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Abstract. A graph, consisting of undirected edges, can be represented as a
sum of two digraphs, consisting of oppositely oriented directed edges. Gutman
and Plath in [J. Serb. Chem. Soc. 66 (2001), 237–241] showed that for
annulenes, the eigenvalue spectrum of the graph is equal to the sum of the
eigenvalue spectra of respective two digraphs. Here we exhibit a number of
other graphs with this property.

1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). Following
[1], in the standard graph representation of organic molecules, edges represent
covalent chemical bonds, which are assumed to be undirected, as is the entire graph.
However, each undirected edge may be alternatively viewed as a pair of oppositely
oriented directed edges. In this way, whole undirected graph G may always be
decomposed into a pair of digraphs,

−→
G and

←−
G , consisting of oppositely oriented

directed edges, such that V
(−→
G
)

= V
(←−
G
)

= V (G) and E(G) = E
(−→
G
) ∪ E(←−G).

In [1], Gutman and Plath showed that graphs of annulenes, undirected cy-
cles, have an interesting property: each eigenvalue of an undirected cycle is equal
to the sum of the corresponding eigenvalues of directed cycles from its digraph
decomposition.

The spectrum Sp[
−→
G ] of a digraph

−→
G is the collection of eigenvalues of its

adjacency matrix A
(−→
G
)
. The adjacency matrix A

(←−
G
)

is the transpose of A
(−→
G
)
.

Therefore, the digraphs−→G and←−G have equal spectra. Since A
(−→
G
)

is not symmetric,
its eigenvalues may be complex numbers. However, if a complex number z is an
eigenvalue of

−→
G , then also its complex conjugate z is an eigenvalue of

−→
G . Note that
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if
−→
G does not possess directed cycles, then all its eigenvalues are equal to zero [1,

Theorem 3.(a)]. Namely, if
−→
G has n vertices, then the characteristic polynomial of

A
(−→
G
)

may be written in the form

(1.1) φ(G, λ) = λn +
n∑
k=1

akλ
n−k.

Then, by the Sachs’ theorem for digraphs [2, 3, 4],

ak =
∑
S

(−1)p(S),

where the summation goes over all k-vertex subgraphs S of G that consist entirely
of directed cycles, the number of directed cycles in S being p(S). Thus, if

−→
G has

no directed cycles, we have ak = 0 for all k = 1, 2, . . . , n and the characteristic
polynomial (1.1) is equal to φ(G, λ) = λn, whose all roots are equal to zero.

Next, denote the eigenvalues of
−→
G by λ1

(−→
G
)
, λ2
(−→
G
)
, . . .λn

(−→
G
)
. The eigen-

values of
←−
G may always be labelled such that λk

(−→
G
)

+λk
(←−
G
)

is a real number [1,
Theorem 2]. Simply, if λk

(−→
G
)

is real, choose λk
(←−
G
)

to be equal to λk
(−→
G
)
, and if

λk
(−→
G
)

is not real, choose λk
(←−
G
)

to be equal to the complex conjugate of λk
(−→
G
)
,

which is also an eigenvalue of
−→
G . Note that this labelling implies

λk
(−→
G
)

+ λk
(←−
G
)

= 2 Reλk
(−→
G
)
.

We will implicitly assume this type of labelling for the eigenvalues of ←−G in the
sequel.

In general, the eigenvalues λk(G) of undirected graph G are not related to the
eigenvalues of digraphs from its digraph decomposition. Gutman and Plath [1,
Theorem 4] showed that for the decomposition of undirected cycle Cn = −→Cn∪←−Cn in
two directed cycles, the eigenvalues of undirected cycle may be labelled such that

λk(Cn) = λk
(−→
Cn
)

+ λk
(←−
Cn
)

= 2 Reλk
(−→
Cn
)
, for k = 1, 2, . . . , n,

or, shorter,
Sp[Cn] = 2 Re Sp

[−→
Cn
]
.

Concluding [1], Gutman and Plath said: “The discovery of more graphsG satisfying

(1.2) Sp[G] = 2 Re Sp
[−→
G
]

would, however, be of much greater importance.”
Our main task here is to exhibit a number of graphs satisfying (1.2). The plan

of the paper is as follows: in Section 2 we exhibit all such graphs with up to 8
vertices and 14 edges, in Section 3 we show how new instances may be obtained
from existing ones using NEPS, and in Section 4 we present a family of graphs
satisfying (1.2) which may not be obtained using the method of Section 3.
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2. Small instances

We have enumerated all digraph decompositions of connected graphs with at
most 8 vertices and 14 edges and, besides cycles, we have found seven other graphs
satisfying (1.2). In addition, our experiments show that the complete bipartite
graph K4,4 has two distinct decompositions each satisfying (1.2). For each of these
eight graphs, a digraph−→Gi is given in Figure 1, while the spectra of−→Gi andGi = −→Gi∪←−
Gi are as follows (where parenthesized numbers in exponents denote multiplicities):

Sp
(−→
G1
)

= [2,−0.5± i 1.538842,−0.5± i 0.363271]

Sp(G1) = [4,−1(4)]

Sp
(−→
G2
)

= [±1.414214,±i 1.414214, 0(2)]

Sp(G2) = [2.828427, 0(4),−2.828427]

Sp
(−→
G3
)

= [1.618034,−0.618034,−0.809017± i 1.401259, 0.309017± i 0.535233]

Sp(G3) = [3.236068, 0.618034(2),−1.236068,−1.618034(2)]

Sp
(−→
G4
)

= [2, 0(3),−1± i 1.732051]

Sp(G4) = [4, 0(3),−2(2)]

Sp
(−→
G5
)

= [2, 0.400969±i 0.193096,−0.277479±i 1.215715,−1.123490±i 1.408812]

Sp(G5) = [4, 0.801938(2),−0.554958(2),−2.246980(2)]

Sp
(−→
G6
)

= [±1.732051,±i 1.732051, 0(4)]

Sp(G6) = [3.464102, 0(6),−3.464102]

Sp
(−→
G7
)

= [±1.618034,±i 1.618034,±0.618034,±i 0.618034]

Sp(G7) = [3.236068, 1.236068, 0(4),−1.236068,−3.236068]

Sp
(−→
G8
)

= [±2,±2i, 0(4)]

Sp(G8) = [4, 0(6),−4]

Sp
(−→
G9
)

= [±2,±i√2
(2)
, 0(2)]

Sp(G9) = [4, 0(6),−4]

Note that graphs G2 and G6 in Figure 1 are isomorphic to K2,4 and K2,6,
respectively. Having in mind that the cycle C4, which satisfies (1.2), is isomorphic
to K2,2, we can arrive to our first expectation: graph K2,2n should have a digraph
decomposition satisfying (1.2). Indeed, denote by u and v vertices from two-vertex
part of K2,2n, and divide the vertices from 2n-vertex part of K2,2n into two equally
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−→
G1

−→
G2

−→
G3

−→
G4

−→
G5

−→
G6

−→
G7

−→
G8

−→
G9

Figure 1. Small instances satisfying (1.2).

sized sets A and B. Let
−−−→
K2,2n be the digraph obtained from K2,2n by directing

all edges from u to A, from A to v, from v to B and from B to u. Each directed
cycle of

−−−→
K2,2n has length 4 and contains vertices u and v. Thus, there are no

disjoint directed cycles in −−−→K2,2n and from Sachs’ theorem we get that the only
nonzero coefficient in the characteristic polynomial (except with x2n+2) is the one
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with x(2n+2)−4, which is equal to n2. Thus, the characteristic polynomial of
−−−→
K2,2n

is equal to

x2n+2 − n2x2n−2 = x2n−2(x4 − n2) = x2n−2(x2 − n)(x2 + n),

hence, its spectrum is [±√n,±i√n, 02n−2], and twice its real part is [±2
√
n, 02n],

which is just the spectrum of K2,2n.
Thus, the graphsK2,2n form our first family of graphs satisfying (1.2), however,

their maximum degree increases with the number of vertices, which may not be
favorable in chemical applications.

3. NEPS with undirected graphs

The non-complete extended p-sum (NEPS) of graphs is a very general graph
operation. Many graph operations are special cases of NEPS, to name just the
sum, product and strong product of graphs. It is defined for the first time in [5],
while the following definition is taken from [3, p. 66] with minor modification:

Definition. Let B be a set of binary k-tuples, i.e., B ⊆ {0, 1}k � {(0, . . . , 0)}
such that for every j = 1, . . . , k there exists β ∈ B with βj = 1. The NEPS
of graphs G1, . . . , Gk with basis B, denoted NEPS(G1, . . . , Gk;B), is the graph
with the vertex set V (G1) × · · · × V (Gk), in which two vertices (u1, . . . , uk) and
(v1, . . . , vk) are adjacent if and only if there exists (β1, . . . , βk) ∈ B such that uj is
adjacent to vj in Gj whenever βj = 1, and uj = vj whenever βj = 0.

Despite the fact that NEPS is mostly used with undirected graphs, its definition
carries over to directed graphs in a straightforward way, as can be seen from the
works of Petrić [6, 7, 8]. In particular, a relation between spectrum of NEPS and
the spectra of its factors holds unchanged (see, e.g., Theorem 2.23 in [3]).

Theorem 3.1. The spectrum of NEPS(G1, . . . , Gk;B) consists of all possible
values Λ given by

Λ =
∑
β∈B
λβ1

1 · · ·λβkk ,

where λj is an arbitrary eigenvalue of Gj, j = 1, . . . , k.

This enables us to prove the following

Theorem 3.2. Let G be an undirected graph with digraph decomposition G =−→
G ∪←−G , and suppose that the eigenvalues of G and −→G can be enumerated in such a
way that λj(G) = 2 Reλj

(−→
G
)

for each j. Further, let B be a set of binary k-tuples
such that β1 = 1 for each β ∈ B, and let G2, . . . , Gk be arbitrary undirected graphs.
Then the eigenvalues of

G∗ = NEPS(G,G2, . . . , Gk;B) and
−→
G∗ = NEPS

(−→
G,G2, . . . , Gk;B

)

may be enumerated in such a way that λj(G∗) = 2 Reλj
(−→
G∗
)

for each j.
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Proof. Let λ1
(−→
G
)

be an arbitrary eigenvalue of
−→
G , and let λj be an arbitrary

eigenvalue of Gj for j = 2, . . . , k. Then, since β1 = 1 for each β ∈ B,

Λ
(−→
G∗
)

=
∑
β∈B
λβ1

1
(−→
G
)
λβ2

2 · · ·λβkk = λ1
(−→
G
)∑
β∈B
λβ2

2 · · ·λβkk =Mλ1
(−→
G
)

is an eigenvalue of
−→
G∗, where M =

∑
β∈B λ

β2
2 · · ·λβkk is a real number (as the

eigenvalues λ2, . . . , λk of undirected graphs must be real [3]). Similarly, for λ1(G) =
2 Reλ1

(−→
G
)
,

Λ(G∗) =
∑
β∈B
λβ1

1 (G)λβ2
2 · · ·λβkk = λ1(G)

∑
β∈B
λβ2

2 · · ·λβkk =Mλ1(G)

is an eigenvalue of G∗. The PROOF then follows from

Λ(G∗) =Mλ1(G) = 2M Reλ1
(−→
G
)

= 2 ReMλ1
(−→
G
)

= 2 Re Λ
(−→
G∗
)
. �

Theorem 3.2 enables us to construct arbitrarily many instances of graphs satis-
fying (1.2) starting from directed cycles or graphs from Figure 1. For example, the
graph

−→
G8 is isomorphic to NEPS

(−→
C4,K2; {(1, 0), (1, 1)}) of directed cycle C4 and

complete graph K2. Similarly, for any n � 3, NEPS
(−→
Cn,K2; {(1, 0), (1, 1)}) is a

graph satisfying (1.2), where each vertex has indegree and outdegree equal to two.
However, the edges of NEPS of −→G with undirected graphs always follow the

direction of edges of
−→
G . Thus, the directed cycles in such NEPS mimic the directed

cycles from
−→
G , which may not be considered favorably in applications as well.

4. Family of twisted ladders

Inspired by graphs
−→
G2 and

−→
G7 from Figure 1, in this section we present a family

of oriented graphs, which may not be represented as NEPS of an oriented graph
with undirected graphs.

For n � 2, let Pn denote the path on n vertices whose vertices are labelled as
1, . . . , n, such that vertex j is adjacent to vertices j−1 and j+1 for j = 2, . . . , n−1.
Next, denote the vertices of complete graph K2 by 0 and 1. Let

TLn = NEPS
(
Pn,K2; {(1, 0), (1, 1)}).

Let us form the directed graph
−−→
TLn from TLn by orienting edges from (j, k) to

(j + 1, k) for j = 1, . . . , n − 1 and k = 0, 1, and from (j, k) to (j − 1, 1 − k) for
j = 2, . . . , n and k = 0, 1, like in Figure 2. We call

−−→
TLn the twisted ladder.

Figure 2. An example of a twisted ladder.
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Theorem 4.1. For n � 2, Sp[TLn] = 2 Re Sp
[−−→
TLn
]
.

Proof. Let us recall that the eigenvalues of path Pn are 2 cos kπn+1 for k =
1, . . . , n (see, e.g., [3, Section 2.7]), while Sp[K2] = {1,−1}. Then from Theorem
1, to an arbitrary eigenvalue λ of Pn there correspond eigenvalues

λ1 · 10 + λ1 · 11 = 2λ and λ1 · (−1)0 + λ1 · (−1)1 = 0

of TLn. Thus,

Sp[TLn] =
{

4 cos kπ
n+ 1

: k = 1, . . . , n
}
∪ {0(n)}.

Next we show that

(4.1) Sp[
−−→
TLn] =

{
2 cos kπ

n+ 1
, 2i cos kπ

n+ 1
: k = 1, . . . , n

}
,

from which equality Sp[TLn] = 2 Re Sp
[−−→
TLn
]

will immediately follow.
Denote the adjacency matrix A

(−−→
TLn
)

simply by A. Let λ = 2 cos kπn+1 be an
arbitrary eigenvalue of the path Pn and let x be an eigenvector of Pn corresponding
to λ. We will use x to form two eigenvectors of

−−→
TLn, one for eigenvalue λ and the

other for eigenvalue iλ. First, recall that x satisfies

λx(1) = x(2),
λx(j) = x(j − 1) + x(j + 1), j = 2, . . . , n− 1,
λx(n) = x(n− 1).

Now, let x′ be a vector defined on vertices of −−→TLn by

x′(j, 0) = x′(j, 1) = x(j), j = 1, . . . , n.

Then for j = 2, . . . , n− 1,

(Ax′)(j, k) = x′(j − 1, 1− k) + x′(j + 1, k)
= x(j − 1) + x(j + 1)
= λx(j)
= λx′(j, k),

and similarly,

(Ax′)(1, k) = λx′(1, k), (Ax′)(n, k) = λx′(n, k).

Thus, λ is indeed an eigenvalue of
−−→
TLn.

Next, let x′′ be a vector defined on vertices of −−→TLn by

x′′(j, k) = ij+2kx(j), j = 1, . . . , n, k = 0, 1.
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Then
(Ax′′)(j, k) = x′′(j − 1, 1− k) + x′′(j + 1, k)

= ij+1−2kx(j − 1) + ij+1+2kx(j + 1)

= ij+1+2kλx(j)

= iλ ij+2kx(j)
= iλx′′(j, k),

and similarly,
(Ax′′)(1, k) = iλx′′(1, k), (Ax′′)(n, k) = iλx′′(n, k).

Thus, iλ is an eigenvalue of
−−→
TLn as well, which shows that (4.1) holds. �

5. Concluding remarks

One might argue that no twisted ladders would be considered favourable for
chemical applications, since all their directed cycles are still of length four only.
Nevertheless, after exhibiting many graphs satisfying (1.2), other than the cycles,
we are tempted to think that it is very likely that there exist graphs whose di-
graph decompositions will satisfy both (1.2) and the needs of potential chemical
applications.
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