficient a(x) := −sign(x) as before,
but now we set u0 := δ. We obtain the generalized solution

〈u, ϕ〉D′(Ω∞) :=
〈
1 ⊗ δ, ϕ(t, χF (t, x))

〉
D′(Ω∞)

=
∫ ∞

0

ϕ(t, χF (t, 0)) dt

This enables us to calculate the product〈
(−sign(x)) •δ(x), ϕ

〉
= −

〈
δ,

∫ ∞

0

∂tχF (t, x)ϕ
(
t, ξF (t, x)

)
dt

〉
.

Putting ψ(x) =
∫∞
0
∂tξF (t, x)ϕ

(
t, ξF (t, x)

)
dt and observe that

ψ(x) :=
∫ ∞

0

∂tχF (t, x)ϕ
(
t, χF (t, x)

)
dt =

∫ −x

0

ϕ(t, x+ t) dt, if x < 0

and

ψ(x) =
∫ ∞

0

∂tχF (t, x)ϕ
(
t, χF (t, x)

)
dt = −

∫ x

0

ϕ(t, x− t) dt, if x > 0.

At x = 0 we obtain ψ(0) = limx→0− ψ(x) = limx→0+ ψ(x) = 0, so it follows that
(−sign) •δ = 0.

Example 1.3. Let a(t, x) := 2H(−x), so that the Filippov flow is given by
χF (t, x) = −(x+ 2t)−H(−x) + xH(x). We have χF (t, 0) = −2t− = 0 and

∂tχF (t, x) := 2H(−x− 2t)H(−x).
Hence ∂tχF (t, 0) = 0 for almost all t ∈ [0,∞[ . If u0 = 1 the generalized solution is

〈u, ϕ〉D′0(Ω∞)
:=

∫ ∞

0

∫ ∞

−∞
φ(t, x) dx dt,

where φ(t, x) = ϕ(t, χF (t, x)). Since

φ(t, x)|{x<−2t} = ϕ(t, x+ 2t), φ(t, x)|{−2t�x�0} = ϕ(t, 0), φ(t, x)|{0<x} = ϕ(t, x),

we obtain

〈u, ϕ〉D′0(Ω∞) =
∫ ∞

0

(∫ −2t

−∞
ϕ(t, x+ 2t) dx+ 2tϕ(t, 0) +

∫ ∞

0

ϕ(t, x) dx
)
dt

= 〈1 + tδ, ϕ(t, ·)〉D′0(Rn),
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hence u = 1 + 2tδ(x). Again we determine the product (2H(−x)) •(1 + 2tδ(x)) by

〈
2H(−x) •(1 + 2tδ(x)), ϕ

〉
D′(Ω∞)

= 2
∫ ∞

−∞

∫ ∞

0

H(−x)H(−x− 2t)ϕ(t, x+ 2t) dt dx

= 2
∫ ∞

−∞

∫ ∞

0

H(−x− 2t)ϕ(t, x+ 2t) dt dx = 2
∫ ∞

0

∫ ∞

−∞
H(−z)ϕ(t, z) dz dt

= 〈1 ⊗ 2H(−·), ϕ〉D′(Ω∞)
.

We obtain (2H(−x)) •(1 + 2tδ(x)) = 2H(−x). Observe that together with the
result in Example (1.1) (−sign(x)) •(1 + 2tδ(x)) = (2H(−x) − 1) •(1 + 2tδ(x)) we
can conclude that either (−1) •(1 + 2tδ(x)) is not defined or the product • is not
distributive. In fact, it is not difficult to see that (−1) •(1 + 2tδ(x)) cannot be
defined in this way, neither can 1 •(1 + 2tδ(x)).

Example 1.4 (generalization of Example 1.1). Let c1 � c2 be two constants,
and α ∈ [c1, c2]. Consider the a(t, x) := c1H(αt − x) + c2H(x − αt). We set
t1(x) := −x

c1−α if x < 0 and t2(x) := x
α−c2

for x > 0. The unique Filippov flow is
given by

χF (t, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c1t+ x, x < 0, t < t1(x)
αt, x < 0, t � t1(x)
αt, x = 0,
c2t+ x, x > 0, t � t2(x)
αt, x > 0, t � t2(x)

The generalized solution of the initial value problem Lu := ∂tu + ∂x(a · u) = 0,
u(0) = u0 ∈ L1

loc(R), according to Poupaud–Rascle is given by

〈u, ϕ〉D′0(ΩT ) =
∫ T

0

〈u0, ϕ(t, χF (t, ·))〉D′0(R) dt

=
∫ 0

−∞

∫ t1(x)

0

u0(x)ϕ(t, c1t+ x) dt dx+
∫ 0

−∞

∫ T

t1(x)

u0(x)ϕ(t, αt) dt dx

+
∫ ∞

0

∫ t2(x)

0

u0(x)ϕ(t, c2t+ x) dt dx+
∫ ∞

0

∫ T

t2(x)

u0(x)ϕ(t, αt) dt dx

=
∫ T

0

∫ −t(c1−α)

−∞
u0(x)ϕ(t, c1t+ x) dx dt+

∫ T

0

∫ ∞

−t(c2−α)

u0(x)ϕ(t, c2t+ x) dx dt

+
∫ T

0

(∫ t(α−c2)

−t(c1−α)

u0(x) dx

)
ϕ(t, αt) dt,

hence

u := u0(x− c1t)H(αt−x)+u0(x− c2t)H(x−αt)+

(∫ t(α−c2)

−t(c1−α)

u0(x) dx

)
δ(x−αt).
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1.3. Colombeau generalized flow. In this subsection we consider the solv-
ability of the ordinary differential equations for the characteristics in the setting of
Colombeau generalized functions. Our main focus will be on distributional shadows
of such generalized solutions. It will appear that under certain assumptions on the
right-hand side, the distributional shadow exists and is absolutely continuous. We
will also show a uniqueness result for distributional shadows.

Theorem 1.1 (Existence). Assume A ∈ G(ΩT )n with a representative (Aε)ε,
such that

sup
x∈Rn

|Aε(t, x)| � β(t), ε ∈ ]0, 1], almost everywhere in t ∈ [0, T ](1.6)

holds, where β is some positive function in L1([0, T ]). Let (t̃, x̃) ∈ Ω̃T be a c-
bounded initial value. Then there exists a c-bounded solution ξ ∈ G([0, T ])n to the
initial value problem

ξ̇(s) = A(s, ξ(s)), ξ(t̃) = x̃.

Furthermore, there exists some (t, x) ∈ ΩT , ξC ∈ AC([0, T ]) such that for any rep-
resentantive (ξε)ε of ξ, (tε, xε)ε of (t̃, x̃) there exists subsequences (tεj

, xεj
)j,(ξεj

)j

with limj→∞(tεj
, xεj

) = (t, x) and ξεj

j→∞−→ ξC uniformly on [0, T ] and ξC(t) = x.

Proof. By classical existence and uniqueness we obtain ξε for each ε ∈ ]0, 1]
such that

ξε(s) = xε +
∫ s

tε

Aε(τ, ξε(τ)) dτ

holds. Condition (1.6) yields |ξε(s)| � |xε| + | ∫ s

t
β(τ) dτ | for all s, t ∈ [0, T ], hence

c-boundedness of (ξε)ε on [0, T ] and furthermore moderateness of ξ̇ε (by [12, Propo-
sition 1.2.8]). In fact this existence result is quite similar to the one given in [12,
Proposition 1.5.7].

To prove the existence of a convergent subsequence of (ξε)ε, we may assume
without loss of generality that limε→0(tε, xε) = (t, x) ∈ ΩT . Note that the family
(ξε)ε is uniformly bounded and equicontinuous, since

|ξε(s) − ξε(s′)| �
∣∣∣∣ ∫ s′

s

β(τ) dτ
∣∣∣∣ s, s′ ∈ [0, T ], ε ∈ ]0, 1] .

The Theorem of Arzela–Ascoli yields a subsequence (ξεj
)j converging uniformly to

some ξC ∈ C([0, T ]). Clearly, ξC(t) = limj→∞ ξεj
(tεj

) = limj→∞ xεj
= x. such

that
lim

j→∞
sup

s∈[0,T ]

|ξεj
(s) − ξC(s)| = 0,

holds. We have for all s, s′ ∈ [0, T ],

|ξC(s) − ξC(s′)| � |ξC(s) − ξεj
(s)| + |ξεj

(s) − ξεj
(s′)| + |ξεj

(s′) − ξC(s′)|

� |ξC(s) − ξεj
(s)| +

∫ s′

s

β(τ) dτ + |ξεj
(s′) − ξC(s′)| j→∞−→

∫ s′

s

β(τ) dτ,

hence ξC is absolutely continuous on [0, T ]. �
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1.4. Semigroups defined by characteristic flows. Let X be a Banach
space and (Σt)t∈[0,∞[ be a family of bounded operators Σt on X. Consider the
following conditions:

(1) Σ0 = id
(2) Σs ◦ Σt = Σs+t for all s, t ∈ [0,∞[ and
(3) the orbit maps σu0 : [0,∞[ → X, t �→ Σt(u0) are continuous for every

u0 ∈ X.
If (i) and (ii) are satisfied, then we call (Σt) a semi-group acting on X. If in addition
property (iii) holds, we say (Σt)t∈[0,∞[ is a semi-group of type C0.

We briefly investigate how the solution concepts discussed in Subsections 1.1
and 1.2 fit into the picture of semi-group theory when the coefficient a is time-
independent. First we return to the classical Caratheodory case: Let a ∈ C(Rn)n

and assume that a suffices the forward uniqueness condition (1.2). This implies
that the characteristic flow χ : Ω∞ → R

n is continuous and χ(t, ·) is onto R
n for

fixed t ∈ [0,∞[. Furthermore we have χ(s, χ(r, x)) = χ(s+ r, x) for all x ∈ Rn and
r, s ∈ [0, T ] with s+ r ∈ [0, T ], since a is time independent.

Consider the initial value problem Pu = ∂t +
∑n

k=1 ak∂xk
u = 0 with initial

condition u(0) = u0 ∈ C0(Rn) (i.e. vanishes at infinity). It is easy to verify that

Σt : C0(Rn) → C0(Rn), u0 �→ χ∗u0

defines C0 semigroup on the Banach space C0(Ω∞): Note that Σt is a bounded
operator on C0(Rn) for each t ∈ [0,∞[ , as χ(t,Rn) = R

n, so

‖Σt(u0)‖∞ = sup
x∈Rn

‖u0(χ(t, x))‖ = sup
x∈Rn

‖u0(χ(t, x))‖ = sup
x∈Rn

‖u0(x)‖ = ‖u0‖∞.

We have that ‖Σt‖ = 1 for all t ∈ [0,∞[ . Condition (i) and (ii) follow directly from
the flow properties of χ. The continuity condition (iii), which is equivalent to

lim
t→0+

‖Σt(u0) − u0‖∞ = lim
t→0+

sup
x∈Rn

‖u0(χ(t, x)) − u0(x)‖ = 0,

holds, since (χ(t, x))x∈Rn is an equicontinuous family and u0 vanishes at infinity.

Remark 1.3. For a coefficient a in L∞(Rn)n we can also define a semi-group
on C0(Rn) by Σt(u0) := u0(χF (t, x)), where χF is the generalized Filippov flow as
introduced earlier. This is due to the fact, that the Filippov flow has almost the
same properties as the Caratheodory flow.

It seems natural to understand the solution concepts as defined by (1.1) and
(1.4) as action of the dual semigroup (Σ∗

t ) on

〈u(t), ϕ〉D′0(Rn)
= 〈Σ∗

tu0, ϕ〉D′0(Rn)
= 〈u0,Σt(ϕ)〉D′0(Rn)

.

the Banach space of finite complex Radon measures, the dual space of C0(Rn) (cf.
[9, Chapter 4], [29, Chapter 1.10] or [37, Chapter IX.13] for the general setting).
However, in general the dual semi-group is not of class C0 (cf. [9, Example 1.31]).
This is only guaranteed if we start from a C0 semi-group defined on a reflexive
Banach space.
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Nevertheless the solution concepts in (1.1) and (1.4) still yield the semi group
properties (i) and (ii) with weak-∗ continuity replacing the strong continuity prop-
erty (iii).

The situation is much easier with Hilbert spaces, of course. We conclude with
an example involving a discontinuous coefficient.

Example 1.5. Let a ∈ L∞(R) such that there exist c0, c1 > 0 such that
c1 < a(x) < c2 almost everywhere. We want to solve the initial value problem

Pu = ∂tu+ a(x)∂xu = 0, u(0) = u0 ∈ L2(R)

for u ∈ AC
(
[0, T ];L2(R)

) ∩ L1
(
[0, T ];H1(R)

)
.

Let A(x) =
∫ x

0
a(y)−1dy, which is Lipschitz continuous and strictly increasing

(thus globally invertible) and observe that χ(t, x) = A−1(t + A(x)) defines the
(forward) characteristic flow that solves χ(t, x) = x +

∫ t

0
a(χ(τ, x)) dτ. Let Q :=

−a(x)∂x with domain D(Q) := H1(R). The resolvent of Q for Re(µ) > 0 is
obtained from the equation (−Q + µ)v = f, f ∈ L2(R). Upon division by a we
deduce

∂xv +
µ

a
v =

f

a
.(1.7)

Let us first consider uniqueness: Let w ∈ H1(R) satisfy

(1.8) ∂xw +
µ

a
w = 0.

Since w is absolutely continuous we have

w(x) = C exp
(
−2Re(µ)

∫ x

−∞

1
a(z)

dz

)
for some constant C. But w ∈ L2(R) if and only if C = 0, thus w = 0.

Existence: One easily verifies that

v(x) = (R(µ)f)(x) :=
∫ x

−∞
exp

(
−µ

∫ x

y

a(z)−1dz

)
f(y)
a(y)

dy

=
∫ x

−∞
exp

(− µ(A(x) −A(y))
)f(y)
a(y)

dy

is a solution of (1.7) in AC(R). Upon substitution y �→ z = A(x) − A(y) in the
right-most integral we obtain

(R(µ)f)(x) =
∫ ∞

0

exp (−µz)f(χ(−z, x)) dz,(1.9)

which is the Laplace transform of f(χ(−., x)).
We denote the kernel of the integral operator R(µ) by

M(x, y) := H(x− y) exp (−µ(A(x) −A(y))a(y)−1.
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We briefly sketch the derivation of L2 estimates for the operator powers R(µ)k for
Re(µ) > 0: Note that R(µ)k is an iterated integral operator of the form

R(µ)kf(x) := R(µ)k−1

(∫
R

M(·, z1)f(z1) dz1

)
(x)

=
∫

R

· · ·
∫

R

M(x, zk)M(zk, zk−1) . . .M(z2, z1)f(z1) dzk−1 . . . dz2 dz1.

To simplify notation let z = (z1, . . . , zk), dkz = dz1 . . . dzk,
h(z) := exp (−µ∑k

l=1 zl), and g(x, z) := f(χ(−∑k
l=1 zl, x)). Using the flow prop-

erty of χ we obtain that

R(µ)kf(x) =
∫

[0,∞[k
h(z)g(z, x) dkz

holds, hence by by the integral Minkowski inequality

‖R(µ)kf‖L2 �
(∫

R

(∫
[0,∞[k

|h(z)||g(z, x)| dkz

)2

dx

)1/2

(1.10)

�
∫

[0,∞[k
|h(z)|

(∫
R

|g(z, x)|2 dx
)1/2

dkz.

Since ∫
R

|g(z, x)|2 dx =
∫

R

∣∣∣∣f(χ(−
k∑

l=1

zl, x

))∣∣∣∣2 dx
=

∫
R

|f(y)|2
∣∣∣∣ a(y)

a
(
χ
(∑k

l=1 zl, y
)) ∣∣∣∣ dy � c1

c0
‖f‖2

L2 ,

we conclude

‖R(µ)kf‖L2 �
√
c1/c0 · ‖f‖L2 ·

∫
]−∞,0]k

|h(z)| dkz =

√
c1/c0

Re(µ)k
· ‖f‖L2 .

The Hille–Yosida theorem [29, Theorem 5.2] yields that Q generates the C0 semi-
group

Σt : L2(R) → L2(R), u0 �→ u0(χ(−t, x)).
The resolvent operator µ �→ R(µ) (defined for Re(µ) > 0) is the Laplace transform
of the semigroup t→ Σt as indicated in (1.9).

Remark 1.4. Since L2(Rn) is reflexive the dual semigroup is C0 as well and
has as its generator the adjoint operator Q∗.

Remark 1.5. If we assume additional regularity on the coefficient, e.g. a ∈
Cσ

∗ (R) with σ > 0, in Example 1.5, then we obtain a C0 semigroup (Σt) acting
on the Hilbert space Hs(R) with 0 � s < σ. We may then use the fact that the
(square of the) Sobolev norm ‖v‖2

s is equivalent to the following expression (cf. [16,
Equation (7.9.4)]) ∫

|v(x)|2 dx+ Cs

∫ ∫ |v(x) − v(y)|2
|x− y|n+2s

dx dy,
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where the constant Cs depends only on the dimension n and s. From this it can be
shown that we may have D(Q) = Hs+1(R) as domain of Q (this also corresponds
to the special case of the mapping properties stated in [35, Chapter 2]). Clearly,
uniqueness in the characteristic equation (1.8) is still valid. A corresponding variant
of the estimate (1.10) for the powers of the resolvent operator R(µ)k on Hs(R) is
obtained by the following calculation (with the notation h and g as in Example 1.5):

‖R(µ)kf‖2
s = ‖R(µ)kf‖2

0 +
∫

R

∫
R

|(R(µ)kf)(x) − (R(µ)kf)(y)|2
|x− y|1+2s

dx dy

� c1/c0

Re(µ)2k
· ‖f‖2

0 +
∫

R

∫
R

(∫
[0,∞[k

|h(z)| |g(x, z) − g(y, z)|
|x− y|(1+2s)/2

dz

)2

dx dy

� c1/c0

Re(µ)2k
· ‖f‖2

0 +
(∫

[0,∞[k
|h(z)|

(∫
R

∫
R

|g(x, z) − g(y, z)|2
|x− y|1+2s

dx dy

)1/2

dkz

)2

.

To carry out the x and y integrations we use the substitutions x′ = χ
(−∑k

l=1 zl, x
)
,

y′ = χ
(−∑k

l=1 zl, y
)

to obtain∫
R

∫
R

|g(x, z) − g(y, z)|2
|x− y|1+2s

dx dy

=
∫

R

∫
R

∣∣f(χ(−∑k
l=1 zl, x

))− f
(
χ
(−∑k

l=1 zl, y
))∣∣2

|x− y|1+2s
dx dy

=
∫

R

∫
R

|f(x′) − f(y′)|2∣∣χ(∑k
l=1 zl, x′

)− χ
(∑k

l=1 zl, y′
)∣∣1+2s

·
∣∣∣∣a

(
χ
(∑k

l=1 zl, x
′))

a(x′)

∣∣∣∣∣∣∣∣a
(
χ
(∑k

l=1 zl, y
′))

a(y′)

∣∣∣∣ dx′ dy′.
Now, by the mean value theorem we have

∣∣χ(∑k
l=1 zl, x

)−χ(∑k
l=1 zl, y

)∣∣ � c0
c1
|x−y|

and the assumed bounds for a give∣∣∣∣a
(
χ
(∑k

l=1 zl, ·
))

a(·)
∣∣∣∣ � c1

c0
,

thus we arrive at∫
R

∫
R

|g(x, z) − g(y, z)|2
|x− y|1+2s

dx dy �
(
c1
c0

)3+2s ∫
R

∫
R

|f(x) − f(y)|2
|x− y|1+2s

dx dy

Again by
∫
[0,∞[k

|h(z)| dkz = 1/Re(µ)k we conclude

‖R(µ)kf‖2
s � c1/c0

Re(µ)2k
· ‖f‖2

0 +
(c1/c0)

3+2s

Re(µ)2k

∫
R

∫
R

|f(x′) − f(y′)|2
|x′ − y′|1+2s

dx′ dy′

� (c1/c0)3+2s

Re(µ)2k
‖f‖2

s, i.e., ‖R(µ)kf‖s � (c1/c0)(3+2s)/2

Re(µ)k
‖f‖s.
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1.5. Measurable coefficients with prescribed characteristics. This sub-
section discusses a solution concept according to Bouchut–James ([3]), which is set-
tled in one space dimension and—from the distribution theoretic point of view—can
be considered as exotic. The basic idea is to interpret the multiplication a · u oc-
curring in the partial differential equation as a product of a (locally finite) Borel
measure u and a function a from the set B∞ of real bounded and Borel measurable
functions.

Multiplication of Radon measures by bounded Borel functions: We may identify
locally finite Borel measures on R with (positive) Radon-measures, that is the non-
negative linear functionals on Cc(R) [14, Remark 19.49]. Moreover, the space
D′0(R) is the space of complex Radon-measures, which allows for a decomposition
of any u ∈ D′0(R) in the form u = ν+ − ν− + i(η+ − η−), where ν+, ν−, η+, η+ are
positive Radon-measures.

The product of a bounded Borel function a ∈ B∞(R) with a positive Radon
measure µ is defined to be the measure given by

(a� µ)(B) :=
∫

Rn

1B(x) a(x) dµ(x),

for all Borel sets B in R. Clearly, a� µ is again a locally finite Borel measure.
The product employed in [3] is the extension of � to B∞(R) × D′0(R) in a

bilinear way, i.e.

� : B∞(R) ×D′0(R) → D′0(R)

(a, u) �→ a+ � ν+ + a− � ν− − (a− � ν+ + a+ � ν−)

+ i(a+ � η+ + a− � η− − (a− � η+ + a+ � η−)).

Consider the following sequence of maps:

Cb(R)
ι1
↪→ B∞(R) λ→ L∞

loc(R)
ι2
↪→ D(0)′(R)

where ι1, ι2 are the standard embeddings and λ sends bounded Borel functions
to the corresponding classes modulo functions vanishing almost everywhere in the
sense of the Lebesgue measure.

Although we may identify Cb(R) and L∞
loc with subspaces of D′0(R) this is not

true of B∞(R), since λ is not injective. Note that ι2 ◦λ◦ ι1 is injective though. The
following example illustrates some consequences of the non-injectivity of the map
λ for the properties of the product �.

Example 1.6. Let α ∈ R and aα(x) := 1, x �= 0 and aα(0) := α and u = δ ∈
D′0(R). Note that λ ◦ ι1(aα) = 1 as a distribution and the standard distributional
product gives λ◦ ι1(aα) ·u = 1 ·u = δ for all α ∈ R. On the other hand aα � δ = αδ.

The product � will be used in the solution concept for transport equations on
ΩT = [0, T ]× R with coefficient a in B∞(ΩT ) and solution u ∈ B∞(

[0, T ];D′0(R)
)
,

i.e., u is a family of distributions (u(t))t∈[0,T ] such that 〈u(t), ϕ〉D′0(R) is a bounded
Borel function on [0, T ] for all ϕ ∈ Cc(R). The extension of the product � to this
space causes no difficulty.
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The solution concept according to Bouchut and James: A key ingredient for the
solution concept according to Bouchut–James, is to stick to a particular representa-
tive of the coefficient (in the L∞ sense), by prescribing the value of the coefficient a
at curves of discontinuity. We refer to the following requirements on the coefficient
a ∈ B∞(ΩT ) as Bouchut–James conditions : Assume there exists a decomposition
ΩT = C ∪ D ∪ S such that

(1) S is a discrete subset ΩT ,
(2) C is open, a is continuous on C,
(3) D is a one-dimensional C1-submanifold of ΩT , i.e., for each (t0, x0) ∈ D

there exists a neighborhood V of (t0, x0) and a C1 parametrization of the
form t �→ (t, ξ(t)) in D ∩ V . Furthermore, a has limit values for each
(t, x) ∈ D from both sides in C � D. These limits are denoted by a+(t, x)
and a−(t, x).

(4) a(t, x) ∈ [a−(t, x), a+(t, x)] for all (t, x) ∈ D,
(5) for any point (t0, x0) ∈ D with neighborhood V and local parametrization

ξ as in (iii), we have ξ̇(t) = a(t, ξ(t)).
Condition (v) prescribes the values of the coefficient a(t, x) on the curves of dis-
continuity in such a way that the characteristic differential equation holds. In this
sense, a coefficient satisfying (i)–(v) is a piecewise continuous bounded function,
where the (non-intersecting) curves of discontinuity can be parametrized as regular
C1 curves.

The Bouchut–James solution concept interprets hyperbolic Cauchy problems
in (1 + 1) dimension as

Pu := ∂tu+ a � ∂xu = 0, u(0) = u0 ∈ BVloc(R)(1.11)

Lu := ∂tu+ ∂x(a � u) = 0, u(0) = u0 ∈ D′0(R).(1.12)

Note that P (resp. L) is well defined on the set B∞(
[0, T ]; BVloc(R)

) (
resp.

B∞(
[0, T ];D′0(R)

))
.

Now the main results of Bouchut–James [3] are:

Theorem 1.2. [3, Theorem 3.4] Assume that a satisfies the Bouchut–James
conditions (i)–(v). For any u0 ∈ BVloc(R) there exists u ∈ Lip

(
[0, T ];L1

loc(R)
) ∩

B∞(
[0, T ];BVloc(R)

)
solving (1.11) and such that for any x1 < x2 we have for all

t ∈ [0, T ]

VarI(u(t, ·)) � VarJ(u0), ‖u(t, ·)‖L∞(I) � ‖u0‖L∞(J)

where I := ]x1, x2[ and J := ]x1 −‖a‖∞t, x2 + ‖a‖∞t[ . If in addition the coefficient
a satisfies the one-sided Lipschitz condition〈

a(t, x) − a(t, y), x− y
〉

� α(t)|x− y|2 for almost all (t, x), (t, y) ∈ ΩT ,

where α ∈ L1([0, T ]), then the solution u is unique.

Theorem 1.3. [3, Theorem 3.6] Assume that a satisfies the Bouchut–James
conditions (i)–(v). Then it follows that for any u0 ∈ D′0(R) there exists u ∈
C
(
[0, T ];D′0(R)

)
solving (1.12).
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If a satisfies in addition the one-sided Lipschitz condition〈
a(t, x) − a(t, y), x− y

〉
� α(t)|x− y|2 for almost all (t, x), (t, y) ∈ ΩT ,

where α ∈ L1([0, T ]), then the solution u is unique.

We compare the solution concept of Bouchut–James with the generalized solu-
tions according to Poupaud–Rascle.

Example 1.7. We come back to Example 1.4, where

a(t, x) := c1H(αt− x) + c2H(x− αt) with c2 < c1 and α ∈ [c2, c1].

Let λ ∈ L1([0, T ]) such that c1 � λ(t) � c2. Consider a representative a in B∞(ΩT )
of the coefficient a given by

ã(t, x) =

⎧⎨⎩
c1, x < αt
λ(t), x = αt
c2, x > αt

.

We investigate wether the distribution u given in Example 1.4 solves (1.12) in
the sense of Bouchut–James. Let us consider the case u0 ≡ 1. Then we obtain the
solution u = 1 + t(c1 − c2)δ(x − αt). Note that the requirement that ã fulfills the
Bouchut–James conditions (i)–(v) forces λ(t) := α for all t ∈ [0, T ]. Thus we have

ã � v = c1H(αt− x) + αδ(x− αt)t(c1 − c2) + c2H(x− αt)

and therefore ∂x(ã � v) = αt(c1 − c2)δ′(x − αt) − (c1 − c2)δ(x − αt). Since ∂tv =
(c1−c2)δ(x−αt)−αt(c1−c2)δ′(x−αt) we deduce that u solves the Cauchy problem
in the sense of Bouchut–James.

Finally, we check whether the differential equation is fulfilled, if we employ the
model product (cf. [28, Chapter 7] or the introduction) instead of �. Let [a · v]
denote the model product. We have that

[ã · v] = [(c1H(αt− x) + c2H(x− αt)) · u]
= c1H(αt− x) + c2H(x− αt) + c1t(c1 − c2)[H(αt− x) · δ(x− αt)]

= c2t(c1 − c2)[H(x− αt) · δ(x− αt)] + c1H(αt− x) + c2H(x− αt)

+
t

2
(c1 + c2)(c1 − c2)δ(x− αt),

hence

∂x[a · v] = (c2 − c1)δ(x− αt) − t

2
(c1 + c2)(c1 − c2)δ′(x− αt),

∂tv = (c1 − c2)δ(x− αt) − αt(c1 − c2)δ′(x− αt).

Therefore v solves the initial value problem

∂tv + ∂x[a · v] = 0, v(0) = 1,

if α = 1
2 (c1 + c2).
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Note that the coefficients H(−x) (with c1 = 1, c2 = 0, α = 0), −H(x) (with
c1 = 0, c2 = −1, α = 0), and −sign(x) (when c1 = 1, c2 = −1, α = 0) are included
as special cases of the example presented here. In case the coefficient reads

a(x) := H(−x)
the unique solution in the sense of Bouchut–James is given by u = 1 + tδ. It has
been shown in [20, Theorem 5] that no distributional solution exists in this case
when the model product is employed.

2. Solutions from energy estimates

2.1. Direct energy estimates. We briefly review the standard techniques
of energy estimates for the initial value problem

Pu := ∂tu+
n∑

j=1

aj ∂xj
u+ c u = f in ]0, T [ × R

n,

u(0) = u0 ∈ L2(Rn).

(2.1)

Let q ∈ [2,∞]. We assume that f ∈ L1
(
[0, T ];L2(Rn)

)
, a = (a1, . . . , an) ∈

L1
(
[0, T ];W 1,q(Rn)

)n with real components, c ∈ L1
(
[0, T ];Lq(Rn)

)
and in addition

(2.2)
1
2

divx(a) − c ∈ L1
(
[0, T ];L∞(Rn)

)
.

2.1.1. Example derivation of an energy estimate. We browse through the typ-
ical steps that lead to an estimate in the norm of L∞(

[0, T ];L2(Rn)
)

for any

u ∈ AC
(
[0, T ];L2(Rn)

) ∩ L∞(
[0, T ];W 1,p(Rn)

)
with p ∈ [2,∞] such that 1

q + 1
p = 1

2 in terms of corresponding norms for u(0) and
Pu.

We write P = ∂t + Q with Q :=
∑n

k=1 ak(x, t)∂xk
+ c(x, t) and observe

that Pu ∈ L1
(
[0, T ];L2(Rn)

)
holds since ∂tu ∈ L1

(
[0, T ];L2(Rn)

)
and Qu ∈

L1
(
[0, T ];L2(Rn)

)
(the latter follows from the facts that ∂xj

u(t, .) ∈ L2 and Lq·Lp ⊆
L2 when 2/p + 2/q = 1). Hence r �→ Re

(〈(Pu)(r), u(r)〉0) is defined and in
L1([0, T ]). Furthermore, the map t �→ ‖u(t, ·)‖0 is continuous.

We put

h(r) :=
∥∥∥1

2
divx(a(r, ·))− c(r, ·)

∥∥∥
∞

and λ(r) := 2
∫ r

0

h(s) ds � 0 (r ∈ [0, T ]).

By assumption, h ∈ L1([0, T ]) and λ ∈ AC([0, T ]).
The standard integration by parts argument gives the G̊arding-type inequality

(2.3)
1
2
(〈Qu(τ), u(τ)〉0 + 〈u(τ), Qu(τ)〉0

)
= Re(〈Qu(τ), u(τ)〉0) � −h(τ)‖u(τ)‖2

0,

and thus∫ τ

0

e−λ(r) Re
(〈(Pu)(r), u(r)〉0) dr
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=
1
2

∫ τ

0

e−λ(r) d

dr
‖u(r)‖2

0 dr +
∫ τ

0

e−λ(r) Re〈(Qu)(r), u(r)〉0 dr

� 1
2
e−λ(τ)‖u(τ)‖2

0 −
1
2
‖u(0)‖2

0 −
∫ τ

0

(
h(r) − λ̇(r)

2

)
︸ ︷︷ ︸

=0

e−λ(r)‖u(r)‖2
0 dr.

Therefore

e−λ(τ)‖u(τ)‖2
0 � ‖u(0)‖2

0 + 2
∫ τ

0

e−λ(r)‖(Pu)(r)‖0‖u(r)‖0 dr

� ‖u(0)‖2
0 + 2 sup

r∈[0,τ ]

(
e−λ(r)/2‖u(r)‖0

)∫ τ

0

e−λ(r)/2‖(Pu)(r)‖0 dr,

where we may take the supremum over τ ∈ [0, t] on the left-hand side and thus
replace τ by t on the right-hand upper bound. A simple algebraic manipulation
then gives(

sup
r∈[0,t]

∥∥e−λ(r)/2u(r)
∥∥

0
−

∫ t

0

e−λ(r)/2‖(Pu)(r)‖0 dr

)2

�
(
‖u(0)‖0 +

∫ t

0

e−λ(r)/2‖(Pu)(r)‖0 dr

)2

.

Upon removing the squares and multiplying by exp(λ(t)/2) we obtain the fol-
lowing basic inequality.

Energy estimate:

sup
r∈[0,t]

‖u(r)‖0 � exp
(∫ t

0

h(σ) dσ
)
·‖u(0)‖0 + 2 exp

(∫ t

0

h(σ) dσ
)
·
∫ t

0

‖(Pu)(r)‖0 dr

= exp
(∫ t

0

h(σ) dσ
)(

‖u(0)‖0 + 2
∫ t

0

‖(Pu)(r)‖0 dr

)
.(2.4)

We recall that the exponential factor depends explicitly on the coefficients a and c
via h(r) =

∥∥1
2 divx(a(r, ·)) − c(r, ·)∥∥∞.

Note that this derivation of an energy estimate relied on the G̊arding inequal-
ity(2.3).

Example 2.1 (Failure of the G̊arding-inequality(2.3)). Let α ∈ ]1/2, 1[ and
define a : R → R by a(x) := 1 + xα

+ when x � 1, and a(x) := 2 when x > 1. We
have a ∈ Cα

∗ (R) � Lip(R).
Let Q : H1(R) → L2(R) be the operator defined by (Qv)(x) := a(x)v′(x) for all

v ∈ H1(R). Note that compared to the general form of the operator Q in the deriva-
tion of the energy estimate above we have here c = 0, a ∈ C∞(

[0, T ];W 1,2(R)
)

but
div a/2 − c = a′/2 /∈ L∞(R).

Since Q is time independent, inequality (2.3) with some h ∈ L1([0, T ]) (not
necessarily of the form given above) would imply

∃C ∈ R ∀v ∈ C∞
c (R) Re(〈Qv, v〉0) � −C‖v‖2

0.
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We will show that there is no constant C ∈ R such that the latter holds. Thus(2.3)
cannot hold for Q (for any h ∈ L1([0, T ])).

Let ρ ∈ C1(R) be symmetric, non-negative, with support in [−1, 1], ‖ρ‖0 = 1,
and such that ρ′(x) < 0 when 0 < x < 1. We define vε(x) := ε−1/2ρ(x/ε) (x ∈ R,
ε > 0). Then clearly vε ∈ C∞

c (R) ⊆ H1(R) and ‖vε‖0 = 1 for all ε > 0, but

〈Qvε, vε〉0 =
∫
a(x) v′ε(x) vε(x) dx

=
∫ ∞

−∞
v′ε(x) vε(x) dx︸ ︷︷ ︸

=0

+
∫ 1

0

xαv′ε(x) vε(x) dx+
∫ ∞

1

v′ε(x) vε(x) dx︸ ︷︷ ︸
=0

= εα−1

∫ 1

0

zαρ′(z) ρ(z) dz → −∞ (ε→ 0).

We remark that even for a ∈ C1
∗(R) � Lip(R) the G̊arding inequality may fail

as well: for example, with a(x) := −x log |x|ρ(x) we have a ∈ C1
∗(R) ∩W 1,q(R) for

all q ∈ [1,∞[ , but

〈Qvε, vε〉0 = −2
∫ 1

0

ρ(εz)z log |εz|ρ′(z) ρ(z) dz

� 2|log ε|
∫ 1

0

zρ(εz) ρ′(z) ρ(z) dz → −∞,

since limε→0

∫ 1

0
zρ(εz) ρ′(z) ρ(z) dz = ρ(0)

∫ 1

0
zρ′(z) ρ(z) dz < 0.

Remark 2.1. (i) Let Q∗ denote the formal adjoint of Q with respect to the L2

inner product (on x-space). Due to our regularity assumptions on a and c we have
for any ϕ ∈ H1 (since a is real)

Q∗ϕ =
n∑

j=1

(−aj∂xj
ϕ) + (c̄− divx(a))ϕ,

where the new coefficients −a, respectively c̄ − divx(a), in place of a, respectively
c, satisfy the exact same regularity assumptions, including the condition

1
2

divx(−a) − (c̄− divx(a)) =
divx(a)

2
− c ∈ L1

(
[0, T ];L∞(Rn)

)
.

Thus the basic energy estimate(2.4) applies to ±∂t +Q∗ as well. In particular, the
function h in the exponential factor occurring in the energy estimates is the same
for Q and Q∗.

(ii) Although the method of derivation discussed above relied on a G̊arding-
type inequality, it seems that in essence energy estimates are, in a vague sense, a
necessary condition for a hyperbolic equation to hold in any meaningful context of
“suitable Banach spaces of distributions”. In other words, whenever a hyperbolic
differential equation can be interpreted directly in terms of such Banach spaces
it allows to draw consequences on combinations of corresponding norms of any
solution. For example, if the operator Q above generates a strongly continuous
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evolution system on some Banach space, then basic norm estimates for solutions
follow from general principles of that theory (cf. [29, 33]).

On the other hand, energy estimates are widely used to establish existence of
solutions to (2.1) by duality and an application of the Hahn–Banach theorem. We
recall the basic steps of such method in the following.

2.1.2. Existence proof based on the energy estimate. Let RT := {(t, x) ∈ R
n+1 |

t < T}. By abuse of notation we denote the trivial extension of a function v ∈
C∞

c (RT ) by zero for t � T again by v. Then

L :=
{
f ∈ C∞(

[0, T ] × R
n
) | ∃v ∈ C∞

c (RT ) with f = (−∂tv +Q∗v)|[0,T ]×Rn

}
.

For 0 � t � T and v ∈ C∞
c (RT ) we use the notation w(t) := v(T − t) and

g(t) := (−∂tv +Q∗v)(t). Then we have

(∂t +Q∗(T − t))w(t) = g(T − t), w(0) = 0

and an application of(2.4) (with Q∗ in place of Q; cf. Remark 2.1(i) above) yields

sup
r∈[0,T ]

‖w(r)‖0 � 2 exp
(∫ T

0

h(σ) dσ
)∫ T

0

∥∥(−∂t +Q∗v)(T − r)
∥∥

0
dr

= Ch

∫ T

0

‖g(r)‖0 dr.

We may deduce that for f ∈ L1
(
[0, T ];L2(Rn)

)
and v ∈ C∞

c (RT )∫ T

0

〈f(r), v(r)〉0dr + 〈u0, v(0)〉0 �
∫ T

0

‖f(r)‖0‖v(r)‖0 dr + ‖u0‖0 ‖v(0)‖0

� C sup
r∈[0,T ]

‖w(r)‖0 � CCh

∫ T

0

‖g(r)‖0 dr,

where C depends on f and u0. Therefore the assignment

g = (−∂tv +Q∗v)|
[0,T ]×Rn �→

∫ T

0

〈f(r), v(r)〉0 dr + 〈u0, v(0)〉0

defines a conjugate-linear functional ν : L → C on the subspace L of
L1

(
[0, T ];L2(Rn)

)
such that |ν(g)| � sup0�r�T ‖g(r)‖0. Hahn–Banach extension

of ν yields a conjugate-linear functional ν′ : L1
(
[0, T ];L2(Rn)

) → C with the same
norm estimate.

Since L1
(
[0, T ];L2(Rn)

)′ ∼= L∞(
[0, T ];L2(Rn)

)
there is u ∈ L∞(

[0, T ];L2(Rn)
)

such that ν′(g) = 〈u, g〉 for all g ∈ L1
(
[0, T ];L2(Rn)

)
. When applied to g =

(−∂tv +Q∗v)|
[0,T ]×Rn with v ∈ C∞

c (RT ) we obtain∫ T

0

〈
u(t),−∂tv(t) + (Q∗v)(t)

〉
0
dt =

〈
u, ((−∂t +Q∗)v)|

[0,T ]×Rn

〉
(2.5)

=
∫ T

0

〈f(t), v(t, .)〉0 dt+ 〈u0, v(0)〉0.
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2.1.3. Model discussion of the weak solution concept. Case of smooth symbol:
If the coefficients of Q (and thus of Q∗) are C∞, then the above identity implies
that u is a distributional solution to the partial differential equation Pu = f in
]0, T [ × Rn. In fact, with ϕ ∈ C∞

c

(
]0, T [ × Rn

)
in place of v we have

〈(∂t +Q)u, ϕ〉 = 〈u, (−∂t +Q∗)ϕ〉 =
∫ T

0

〈f(t), φ(t, .)〉0 dt = 〈f, ϕ〉.

Moreover, since Qu ∈ L∞(
[0, T ];H−1(Rn)

)
the differential equation implies that

∂tu = f − Qu ∈ L1
(
[0, T ];H−1(Rn)

)
and thus u ∈ AC

(
[0, T ];H−1(Rn)

)
. In par-

ticular, it makes sense to speak of the initial value u(0) ∈ D′(Rn). Integrating by
parts on the left-hand side of (2.5) (now reading (2.5) from right to left, and duality
brackets in appropriate dual pairs of spaces) yields for any v ∈ C∞

c (RT )∫ T

0

〈f(t), v(t)〉0 dt+ 〈u0, v(0)〉0

=
∫ T

0

〈∂tu(t) +Qu(t), v(t)〉︸ ︷︷ ︸
〈f(t),v(t,.)〉0

dt− 〈u(T ), v(T )︸︷︷︸
=0

〉0 + 〈u(0), v(0)〉0,

hence u(0) = u0

Of course, uniqueness of the solution as well as more precise regularity proper-
ties can be deduced in case of C∞ coefficients: For any s ∈ R,
f ∈ L1

(
[0, T ];Hs(Rn)

)
, and u0 ∈ Hs(Rn) the solution u is unique in the space

C
(
[0, T ];Hs(Rn)

)
(cf. [15, Theorem 23.1.2]).

Case of non-smooth symbol: The weaker regularity assumptions made above
imply Q∗v ∈ L1

(
[0, T ];L2(Rn)

)
for all v ∈ C∞

c (RT ). We may thus define Qu ∈
D′(]0, T [×R

n) by putting

〈Qu,ϕ〉 := 〈u|Q∗ϕ̄〉0, ∀ϕ ∈ C∞
c

(
]0, T [ × R

n
)
.

Then equation(2.5) can be read as an equation in D′(]0, T [×Rn), namely

〈∂tu+Qu,ϕ〉 = 〈f, ϕ〉, ∀ϕ ∈ C∞
c

(
]0, T [ × R

n
)
.

Furthermore, we can again show that the initial datum is attained: Note that
in Qu =

∑
aj∂xj

u each term can be interpreted as a multiplication of func-
tions in L1

(
[0, T ];H1(Rn)

)
with distributions in L∞(

[0, T ];H−1(Rn)
) (

since u ∈
L∞(

[0, T ];L2(Rn)
))

in the sense of the duality method (cf. [28, Chapter II, Sec-
tion 5]). Applying Proposition 5.2 in [28] to the spatial variables in the products
then yields Qu ∈ L1

(
[0, T ];W−1,1(Rn)

)
. Reasoning similarly as above, the differ-

ential equation then gives ∂tu = f − Qu ∈ L1
(
[0, T ];W−1,1(Rn)

)
, which implies

u ∈ AC
(
[0, T ];W−1,1(Rn)

)
and further also that u(0) = u0.

Again higher regularity of u with respect to the time variable, namely u ∈
C
(
[0, T ];L2(Rn)

)
can be shown by means of regularization and passage to the limit

(e.g., similarly as in [2, proof of Theorem 2.8]).
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2.2. Regularization and energy estimates. Several advanced theories
make use of regularization techniques or concepts at crucial steps in their construc-
tion of solutions. Some of these theories succeed by regularization and a careful
passage to the limit via energy estimates (as with Hurd–Sattinger and Di Perna–
Lions theories presented below). Others even base their solution concept on a fur-
ther generalization of the weak solution concept beyond distribution and measure
spaces and still obtain existence of solutions essentially from asymptotic stability
of energy estimates (cf. the Lafon–Oberguggenberger theory below).

We introduce the following notation for partial differential operators that will
be used in the sequel

Pu := ∂tu+
n∑

k=1

ak ∂xk
u+ c u(2.6)

Lu := ∂tu+
n∑

j=1

∂xj
(aj u) + b u.(2.7)

2.2.1. Hurd–Sattinger theory. We give a brief summary of the results from the
first part in Hurd–Sattinger’s classic paper [23]. We consider the Cauchy problem
for the operator L on the closure of the domain Ω := ]0,∞[ × Rn.

Definition 2.1. Let f ∈ L2
loc(Ω) and aj (j = 1, . . . , n) as well as b ∈ L2

loc(Ω).
A weak solution in the sense of Hurd–Sattinger of the partial differential equation
Lu = f on Ω with initial condition u0 ∈ L2

loc is a function u ∈ L2
loc(Ω) such that

for all φ ∈ C1
c (Rn+1) we have

(2.8)∫
Ω

(
− u(t, x)φ(t, x) −

n∑
j=1

aj(t, x)u(t, x)∂xj
φ(t, x) + b(t, x)u(t, x)φ(t, x)

)
d(t, x)

=
∫

Ω

f(t, x)φ(t, x) d(t, x) +
∫

Rn

u0(x)φ(0, x) dx.

Note that if all coefficients are C∞ functions then a solution in the above sense
solves the partial differential equation on Ω in the sense of distributions.

Theorem 2.1. Let aj (j = 1, . . . , n), b, and f belong to L2
loc(Ω) and u0 ∈ L2

loc.
Assume, in addition, that the following conditions are satisfied:

(1) There exists c1 > 0 such that for almost all (t, x) ∈ Ω: ak(t, x) � c1
(k = 1 . . . , n);

(2) There exists a function µ ∈ L1
loc

(
[0,∞[

)
, µ � 0, such that b(t, x) � −µ(t)

for almost all (t, x) ∈ Ω;
(3) For each k ∈ {1, . . . , n} there exists 0 � µk ∈ L1

loc

(
[0,∞[

)
such that for

almost all (t, x) ∈ Ω

ak(t, x) − ak(t, x1, . . . , xk−1, r, xk+1, . . . , xn)
xk − r

� −µk(t) for almost all r ∈ R;

Then there exists a weak solution u ∈ L2
loc(Ω) to Lu = f with initial condition u0.
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Concerning the meaning of condition (iii) in Theorem 2.1 we mention two
aspects:

• In one space dimension we obtain a(x,t)−a(t,y)
x−y � −µ1(t), which resembles a one-

sided Lipschitz continuity condition in the x variable (apart from the fact that µ1(t)
need not be finite or defined for all t). In particular, it excludes jumps downward
(seen when going from smaller to larger values in the x argument).
• Heuristically—replacing difference quotients by partial derivatives—condition
(iii) can be read as div a(t, x) � −∑

µk(t), thus giving an L1 lower bound on
the divergence of a. We observe that upon formally applying the Leibniz rule in
the operator L we cast it in the form P as in(2.6) with c = div a+ b. In combina-
tion with condition (ii) of Theorem 2.1, we obtain that 1

2 div a− c = −( 1
2 div a+ b)

has an L1 upper bound (uniformly in x), which can be considered a substitute for
condition (2.2) used in the derivation of direct energy estimates in Subsection 2.1.

Remark 2.2. Hurd–Sattinger [23] also give a uniqueness result for first-order
systems in case of a single space variable and b = 0. For scalar equations the
hypotheses require condition (i) to be strengthened to boundedness from above
and from below and condition (iii) to be replaced by a Lipschitz property with an
upper bound instead; in particular, no jumps upward are possible.

Example 2.2. For the operator L in one space dimension and coefficients
a(x) = sign(x) and b = 0, the Poupaud–Rascle theory is not applicable (as men-
tioned in [30, Section 1, Example 2]), but Hurd–Sattinger theory ensures existence
of weak solutions, if the initial value belongs to L2

loc.

2.2.2. Di Perna–Lions theory. The weak solution concept introduced by Di Per-
na–Lions in [10] for the Cauchy problem for the operator P on a finite-time domain
[0, T ] × R

n can be interpreted in the following way.

Definition 2.2. Let T > 0, 1 � p � ∞, 1
p + 1

q = 1, f ∈ L1
(
[0, T ];Lp(Rn)

)
,

ak ∈ L1
(
[0, T ];Lq

loc(R
n)

)
(k = 1, . . . , n), and c ∈ L1

(
[0, T ];Lq

loc(R
n)

)
such that

div(a) − c ∈ L1
(
[0, T ];Lq

loc(R
n)

)
.

A function u ∈ L∞(
[0, T ];Lp(Rn)

)
is called a weak solution in the sense of Di

Perna–Lions of the partial differential equation Pu = f on ]0, T [ × R
n with initial

value u0 ∈ Lp(Rn), if

(2.9)
∫ T

0

∫
Rn

u(t, x)
(
− ∂tϕ(t, x) dx−

n∑
k=1

ak(t, x) ∂xk
ϕ(t, x)

)
dx dt

+
∫ T

0

∫
Rn

u(t, x)
(− div a(t, x) + c(t, x)

)
ϕ(t, x) dx dt

=
∫ T

0

∫
Rn

f(t, x)ϕ(t, x) dx dt+
∫

Rn

u0(x)ϕ(0, x) dx

holds for all ϕ ∈ C∞(
[0, T ],Rn

)
with compact support in [0, T [ × R

n.
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Clearly, in case of C∞ coefficients we obtain a distributional solution of the
partial differential equation in ]0, T [ × R

n.

Theorem 2.2. Existence of a weak solution u ∈ L∞(
[0, T ];Lp(Rn)

)
in the

sense of and with assumptions as in Definition 2.2 is guaranteed under the addi-
tional hypothesis

1
p

div(a) − c ∈ L1
(
[0, T ];L∞(Rn)

)
, if p > 1,

div(a), c ∈ L1
(
[0, T ];L∞(Rn)

)
, if p = 1.

Remark 2.3. Uniqueness holds in general under the additional hypotheses that
c,div(a) ∈ L1

(
[0, T ];L∞(Rn)

)
, and for j = 1, . . . , n also aj ∈ L1

(
[0, T ];W 1,q

loc (Rn)
)

as well as
aj

1 + |x| ∈ L1
(
[0, T ];L1(Rn)

)
+ L1

(
[0, T ];L∞(Rn)

)
.

Example 2.3 (Hurd–Sattinger applicable, but not Di Perna–Lions). Note that
with a single spatial variable boundedness of div(a) = a′ implies Lipschitz conti-
nuity. Hence, if a ∈ H1(R) is not Lipschitz continuous but satisfies the one-sided
Lipschitz condition in Hurd–Sattinger’s existence Theorem 2.1 (iii), then a weak
solution in the sense of Hurd–Sattinger to the problem

∂tu+ ∂x(au) = f ∈ L2(R2), u|t=0 = u0 ∈ L2(R)

is guaranteed to exist, whereas the general statement of DiPerna–Lions’ existence
theory (Theorem 2.2 with p = q = 2) is not applicable to the formally equivalent
problem

∂tu+ a∂xu+ a′u = f ∈ L2(R2), u|t=0 = u0 ∈ L2(R).

Example 2.4 (Di Perna–Lions applicable, but not Hurd–Sattinger). Let 0 <
σ < 1 and consider the identical coefficient functions a1 = a2 ∈ Cσ

∗,comp(R2) (i.e.,
compactly suported functions in Cσ

∗ (R2)) given by

a1(x, y) = a2(x, y) = − 1
σ

(x− y)σ
+ χ(x, y),

where χ ∈ D(R2) such that χ = 1 near (0, 0). Note that a1 is not Lipschitz
continuous, since for x > 0 but x sufficiently small the difference quotient

a1(x, 0) − a1(0, 0)
x

= −x
σ−1

σ

is unbounded as x→ 0. In particular, the latter observation shows that the Hurd–
Sattinger existence theory is not applicable (condition (iii) in Theorem 2.1 is vio-
lated) to the Cauchy problem for the operator

Lu = ∂tu+ ∂x(a1u) + ∂y(a2u).

On the other hand, we can show that with a = (a1, a2) the Di Perna–Lions
existence theory is applicable to the Cauchy problem

∂tu+ a1∂xu+ a2∂yu+ (div a)u = f ∈ L1
(
[0, T ];Lp(R2)

)
, u|t=0 = u0 ∈ Lp(R2).
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To begin with, we observe that

∂xa1(x, y) = ∂xa2(x, y) = − χ(x, y)
(x− y)1−σ

+

− 1
σ

(x− y)σ
+ ∂xχ(x, y)

∂ya1(x, y) = ∂ya2(x, y) =
χ(x, y)

(x− y)1−σ
+

− 1
σ

(x− y)σ
+ ∂yχ(x, y)

yields

div a(x, y) = − 1
σ

(x− y)σ
+ divχ(x, y) ∈ Cσ

∗, comp(R2).

Note that in the notation of Definition 2.2 and Theorem 2.2 we have c = div a ∈
L∞(R2) (and time-independent). Therefore, the basic assumptions for the solution
concept to make sense as well as the hypotheses of the existence statement are
clearly satisfied.

As for uniqueness, we remark that all the conditions mentioned in Remark 2.3
are met if and only if σ > 1/p.

Remark 2.4. We mention that with coefficients as in the above example, the
system of characteristic differential equations has forward-unique solutions, hence
the Poupaud–Rascle solution concept for measures is also applicable.

2.2.3. Lafon–Oberguggenberger theory. The theory for symmetric hyperbolic
systems presented in [25] by Lafon–Oberguggenberger allows for Colombeau gen-
eralized functions as coefficients as well as inital data and right-hand side. Thus
we consider the following hyperbolic Cauchy problem in Rn+1

Pu = ∂tu+
n∑

j=1

aj∂xj
u+ cu = f(2.10)

u|t=0 = u0,(2.11)

where aj (j = 1, . . . , n), c are real valued generalized functions in G(Rn+1) (in the
sense that all representatives are real valued smooth functions), f ∈ G(Rn+1), and
initial value u0 ∈ G(Rn).

The coefficients will be subject to some restriction on the allowed divergence in
terms of ε-dependence. A Colombeau function v ∈ G(Rd) is said to be of logarithmic
type if it has a representative (vε) with the following property: there are constants
N ∈ N, C > 0, and 1 > η > 0 such that

sup
y∈Rd

|vε(y)| � N log(C/ε), 0 < ε < η.

(This property then holds for any representative.) By a suitable modification of
[27, Proposition 1.5] it is always possible to model any finite order distribution
as coefficient with such properties (in the sense that the Colombeau coefficient is
associated to the original distributional coefficient).

Theorem 2.3. Assume that aj and c are constant for large |x| and that ∂xk
aj

(k = 1, . . . , n) as well as c are of logarithmic type. Then given initial data u0 ∈
G(Rn) and right-hand side f ∈ G(Rn+1), the Cauchy problem (2.10)–(2.11) has a
unique solution u ∈ G(Rn+1).
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We also mention the following consistency result which shows that Colomb-
eau theory includes the classically solvable cases: If we assume that the coefficients
aj and c are C∞ then we have the following consistency with classical and distri-
butional solutions (cf. [25])

• If f and u0 are C∞ functions then the generalized solution u ∈ G(Rn+1)
is equal (in G) to the classical smooth solution.

• If f ∈ L2(R;Hs(Rn)) and u0 ∈ Hs(Rn) for some s ∈ R, then the general-
ized solution u ∈ G(Rn+1) is associated to the classical solution belonging
to C(R;Hs(Rn)).

Example 2.5. Consider the (1 + 1)-dimensional operator

Lu = ∂tu+ ∂x(H(−x)u).
Since the coefficient (of the formal principal part) has a jump downward neither
Hurd–Sattinger nor Di Perna–Lions theory is applicable. In fact, it has been shown
in [20, Section 2] that none of the distributional products from the coherent hi-
erarchy (cf. [28] and the introductary section) applied to H(−x) · u is capable of
allowing for distributional solutions of the homogeneous Cauchy problem for arbi-
trary smooth initial data.

Recall from Section 1 that measure solutions according to Bouchut–James exist
for the corresponding Cauchy problem, if the Heaviside function (usually under-
stood as a class of functions in L∞) is replaced by the particular Borel measurable
representative with value 0 at x = 0. For example, the initial value u0 = 1 then
yields the measure solution u = 1 + tδ(x) in the sense of Bouchut–James as seen in
Example 1.7.

However, Colombeau generalized solutions are easily obtained—even for arbi-
trary generalized initial data—if the coefficient H(−x) is regularized by convolu-
tion with a delta net of the form ρε(x) = log(1/ε)ρ(x log(1/ε)) (0 < ε < 1), where
ρ ∈ C∞

c (R) with
∫
ρ = 1. Let a denote the class of this regularization in the

Colombeau algebra G, then the operator L may now be written equivalently in the
form Pu = ∂tu + a∂xu + a′u, where a′ ≈ δ and u ∈ G. Due to the logarithmic
scale in the regularization the hypotheses of Theorem 2.3 are satisfied and the cor-
responding Cauchy problem is uniquely solvable. Moreover, for most interesting
initial data (e.g. Dirac measures or L1

loc) weak limits of the Colombeau solution u
are known to exist and can be computed (cf. [20, Section 6]). In particular, for
the initial value u0 = 1 we obtain the measure solution u = 1 + tδ(x) as such a
distributional shadow.

Remark 2.5. (i) The basic results of Lafon–Oberguggenberger have been ex-
tended to the case of (scalar) pseudodifferential equations with generalized symbols
in [18]. Special cases and very instructive examples can be found in [26], and an
application of Colombeau theory to the linear acoustics system is presented in [27].

(ii) Colombeau-theoretic approaches allow for a further flexibility even in inter-
preting distributional differential equations with smooth coefficients. For example,
in [6] the concept of regularized derivatives is used, where partial differentiation
is replaced by convolution with the corresponding derivative of a delta sequence.
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When acting on distributions this concept produces the usual differential operator
actions in the limit. When considered as operators in Colombeau spaces, one can
prove (cf. [6, Theorem 4.1]) that evolution equations with smooth coefficients all
whose derivatives are bounded have unique generalized function solutions for initial
data and right-hand side in generalized functions. In particular, famous examples
like the Lewy equation become solvable and Zuily’s non-uniqueness examples be-
come uniquely solvable then.

2.3. Paradifferential techniques. 3.3.1. Energy estimates. Bony’s paradif-
ferential calculus has been successfully applied in nonlinear analysis and, in partic-
ular, to regularity theory for nonlinear partial differential equations. An ingredient
in such approaches is often a refined regularity assessment of corresponding lin-
earizations of the differential operators involved. A recent account of Métivier’s
methods and results of this type can be found in [2, Subsection 2.1.3], or with more
details on microlocal properties in [17].

Let s ∈ R and Hs
w(Rn) denote the Sobolev space Hs(Rn) equipped with the

weak topology. We consider a differential operator of the form

P̃v(x, t; ∂t, ∂x) := ∂t +
n∑

j=1

aj(v(x, t)) ∂j ,

where aj ∈ C∞(R) (j = 1 . . . , n) and v ∈ L∞(
[0, T ];Hs(Rn)

) ∩ C(
[0, T ];Hs

w(Rn)
)

such that ∂tv ∈ L∞(
[0, T ];Hs−1(Rn)

) ∩ C(
[0, T ];Hs−1

w (Rn)
)
.

Remark 2.6. Not all hyperbolic first-order differential operators with coeffi-
cients of regularity as above can be written in the special form of P̃v. In fact,
this amounts to writing any given list w1, . . . , wn of such functions as wj = aj ◦ v
(j = 1, . . . , n) with aj ∈ C∞(R) and v as above. The latter is, in general, not
possible, which can be seen from the following example: consider the Lipschitz
continuous functions w1(t) = |t| and w2(t) = t; if w1 = a1 ◦ v and w2 = a2 ◦ v with
a Lipschitz continuous function v, then v is necessarily non-differentiable at 0; on
the other hand

1 = w′
2(0) = lim

h→0

(
a2(v(h)) − a2(v(0))

)
/h = lim

h→0
a′2(ξ(h))(v(h) − v(0))/h,

where ξ(h) lies between v(0) and v(h); hence a′2(ξ(h)) → a′2(v(0)) and the second
factor (v(h) − v(0))/h stays bounded, but is not convergent; in case a′2(v(0)) = 0
we obtain the contradiction 1 = 0, in case a′2(v(0)) �= 0 we have a contradiction to
convergence of the difference quotient for w2.

The key technique in analyzing the operator P̃v is to replace all terms aj(v)∂j

by Taj(v)∂j , i.e., partial differentiation followed by the para-product operator Taj(v),
and then employ estimates of the error terms as well as a paradifferential variant of
G̊arding’s inequality (cf. [2, Appendix C.3–4]). This leads to the following result.

Theorem 2.4. [2, Theorem 2.7] If s > n
2 + 1, then for any

f ∈ L∞(
[0, T ];Hs(Rn)

)∩C(
[0, T ];Hs

w(Rn)
)

and u0 ∈ Hs(Rn) the Cauchy problem
P̃vu = f, u|t=0 = u0 has a unique solution u ∈ L2([0, T ];Hs(Rn)). Moreover,
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u belongs to C
(
[0, T ];Hs(Rn)

)
and there are constants K, γ,C � 0 such that u

satisfies the energy estimate

‖u(t)‖2
s � Keγt‖u(0)‖2

s + C

∫ t

0

eγ(t−τ)‖P̃vu(τ)‖
2

s dτ.

2.3.2. Improvement of regularity in one-way wave equations. We briefly recall
some basic notions and properties concerning symbols with certain Hölder regular-
ity in x and smoothness in ξ à la Taylor (cf. [35]).

Definition 2.3. Let r > 0, 0 < δ < 1, and m ∈ R. A continuous function
p : R

n ×R
n → C belongs to the symbol space Cr

∗S
m
1,δ, if for every fixed x ∈ R

n the
map ξ �→ p(x, ξ) is smooth and for all α ∈ Nn

0 there exists Cα > 0 such that

|∂α
ξ p(x, ξ)| � Cα(1 + |ξ|)m−|α|, ∀x, ξ ∈ R

n

‖∂α
ξ p(., ξ)‖Cr∗

� Cα(1 + |ξ|)m−|α|+rδ, ∀ξ ∈ R
n.

Basic examples are, of course, provided by symbols of differential operators∑
aα∂

α with coefficient functions aα ∈ Cr
∗ (|α| � m) or any symbol of the form

p(x, ξ) = a(x)h(x, ξ), where a ∈ Cr
∗ and h is a smooth symbol of order m.

Symbol smoothing: By a coupling of a Littlewood–Paley decomposition in ξ-
space with convolution regularization in x-space via a δ-dependent scale one obtains
a decomposition of any symbol p ∈ Cr

∗S
m
1,δ in the form p = p
 + p�, where p
 ∈ Sm

1,δ

and p� ∈ Cr
∗S

m−rδ
1,δ . Observe that p
 is C∞ and of the same order whereas p� has

the same regularity as p but is of lower order.
Mapping properties: Let 0 < δ < 1 and −(1 − δ)r < s < r. Then any symbol

p ∈ Cr
∗S

m
1,δ defines a continuous linear operator p(x,D) : Hs+m(Rn) → Hs(Rn).

Elliptic symbols: p ∈ Cr
∗S

m
1,δ is said to be elliptic, if there are constants C,R > 0

such that |p(x, ξ)| � C(1 + |ξ|)m, ∀ξ ∈ R
n, |ξ| � R.

One-way wave equations result typically from second-order partial differential
equations by a pseudodifferential decoupling into two first-order equations (cf. [34,
Section IX.1]). For example, this has become a standard technique in mathematical
geophysics for the decoupling of modes in seismic wave propagation (cf. [32]). The
corresponding Cauchy problem with seismic source term f ∈ C∞(

[0, T ];Hs(Rn)
)

(with s ∈ R) and initial value of the displacement u0 ∈ Hs+1(Rn) is of the form

∂tu+ iQ(x,D)u = f(2.12)

u|t=0 = u0,(2.13)

where Q has real-valued elliptic symbol q ∈ Cr
∗S

1 with r > s.

Lemma 2.1. If q ∈ CrSm
1,0 is elliptic, then q
 ∈ Sm

1,δ is also elliptic.

Proof. By ellipticity of q and the symbol properties of q� there are constants
C1, C2, R > 0 such that

C1(1 + |ξ|)m � |q(x, ξ)| � |q
(x, ξ)| + |q�(x, ξ)| � |q
(x, ξ)| + C2(1 + |ξ|)m−rδ
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holds for all x, ξ ∈ Rn with |ξ| � R > 0. Therefore

|q
(x, ξ)| � (C1 − C2(1 + |ξ|)−rδ)(1 + |ξ|)m � C(1 + |ξ|)m ∀x, ξ ∈ R
n, |ξ| � R′

for suitably chosen constants C and R′ > 0. �

Let 0 < δ < 1. We have the decomposition q = q
 + q�, where q
 ∈ S1
1,δ

and q� ∈ CrS1−δr
1,δ . By Lemma 2.1 Q
 = q
(x,D) is elliptic and thus possesses a

parametrix E
 ∈ S−1
1,δ .

We have

(∂t + iQ)E
f = (∂t + iQ
 + iQ�)E
f = ∂tE

f + iQ
E
f + iQ�E
f

= ∂tE

f + f + iR
f + iQ�E
f,

where R
 is a regularizing operator. Therefore

(∂t + iQ)(u− E
f) = −∂tE

f − iR
f − iQ�E
f =: f̃ ,

where the regularity of the right-hand side f̃ can be deduced from the following
facts

∂tE

f ∈ C∞(

[0, T ];Hs+1(Rn)
)
,

R
f ∈ C∞(
[0, T ];H∞(Rn)

)
,

Q�E
f ∈ C∞(
[0, T ];Hs+δr(Rn)

)
.

Hence f̃ ∈ C∞(
[0, T ];Hs+min (δr,1)(Rn)

)
.

If we put w = u+E
f and w0 := u0+E
f(0), then the original Cauchy problem
(2.12–2.13) is reduced to solving the Cauchy problem

∂tw + iQ(x,D)w = f̃ , w|t=0 = w0,

where the spatial regularity of the source term on the right-hand side has been
raised by min(δr, 1).

Remark 2.7. In case of a homogeneous (1+1)-dimensional partial differential
equation the precise Hölder-regularity properties of classical as well as generalized
solutions have been determined in [19, Section 3].
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