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Abstract. We introduce distribution groups and [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-
groups with not necessarily densely defined generators and systematically an-
alyze relations between them.

1. Introduction

Distribution semigroups and their generators were introduced by Lions in the
pioneering paper [31] and almost four decades after that, Kunstmann [28] and
Wang [42] analyzed distribution semigroups with non-densely defined generators.
Balabane and Emami-Rad [4]–[5] were the first who defined smooth distribution
groups and applied them in the analysis of Schrödinger evolution equations in
𝐿𝑝(R𝑛)-type spaces. On the other hand, global integrated groups were introduced
and investigated by El-Mennaoui in his doctoral dissertation [13]. We refer the
reader to [3]–[6], [12]–[13], [16], [18]–[20], [26] and, especially, to the paper [33]
where Miana analyzed global 𝛼-times integrated groups and smooth distribution
groups in the framework of fractional calculus. It is also meaningful to accent that
Keyantuo [20] briefly considered an abstract Laplacian in 𝐿𝑝(R𝑛)-type spaces and
proved several relations between exponentially bounded integrated cosine functions
and global integrated groups. For further information, see [20, Theorem 1.2, Propo-
sitions 2.1–2.2, Theorem 2.6 and Proposition 4.2]. The class of (local) convoluted
𝐶-groups extending the well known classes of integrated groups and regularized
groups has been recently introduced in [26].

In a series of papers, many authors relate global integrated groups to functional
calculi and proved, in such a way, different generalizations of Stone’s theorem. For
various aspects in this direction, we refer to [6], [8]–[12], [14] and [16]. Further
on, Galé and Miana [18] have recently introduced one-parameter groups of regular
quasimultipliers within Esterle’s theory of quasimultipliers [15] and applied them
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in the study of regularized, distribution, integrated groups as well as holomorphic
semigroups and functional calculi.

Operator-valued distribution groups considered in this article do not fall under
the scope of [18, Definition 3.4] since our concept does not contain any density
and growth assumptions. The assertions which link distribution groups of [18] to
global integrated groups with the corresponding growth order established in [18,
Propositions 3.7–3.8] with the help of the Riesz functions and the Weyl homomor-
phisms are no longer applicable and this is the main reason why we analyze local
integrated groups. Furthermore, we focus our attention to the following system of
convolution type equations (the notions and terminology are explained below):

(1.1) 𝐺 * (𝛿′ ⊗ 𝐼 − 𝛿 ⊗𝐴) = 0⊗ 𝐼[𝐷(𝐴)] and (𝛿′ ⊗ 𝐼 − 𝛿 ⊗𝐴) *𝐺 = 0⊗ 𝐼𝐸 ,

where 𝐴 is a closed linear operator acting on a Banach space 𝐸, 𝛿′ ⊗ 𝐼 − 𝛿 ⊗ 𝐴 ∈
𝒟′
(︀
𝐿([𝐷(𝐴)], 𝐸)

)︀
, 𝐺 ∈ 𝒟′

(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
and 𝐼 denotes the inclusion 𝐷(𝐴) → 𝐸.

Contrary to the case of distribution semigroups and distribution cosine functions
(cf. [28, Theorem 3.10, pp. 844–845] and [23, Theorem 3.3]), the uniqueness of solu-
tions of (1.1) is not satisfied. Here we stress that every operator-valued distribution
𝐺 satisfying, for every 𝜙 ∈ 𝒟 and 𝑥 ∈ 𝐸:

(1.2) 𝐺 ∈ 𝒟′(𝐿(𝐸)), 𝐺(𝜙)𝑥 ∈ 𝐷(𝐴), 𝐴𝐺(𝜙)𝑥 = 𝐺(−𝜙′)𝑥, 𝐺(𝜙)𝐴 ⊆ 𝐴𝐺(𝜙),

can be viewed as an element of the space 𝒟′
(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
which solves (1.1)

(cf. also [33]). It turns out that the introduced class of [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-
groups presents a natural framework for investigation of equations involving oper-
ators satisfying (1.2). Roughly speaking, such a concept enables one to consider in
a unified treatment the notions of integrated groups and regularized groups ([9]–
[12]) as well as to get through to the new important relations between distribution
groups and local integrated groups.

The paper is organized as follows. In Section 2, we characterize the basic
structural properties of (degenerate) distribution groups, connect local integrated
groups to analytic integrated semigroups, global differentiable regularized groups
and establish a complex variable characterization of generators of local integrated
groups. In this section, it is also proved that every generator of a local integrated
group is also the generator of a distribution group. The third section is devoted to
the study of (exponentially bounded) [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-groups and their
subgenerators. The composition property of a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group
is proved only in the case when a subgenerator of such a group commutes with
𝐵1, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1. The loss of commutativity is disagreeable and addition-
ally hinders our work. Section 4 is the systematic exposition of distribution groups.
Our main results are Theorem 4.1 and Theorem 4.2; concerning these theorems, we
would like to point out that the order of the operator-valued distribution 𝐺 solv-
ing (1.1) plays a crucial role. In such a way, we notice the remarkable differences
between once integrated groups and 𝑛-times integrated groups, where 𝑛 ∈ N and
𝑛 > 1. Theorem 4.1 describes solutions of (1.1) which fulfill the condition (𝐷𝐺)4
stated below. The fundamental relationship between distribution groups and local
integrated groups is established in Theorem 4.2(v) and says that the generator 𝐴 of
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a distribution group is also the generator of a local integrated group, if 𝜌(𝐴) ̸= ∅. In
the present situation, the author does not know whether there exists a distribution
group whose generator possesses the empty resolvent set.

The analysis of ultradistribution and (Fourier) hyperfunction groups [25] is
an open problem since the argumentation presented in this paper becomes quite
inoperative and cannot be employed anymore.

By 𝐸 and 𝐿(𝐸) are denoted a complex Banach space and the Banach algebra of
bounded linear operators on 𝐸. For a closed linear operator 𝐴 on 𝐸, 𝐷(𝐴), 𝑁(𝐴),
𝑅(𝐴), 𝜌(𝐴) denote its domain, kernel, range and resolvent set, respectively, while
[𝐷(𝐴)] stands for the Banach space 𝐷(𝐴) equipped with the graph norm. Put
𝐷∞(𝐴) :=

⋂︀∞
𝑛=0 𝐷(𝐴𝑛) and ‖𝑥‖𝑛 :=

∑︀𝑛
𝑖=0 ‖𝐴𝑖𝑥‖, 𝑛 ∈ N, 𝑥 ∈ 𝐷(𝐴𝑛). Further, let

us recall that 𝐴 is stationary dense [27] if

𝑛(𝐴) := inf
{︀
𝑘 ∈ N0 : 𝐷(𝐴𝑚) ⊆ 𝐷(𝐴𝑚+1) for all 𝑚 > 𝑘

}︀
<∞.

If 𝑌 is a subspace of 𝐸, denote by 𝐴𝑌 the part of 𝐴 in 𝑌 , i.e., 𝐴𝑌 = {(𝑥, 𝑦) ∈ 𝐴 :
𝑥 ∈ 𝑌, 𝑦 ∈ 𝑌 }. We assume henceforth 𝐶 ∈ 𝐿(𝐸) and 𝐶 is injective.

Schwartz spaces of test functions on the real line R are denoted by 𝒟 = 𝐶∞0 ,
ℰ = 𝐶∞ and 𝒮. Their strong duals are 𝒟′, ℰ ′ and 𝒮 ′, respectively. By 𝒟0 we denote
the subspace of 𝒟 which consists of the elements supported by [0,∞). Further on,
𝒟′(𝐿(𝐸)) = 𝐿(𝒟, 𝐿(𝐸)), ℰ ′(𝐿(𝐸)) = 𝐿(ℰ , 𝐿(𝐸)) and 𝒮 ′(𝐿(𝐸)) = 𝐿(𝒮, 𝐿(𝐸)) are
the spaces of continuous linear functions 𝒟 → 𝐿(𝐸), ℰ → 𝐿(𝐸) and 𝒮 → 𝐿(𝐸), re-
spectively, equipped with the topology of uniform convergence on bounded subsets
of 𝒟, ℰ and 𝒮, respectively; 𝒟′0(𝐿(𝐸)), ℰ ′0(𝐿(𝐸)) and 𝒮 ′0(𝐿(𝐸)) are the subspaces of
𝒟′(𝐿(𝐸)), ℰ ′(𝐿(𝐸)) and 𝒮 ′(𝐿(𝐸)), respectively, containing the elements supported
by [0,∞). Let 𝜌 ∈ 𝒟 satisfy

∫︀∞
−∞ 𝜌(𝑡) 𝑑𝑡 = 1 and supp 𝜌 ⊆ [0, 1]. By a regularizing

sequence we mean a sequence (𝜌𝑛) in 𝒟0 obtained by 𝜌𝑛(𝑡) := 𝑛𝜌(𝑛𝑡), 𝑡 ∈ R, 𝑛 ∈ N.
If 𝐾 ⊆ R, put 𝒟𝐾 := {𝜙 ∈ 𝒟 : supp𝜙 ⊆ 𝐾}. In this paper, the convolution of
operator-valued distributions is taken in the sense of [28, Proposition 1.1]. Suppose
𝑡 ∈ R. A distribution 𝛿𝑡 is defined by 𝛿𝑡(𝜙) := 𝜙(𝑡), 𝜙 ∈ 𝒟. Further, if 𝜙 ∈ 𝒟 and
𝐺 ∈ 𝒟′(𝐿(𝐸)), we define 𝜙(·) := 𝜙(−·) and �̌�(·) := 𝐺(̌·). Clearly, (𝜙 * 𝜓)̌ = 𝜙 * 𝜓
and 𝜙(𝑛) = (−1)𝑛

(︀
𝜙(𝑛))︀, 𝜙,𝜓 ∈ 𝒟, 𝑛 ∈ N.

Let 𝑎 > 0 and 𝑏 > 0. The exponential region 𝐸(𝑎, 𝑏) is defined in [1] by

𝐸(𝑎, 𝑏) :=
{︀
𝜆 ∈ C | Re𝜆 > 𝑏, | Im𝜆| 6 𝑒𝑎Re𝜆}︀.

Finally, if 𝑓 : R→ C and 𝑡 ∈ R, put 𝜏𝑡𝑓(𝑠) := 𝑓(𝑠− 𝑡), 𝑠 ∈ R.

2. Structural properties of distribution groups

We need the following definition of a 𝐶-distribution semigroup.

Definition 2.1. [22] Let 𝒢 ∈ 𝒟′0(𝐿(𝐸)) and 𝐶𝒢 = 𝒢𝐶. If

(C.D.S.1) 𝒢(𝜙 *0 𝜓)𝐶 = 𝒢(𝜙)𝒢(𝜓), 𝜙, 𝜓 ∈ 𝒟,
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where 𝜙 *0 𝜓(𝑡) =
∫︀ 𝑡

0 𝜙(𝑡−𝑢)𝜓(𝑢) 𝑑𝑢, 𝑡 ∈ R, then 𝒢 is called a pre-(C-DSG) and if,
additionally,

(C.D.S.2) 𝒩 (𝒢) :=
⋂︁
𝜙∈𝒟0

𝑁(𝒢(𝜙)) = {0},

then 𝒢 is called a 𝐶-distribution semigroup, (C-DSG) in short.

Let 𝒢 be a (C-DSG) and let 𝑇 ∈ ℰ ′0. Define 𝐺(𝑇 ) on a subspace of 𝐸 by
𝑦 = 𝐺(𝑇 )𝑥 iff 𝒢(𝑇 * 𝜙)𝑥 = 𝒢(𝜙)𝑦 for all 𝜙 ∈ 𝒟0.

Denote its domain by 𝐷(𝐺(𝑇 )). By (C.D.S.2), 𝐺(𝑇 ) is a function. Moreover,
𝐺(𝑇 ) is a closed linear operator. If 𝜙 ∈ 𝒟, put 𝜙+(𝑡) := 𝜙(𝑡)𝐻(𝑡) and 𝜙−(𝑡) :=
𝜙(𝑡)𝐻(−𝑡), 𝑡 ∈ R, where 𝐻(·) is the Heaviside function. Then 𝜙+, 𝜙− ∈ ℰ ′ and the
definitions of 𝐺(𝜙+) and 𝐺(𝜙−) are clear. We know that 𝒢(𝜙) = 0, 𝜙 ∈ 𝒟(−∞,0]
and that 𝐺(𝜙+)𝐶 = 𝒢(𝜙), 𝜙 ∈ 𝒟 [22].

The infinitesimal generator of a (C-DSG) 𝒢 is defined by 𝐴 := 𝐺(−𝛿′).
Finally, if 𝐶 = 𝐼, then we also say that 𝒢 is a distribution semigroup, (DSG)

shortly; if this is the case, then there is no risk for confusion and we also write 𝐺
for 𝒢.

Definition 2.2. An element 𝐺 ∈ 𝒟′(𝐿(𝐸)) is called a pre-distribution group,
pre-(DG) in short, if the following condition holds:
(𝐷𝐺)1 𝐺(𝜙 * 𝜓) = 𝐺(𝜙)𝐺(𝜓) for all 𝜙,𝜓 ∈ 𝒟.
If 𝐺 additionally satisfies:

(𝐷𝐺)2 𝒩 (𝐺) :=
⋂︁
𝜙∈𝒟

𝑁(𝐺(𝜙)) = {0},

then 𝐺 is called a distribution group, (DG) shortly. A pre-(DG) 𝐺 is dense iff:

(𝐷𝐺)3 The set ℛ(𝐺) :=
⋃︁
𝜙∈𝒟

𝑅(𝐺(𝜙)) is dense in 𝐸.

Suppose 𝐺 ∈ 𝒟′(𝐿(𝐸)) satisfies (𝐷𝐺)2 and 𝑇 ∈ ℰ ′. We define 𝐺(𝑇 ) by
𝐺(𝑇 ) :=

{︀
(𝑥, 𝑦) ∈ 𝐸2 | 𝐺(𝑇 * 𝜙)𝑥 = 𝐺(𝜙)𝑦 for all 𝜙 ∈ 𝒟

}︀
.

Due to (𝐷𝐺)2, 𝐺(𝑇 ) is a function and it is straightforward to see that 𝐺(𝑇 ) is a
closed linear operator in 𝐸.

The generator 𝐴 of a (DG) 𝐺 is defined by 𝐴 := 𝐺(−𝛿′). Notice, if 𝐺 is a (DG)
generated by 𝐴, then (1.2) holds.

Further on, an element 𝐺 ∈ 𝒟′(𝐿(𝐸)) is called regular (representable) if the
following holds:
(𝐷𝐺)4 For every 𝑥 ∈ ℛ(𝐺), there is a function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 ∈ R satisfying:

𝑢(·;𝑥) ∈ 𝐶(R : 𝐸), 𝑢(0;𝑥) = 𝑥 and 𝐺(𝜓)𝑥 =
∞∫︁
−∞

𝜓(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡, 𝜓 ∈ 𝒟.

It is checked at once that the function 𝑢(·;𝑥) is unique.
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Example 2.1. (i) Suppose ±𝐴 are generators of 𝐶-distribution semigroups
𝐺±. Put 𝐺(𝜙) := 𝐺+(𝜙) + 𝐺−(𝜙), 𝜙 ∈ 𝒟. Then 𝐴 and 𝐺 fulfill (1.2). Indeed,
𝐺 ∈ 𝒟′(𝐿(𝐸)), 𝐺(𝜙)𝐴 ⊆ 𝐴𝐺(𝜙), 𝜙 ∈ 𝒟, 𝐴𝐺+(𝜙)𝑥 = 𝐺+(−𝜙′)𝑥 − 𝜙(0)𝐶𝑥 and
−𝐴𝐺−(𝜙)𝑥 = 𝐺−(−𝜙′)𝑥 − 𝜙(0)𝐶𝑥, 𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸 (cf. [22]). So, 𝐴𝐺(𝜙)𝑥 =
𝐺+(−𝜙′)𝑥 − 𝜙(0)𝐶𝑥 + 𝐺−(𝜙′)𝑥 + 𝜙(0)𝐶𝑥 = 𝐺+(−𝜙′)𝑥 + 𝐺−(−𝜙′)𝑥 = 𝐺(−𝜙′)𝑥,
𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟. Furthermore, it can be proved the following: 𝐺(𝜙*𝜓)𝐶 = 𝐺(𝜙)𝐺(𝜓),
𝜙,𝜓 ∈ 𝒟 (cf. [22], [26] and [33]),

⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0} and
⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0}.

(ii) Suppose 𝐺 is a (DG), 𝑃 ∈ 𝐿(𝐸), 𝑃 2 = 𝑃 and 𝐺𝑃 = 𝑃𝐺. Set 𝐺𝑃 (𝜙)𝑥 :=
𝐺(𝜙)𝑃𝑥, 𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸. Then 𝐺𝑃 is a pre-(DG) and 𝒩 (𝐺𝑃 ) = 𝑁(𝑃 ).

(iii) Suppose 𝐴 and 𝐺 fulfill (1.2). Define 𝐺𝑇 (𝑇 ∈ ℰ ′) by 𝐺𝑇 (𝜙)𝑥 := 𝐺(𝑇 *𝜙)𝑥,
𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸. Then (1.2) holds for 𝐴 and 𝐺𝑇 .

(iv) [9, Example 16.3] Let 𝐸 := {𝑓 : R→ C is continuous | lim|𝑥|→∞ 𝑒𝑥
2
𝑓(𝑥) =

0}, ‖𝑓‖ := sup𝑥∈R |𝑒𝑥
2
𝑓(𝑥)|, 𝑓 ∈ 𝐸 and 𝐴 := 𝑑

𝑑𝑥 with maximal domain. Put
(𝑆(𝑡)𝑓)(𝑥) := 𝑒−(𝑥+𝑡)2

𝑓(𝑥+𝑡), 𝑥 ∈ R, 𝑡 ∈ R, 𝑓 ∈ 𝐸. Then 𝑆(𝑡)𝑓 ∈ 𝐸, ‖𝑆(𝑡)‖ 6 𝑒2𝑡2 ,∫︀ 𝑡
0 𝑆(𝑠)𝑓 𝑑𝑠 ∈ 𝐷(𝐴) and 𝐴

∫︀ 𝑡
0 𝑆(𝑠)𝑓 𝑑𝑠 = 𝑆(𝑡)𝑓 − 𝑆(0)𝑓 , 𝑡 ∈ R, 𝑓 ∈ 𝐸. Let 𝑓 ∈ 𝐸

and 𝜙 ∈ 𝒟 be fixed. Set 𝐺(𝜙)𝑓 :=
∫︀∞
−∞ 𝜙(𝑡)𝑆(𝑡)𝑓 𝑑𝑡. Clearly, 𝐺 ∈ 𝒟′(𝐿(𝐸)) and

the partial integration shows 𝐺(𝜙)𝑓 ∈ 𝐷(𝐴), 𝐴𝐺(𝜙)𝑓 = 𝐺(−𝜙′)𝑓 and

(︀
𝐺(𝜙)𝐴𝑓 −𝐴𝐺(𝜙)𝑓

)︀
(𝑥) = 2

∞∫︁
−∞

𝜙(𝑡)(𝑥+ 𝑡)𝑒−(𝑥+𝑡)2
𝑓(𝑥+ 𝑡) 𝑑𝑡, 𝑥 ∈ R.

Consequently, 𝐴 does not commute with 𝐺(·) and (1.2) does not hold. Furthermore,
it can be checked directly that 𝐺 fulfills (𝐷𝐺)2 and that 𝐺 is not regular.

(v) Let ℱ denote the Fourier transform on the real line,

ℱ(𝑓)(𝜉) = 1
2𝜋

∞∫︁
−∞

𝑒−𝑖𝜉𝑡𝑓(𝑡)𝑑𝑡, 𝜉 ∈ R.

Suppose that ℰ is a quasi-spectral distribution in the sense of [12, Definition 2.2]
and that ℰ can be continuously extended to 𝒮. Put ℱ(𝒟) := {ℱ(𝜙) : 𝜙 ∈ 𝒟}
and 𝐺(𝜙) := ℰ(ℱ−1(𝜙)), 𝜙 ∈ 𝒮, where ℱ−1 denotes the inverse Fourier transform.
Then 𝐺 ∈ 𝒮 ′(𝐿(𝐸)), 𝐺(𝜙*𝜓) = 𝐺(𝜙)𝐺(𝜓), 𝜙,𝜓 ∈ 𝒮 and

⋂︀
𝜙∈ℱ(𝒟) 𝑁(𝐺(𝜙)) = {0}.

Suppose, additionally, that for every 𝑥 ∈ 𝐸 and 𝜑 ∈ 𝒮 with 𝜑(0) = 1:

(2.1) lim
𝑛→∞
ℰ(𝜑𝑛)𝑥 = 𝑥, where 𝜑𝑛(𝑡) = 𝜑(𝑡/𝑛), 𝑡 ∈ R, 𝑛 ∈ N.

Notice that (2.1) implies that ℰ is a spectral distribution in the sense of [12, Defi-
nition 2.4] (cf. also [6, Definition 1.1]). We will show that

⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0}.
Indeed, suppose 𝜌 ∈ 𝒟,

∫︀∞
−∞ 𝜌(𝑡) 𝑑𝑡 = 1, supp 𝜌 ⊆ [0, 1] and 𝐺(𝜙)𝑥 = 0, 𝜙 ∈ 𝒟0, i.e.,

ℰ(ℱ−1(𝜙))𝑥 = 0, 𝜙 ∈ 𝒟0. Let 𝜑(𝑡) = ℱ−1(𝜌)(𝑡) =
∫︀∞
−∞ 𝑒𝑖𝜉𝑡𝜌(𝜉) 𝑑𝜉, 𝑡 ∈ R. Then

𝜑 ∈ 𝒮 and 𝜑(0) = 1. Put 𝜌𝑛(𝑡) = 𝑛𝜌(𝑛𝑡) and 𝜑𝑛(𝑡) = ℱ−1(𝜌𝑛)(𝑡), 𝑡 ∈ R, 𝑛 ∈ N.
Clearly, 𝜑𝑛(𝑡) = 𝜑(𝑡/𝑛), 𝑡 ∈ R, 𝑛 ∈ N and (2.1) implies 𝑥 = lim𝑛→∞ ℰ(𝜑𝑛)𝑥 =
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lim𝑛→∞ ℰ(ℱ−1(𝜌𝑛))𝑥 = 0. Analogously,
⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0} and this implies
(𝐷𝐺)2 for 𝐺.

Further on, a closed linear operator 𝐴 satisfying (1.2) need not be the gen-
erator of a (DG) and this implies that relations between distribution groups and
convolution type equations are, at least, quite unclear.

The proofs of the following assertions are omitted.

Lemma 2.1. Suppose 𝐺 is a pre-(𝐷𝐺). Then �̌� is a pre-(𝐷𝐺). If, in addition,
𝐺 is a (𝐷𝐺) generated by 𝐴, then �̌� is a (𝐷𝐺) generated by −𝐴.

Proposition 2.1. [28] Let 𝐺 be a pre-(𝐷𝐺), 𝐹 := 𝐸/𝒩 (𝐺) and 𝑞 be the
corresponding canonical mapping 𝑞 : 𝐸 → 𝐸/𝒩 (𝐺).

(a) Let 𝐻 ∈ 𝐿(𝒟, 𝐿(𝐹 )) be defined by 𝑞𝐺(𝜙) := 𝐻(𝜙)𝑞 for all 𝜙 ∈ 𝒟. Then
𝐻 is a (𝐷𝐺) in 𝐹 .

(b) ⟨ℛ(𝐺)⟩ = ℛ(𝐺), where ⟨ℛ(𝐺)⟩ is the linear span of ℛ(𝐺).
(c) Assume that 𝐺 is not dense. Set 𝑅 := ℛ(𝐺) and 𝐻 := 𝐺|𝑅. Then 𝐻 is a

dense pre-(𝐷𝐺) in 𝑅. Moreover, if 𝐺 is a (𝐷𝐺) generated by 𝐴, then 𝐻
is a (𝐷𝐺) in 𝑅 generated by 𝐴𝑅.

(d) The adjoint 𝐺* of 𝐺 is a pre-(𝐷𝐺) in 𝐸* with 𝒩 (𝐺*) = ℛ(𝐺)
∘
. (ℛ(𝐺)

∘

is the polar of ℛ(𝐺).)
(e) If 𝐸 is reflexive, then 𝒩 (𝐺) = ℛ(𝐺*)

∘
.

(f) 𝐺* is a (𝐷𝐺) in 𝐸* iff 𝐺 is a dense pre-(𝐷𝐺). If 𝐸 is reflexive, then 𝐺*

is a dense pre-(𝐷𝐺) in 𝐸* iff 𝐺 is a (𝐷𝐺).
(h) 𝒩 (𝐺) ∩ ⟨ℛ(𝐺)⟩ = {0}.
(j) Suppose 𝑥 = 𝐺(𝜙)𝑦, for some 𝜙 ∈ 𝒟 and 𝑦 ∈ 𝐸. Set 𝑢(𝑡;𝑥) := 𝐺(𝜏𝑡𝜙)𝑦,

𝑡 ∈ R. Then 𝑢(0;𝑥) = 𝑥, 𝑢(·;𝑥) ∈ 𝐶∞(R : 𝐸), 𝑑
𝑛

𝑑𝑡𝑛𝑢(𝑡;𝑥) = 𝐴𝑛𝑢(𝑡;𝑥),
𝑡 ∈ R, 𝑛 ∈ N0 and 𝐺(𝜓)𝑥 =

∫︀∞
−∞ 𝜓(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡, 𝜓 ∈ 𝒟. Hence, 𝐺 is

regular.

Proposition 2.2. [28] Let 𝐺 be a (𝐷𝐺) and let 𝑆, 𝑇 ∈ ℰ ′, 𝜙 ∈ 𝒟 and 𝑥 ∈ 𝐸.
Then:

(a)
(︀
𝐺(𝜙)𝑥, 𝐺(𝑇 * · · · * 𝑇⏟  ⏞  

𝑚

*𝜙)𝑥
)︀
∈ 𝐺(𝑇 )𝑚, 𝑚 ∈ N.

(b) 𝐺(𝑆)𝐺(𝑇 ) ⊆ 𝐺(𝑆 * 𝑇 ), 𝐷(𝐺(𝑆)𝐺(𝑇 )) = 𝐷(𝐺(𝑆 * 𝑇 )) ∩ 𝐷(𝐺(𝑇 )) and
𝐺(𝑆) +𝐺(𝑇 ) ⊆ 𝐺(𝑆 + 𝑇 ). In general, 𝐺(𝑆)𝐺(𝑇 ) ̸= 𝐺(𝑆 * 𝑇 ).

(c) 𝐺(𝜙)𝐺(𝑇 ) ⊆ 𝐺(𝑇 )𝐺(𝜙).
(d) If 𝐺 is dense, its generator is densely defined.

Suppose, for the time being, that 𝒟′(𝐿(𝐸)) ∋ 𝐺 fulfills (𝐷𝐺)3 and (𝐷𝐺)4.
Then 𝐺 is a pre-(𝐷𝐺) iff:

(2.2)
⋃︁
𝑡∈R,
𝑥∈ℛ(𝐺)

𝑢(𝑡;𝑥) ⊆ ℛ(𝐺) and 𝑢(𝑡+ 𝑠;𝑥) = 𝑢(𝑡;𝑢(𝑠;𝑥)), 𝑡, 𝑠 ∈ R, 𝑥 ∈ ℛ(𝐺).
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The necessity of (2.2) follows directly from Proposition 2.1(j). To prove the suffi-
ciency, notice that

𝐺(𝜙 * 𝜓)𝑥 =
∞∫︁
−∞

∞∫︁
−∞

[︀
𝜙(𝑡− 𝑠)𝜓(𝑠) 𝑑𝑠]𝑢(𝑡;𝑥) 𝑑𝑠 𝑑𝑡 =

∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑡)𝜓(𝑠)𝑢(𝑡+ 𝑠;𝑥) 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

𝜙(𝑡)
∞∫︁
−∞

𝜓(𝑠)𝑢(𝑠;𝑢(𝑡;𝑥)) 𝑑𝑠 𝑑𝑡 =
∞∫︁
−∞

𝜙(𝑡)𝐺(𝜓)𝑢(𝑡;𝑥) 𝑑𝑡

= 𝐺(𝜓)
∞∫︁
−∞

𝜙(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡 = 𝐺(𝜓)𝐺(𝜙)𝑥, 𝑥 ∈ ℛ(𝐺).

The denseness of ℛ(𝐺) in 𝐸 automatically implies (𝐷𝐺)1.
From now on, we employ the following definition of an 𝛼-times integrated 𝐶-

semigroup.

Definition 2.3. Let 𝐴 be a closed operator, 0 < 𝜏 6 ∞ and 𝛼 > 0. If there
exists a strongly continuous operator family (𝑆(𝑡))𝑡∈[0,𝜏) such that 𝑆(𝑡)𝐴 ⊆ 𝐴𝑆(𝑡),
𝑡 ∈ [0, 𝜏), 𝑆(𝑡)𝐶 = 𝐶𝑆(𝑡), 𝑡 ∈ [0, 𝜏),

∫︀ 𝑡
0 𝑆(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴), 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏) and

𝐴

𝑡∫︁
0

𝑆(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥− 𝑡𝛼

Γ(𝛼+ 1)𝐶𝑥, 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏),

then (𝑆(𝑡))𝑡∈[0,𝜏) is called a (local, if 𝜏 <∞) 𝛼-times integrated 𝐶-semigroup with a
subgenerator 𝐴. If 𝜏 =∞, then we say that (𝑆(𝑡))𝑡>0 is an exponentially bounded,
𝛼-times integrated 𝐶-semigroup with a subgenerator 𝐴 if, additionally, there exist
𝑀 > 0 and 𝜔 ∈ R such that ‖𝑆(𝑡)‖ 6𝑀𝑒𝜔𝑡, 𝑡 > 0.

We know (cf. [24] and [29]–[30]) that (𝑆(𝑡))𝑡∈[0,𝜏) satisfies 𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑠)𝑆(𝑡),
0 6 𝑡, 𝑠 < 𝜏 and

𝑆(𝑡)𝑆(𝑠)𝑥 =
[︂ 𝑡+𝑠∫︁

0

−
𝑡∫︁

0

−
𝑠∫︁

0

]︂
(𝑡+ 𝑠− 𝑟)𝛼−1

Γ(𝛼) 𝑆(𝑟)𝐶𝑥𝑑𝑟, 𝑥 ∈ 𝐸, 0 6 𝑡, 𝑠, 𝑡+ 𝑠 < 𝜏.

In general, a subgenerator of (𝑆(𝑡))𝑡∈[0,𝜏) is not unique but, in the case 𝐶 = 𝐼, every
subgenerator is unique and coincides with the (integral) generator of (𝑆(𝑡))𝑡∈[0,𝜏),
defined by{︂

(𝑥, 𝑦) ∈ 𝐸2 : 𝑆(𝑡)𝑥− 𝑡𝛼

Γ(𝛼+ 1)𝐶𝑥 =
𝑡∫︁

0

𝑆(𝑠)𝑦 𝑑𝑠 for all 𝑡 ∈ [0, 𝜏)
}︂
.

We refer the reader to [43]–[44] for the definition of a local regularized semigroup
and its generator. Suppose 𝑛 ∈ N and 𝜏 ∈ (0,∞); then it is well known [44] that a
closed linear operator 𝐴 generates a local 𝑛-times integrated semigroup on [0, 𝜏) if
and only if 𝜌(𝐴) ̸= ∅ and 𝐴 generates a local 𝑅(𝜆 : 𝐴)𝑛-semigroup on [0, 𝜏), where
𝜆 ∈ 𝜌(𝐴).
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Definition 2.4. [26] Let 𝐴 and 𝐵 be closed linear operators, 𝜏 ∈ (0,∞] and
𝛼 > 0. A strongly continuous operator family (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is called a (local, if
𝜏 <∞) 𝛼-times integrated group generated by 𝐴 if:

(i) (𝑆+(𝑡) := 𝑆(𝑡))𝑡∈[0,𝜏) and (𝑆−(𝑡) := 𝑆(−𝑡))𝑡∈[0,𝜏) are (local) 𝛼-times inte-
grated semigroups generated by 𝐴 and 𝐵, respectively, and

(ii) for every 𝑥 ∈ 𝐸 and 𝑡, 𝑠 ∈ (−𝜏, 𝜏) with 𝑡 < 0 < 𝑠:

𝑆(𝑡)𝑆(𝑠)𝑥=𝑆(𝑠)𝑆(𝑡)𝑥=

⎧⎪⎪⎨⎪⎪⎩
𝑠∫︀
𝑡+𝑠

(𝑟−𝑡−𝑠)𝛼−1

Γ(𝛼) 𝑆(𝑟)𝑥 𝑑𝑟+
0∫︀
𝑡

(𝑡+𝑠−𝑟)𝛼−1

Γ(𝛼) 𝑆(𝑟)𝑥 𝑑𝑟, 𝑡+𝑠 > 0,
𝑡+𝑠∫︀
𝑡

(𝑡+𝑠−𝑟)𝛼−1

Γ(𝛼) 𝑆(𝑟)𝑥 𝑑𝑟+
𝑠∫︀

0

(𝑟−𝑡−𝑠)𝛼−1

Γ(𝛼) 𝑆(𝑟)𝑥 𝑑𝑟, 𝑡+𝑠 < 0.

Lemma 2.2. [26] (i) Let (𝑆(𝑡))𝑡∈(−𝜏,𝜏) be an 𝛼-times integrated group generated
by 𝐴, for some 𝛼 > 0 and 𝜏 ∈ (0,∞]. Put 𝑆(𝑡) := 𝑆(−𝑡), 𝑡 ∈ (−𝜏, 𝜏). Then
(𝑆(𝑡))𝑡∈(−𝜏,𝜏) is an 𝛼-times integrated group generated by 𝐵.
(ii) Suppose 𝜏 ∈ (0,∞], 𝛼 > 0 and 𝐴 is the generator of an 𝛼-times integrated
group (𝑆(𝑡))𝑡∈(−𝜏,𝜏). Then there exist 𝑎 > 0 and 𝑏 > 0 so that:

(ii.1) 𝐸(𝑎, 𝑏) ⊆ 𝜌(𝐴) ∩ 𝜌(𝐵), 𝑅(𝜆 : 𝐴)𝑆(𝑡) = 𝑆(𝑡)𝑅(𝜆 : 𝐴), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝑡 ∈
(−𝜏, 0] and 𝑅(𝜆 : 𝐵)𝑆(𝑠) = 𝑆(𝑠)𝑅(𝜆 : 𝐵), 𝜆 ∈ 𝐸(𝑎, 𝑏), 𝑠 ∈ [0, 𝜏).

(ii.2) 𝑆(𝑡)𝐴 ⊆ 𝐴𝑆(𝑡), 𝑡 ∈ (−𝜏, 0] and 𝑆(𝑠)𝐵 ⊆ 𝐵𝑆(𝑠), 𝑠 ∈ [0, 𝜏).

(iii) Suppose 𝛽 > 𝛼 > 0 and 𝐴 is the generator of an 𝛼-times integrated group
(𝑆𝛼(𝑡))𝑡∈(−𝜏,𝜏). Put

𝑆𝛽(𝑡) :=

⎧⎪⎪⎨⎪⎪⎩
𝑡∫︀

0

(𝑡−𝑠)𝛽−𝛼−1

Γ(𝛽−𝛼) 𝑆𝛼(𝑠)𝑥 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸
−𝑡∫︀
0

(−𝑡−𝑠)𝛽−𝛼−1

Γ(𝛽−𝛼) 𝑆𝛼(−𝑠)𝑥 𝑑𝑠, 𝑡 ∈ (−𝜏, 0), 𝑥 ∈ 𝐸.

Then (𝑆𝛽(𝑡))𝑡∈(−𝜏,𝜏) is a 𝛽-times integrated group generated by 𝐴.
(iv) Let 𝛼 > 0, 𝜏 ∈ (0,∞] and let (𝑆(𝑡))𝑡∈(−𝜏,𝜏) be an 𝛼-times integrated group
generated by 𝐴. Then 𝐵 = −𝐴.
(v) Suppose 0 < 𝜏 6 ∞, 𝛼 > 0 and ±𝐴 generate 𝛼-times integrated semigroups
(𝑆±(𝑡))𝑡∈[0,𝜏). Then 𝐴 generates an 𝛼-times integrated group (𝑆(𝑡))𝑡∈(−𝜏,𝜏) given
by: 𝑆(𝑡) =: 𝑆+(𝑡), 𝑡 ∈ [0, 𝜏), 𝑆(𝑡) := 𝑆−(−𝑡), 𝑡 ∈ (−𝜏, 0).
(vi) Suppose 0 < 𝜏 6 ∞ and 𝛼 > 0. A strongly continuous operator fam-
ily (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is an 𝛼-times integrated group generated by 𝐴 if and only if
(𝑆±(𝑡))𝑡∈[0,𝜏) are 𝛼-times integrated semigroups generated by ±𝐴.

Proposition 2.3. Suppose ±𝐴 generate distribution semigroups 𝐺± and put
𝐺(𝜙) := 𝐺+(𝜙) +𝐺−(𝜙), 𝜙 ∈ 𝒟. Then 𝐺 is a (𝐷𝐺) generated by 𝐴.

Proof. By the standard arguments, we have that there exists 𝑛 ∈ N such that,
for every 𝑘 ∈ N, ±𝐴 generate (2𝑘𝑛)-times integrated semigroups (𝑆𝑘±(𝑡))𝑡∈[0,2𝑘𝜏).
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Then one obtains

𝐺+(𝜙)𝑥 = (−1)2𝑘𝑛
∞∫︁

0

𝜙(2𝑘𝑛)(𝑡)𝑆𝑘+(𝑡)𝑥 𝑑𝑡 and

𝐺−(𝜙)𝑥 = (−1)2𝑘𝑛
∞∫︁

0

𝜙(2𝑘𝑛)(𝑡)𝑆𝑘−(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−∞,2𝑘𝜏).

In order to prove that 𝐺 is a (DG) generated by 𝐴, suppose 𝑥 ∈ 𝒩 (𝐺). Then,
for every 𝜙 ∈ 𝒟0, 𝐺(𝜙)𝑥 = 0 and this implies 𝐺+(𝜙)𝑥 = 0, 𝜙 ∈ 𝒟0. Since
𝐺+ is a (DSG) generated by 𝐴, we have 𝑥 = 0 and (𝐷𝐺)2 holds for 𝐺. Note
that Lemma 2.2(vi) implies that, for every 𝑘 ∈ N, 𝐴 generates a local (2𝑘𝑛)-times
integrated group (𝑆𝑘(𝑡))𝑡∈(−2𝑘𝜏,2𝑘𝜏). Now one can repeat literally the arguments
given in the proof of [33, Theorem 6] in order to conclude that (𝐷𝐺)1 holds for all
𝜙,𝜓 ∈ 𝒟(−2𝑘−1𝜏,2𝑘−1𝜏). Hence, 𝐺 satisfies (𝐷𝐺)1. It remains to prove that 𝐵 = 𝐴,
where𝐵 is the generator of𝐺. Suppose (𝑥, 𝑦) ∈ 𝐵. Then𝐺(−𝜙′)𝑥 = 𝐺(𝜙)𝑦, 𝜙 ∈ 𝒟,
i.e., 𝐺+(−𝜙′)𝑥+𝐺−(−̌𝜙′)𝑥 = 𝐺+(𝜙)𝑥+𝐺−(𝜙)𝑥, 𝜙 ∈ 𝒟. This, in particular, holds
for every 𝜙 ∈ 𝒟0 and one obtains 𝐺+(−𝜙′)𝑥 = 𝐺+(𝜙)𝑥, 𝜙 ∈ 𝒟0. In other words,
𝐵 ⊆ 𝐴. Assume now (𝑥, 𝑦) ∈ 𝐴. Then the definition of 𝐺 and [28, Lemma 3.6]
imply:

𝐺(𝜙)𝑦 = 𝐺(𝜙)𝐴𝑥 = 𝐺+(𝜙)𝐴𝑥+𝐺−(𝜙)𝐴𝑥
= 𝐺+(−𝜙′)𝑥− 𝜙(0)𝑥−𝐺−(−𝜙′)𝑥+ 𝜙(0)𝑥

= 𝐺+(−𝜙′)𝑥+𝐺−(−̌𝜙′)𝑥 = 𝐺(−𝜙′)𝑥, 𝜙 ∈ 𝒟.

This gives 𝐴 ⊆ 𝐵 and ends the proof of proposition. �

The previous theorem implies that a wide class of multiplication operators act-
ing on 𝐿𝑝(R𝑛)-type spaces can be used for the construction of distribution groups.
In particular, several examples presented in [1] offers one to construct local once
integrated groups which can be explicitly calculated.

The following corollary is an immediate consequence of Lemma 2.2, [30, The-
orems 2.1–2.2] and [43, Corollary 2.7].

Corollary 2.1. (a) Suppose 𝛼 > 0, 𝜏 ∈ (0,∞] and 𝐴 generates an 𝛼-times
integrated group (𝑆𝛼(𝑡))𝑡∈(−𝜏,𝜏). Then, for every 𝑎 ∈ (0, 𝜏𝛼 ), there exist 𝑏 > 0 and
𝑀 > 0 so that:

(2.3) 𝐸(𝑎, 𝑏) ⊆ 𝜌(±𝐴) and ‖𝑅(𝜆 : ±𝐴)‖ 6𝑀 |𝜆|𝛼, 𝜆 ∈ 𝐸(𝑎, 𝑏).

(b) Suppose there exist 𝑎 > 0, 𝑏 > 0, 𝑀 > 0 and 𝛼 > −1 so that (2.3) holds. Then,
for every 𝛽 > 𝛼 + 1 and 𝜏 = 𝑎(𝛽 − 𝛼 − 1), 𝐴 generates a local 𝛽-times integrated
group (𝑆𝛽(𝑡))𝑡∈(−𝜏,𝜏).
(c) Suppose 𝑛 ∈ N, 𝑘 ∈ N, 𝜏 ∈ (0,∞) and 𝐴 generates a local 𝑛-times inte-
grated group (𝑆𝑛(𝑡))𝑡∈(−𝜏,𝜏). Then 𝐴 generates a local (𝑘𝑛)-times integrated group
(𝑆𝑘𝑛(𝑡))𝑡∈(−𝑘𝜏,𝑘𝜏).
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Suppose 𝛼 ∈ (0,∞), 𝛼 /∈ N and 𝑓 ∈ 𝒮. Put 𝑛 = ⌈𝛼⌉ := inf{𝑘 ∈ Z : 𝑘 > 𝛼}.
Recall [35], the Weyl fractional derivatives 𝑊𝛼+ and 𝑊𝛼− of order 𝛼 are defined by:

𝑊𝛼+𝑓(𝑡) := (−1)𝑛

Γ(𝑛− 𝛼)
𝑑𝑛

𝑑𝑡𝑛

∞∫︁
𝑡

(𝑠− 𝑡)𝑛−𝛼−1𝑓(𝑠) 𝑑𝑠, 𝑡 ∈ R

𝑊𝛼−𝑓(𝑡) := 1
Γ(𝑛− 𝛼)

𝑑𝑛

𝑑𝑡𝑛

𝑡∫︁
−∞

(𝑡− 𝑠)𝑛−𝛼−1𝑓(𝑠) 𝑑𝑠, 𝑡 ∈ R.

If 𝛼 = 𝑛 ∈ N, put 𝑊𝑛+ := (−1)𝑛 𝑑
𝑛

𝑑𝑡𝑛 and 𝑊𝑛− := 𝑑𝑛

𝑑𝑡𝑛 . Then we know [33] that
𝑊𝛼+𝛽
± = 𝑊𝛼±𝑊

𝛽
±, 𝛼 > 0, 𝛽 > 0.

The following result can be attributed to Miana.

Theorem 2.1. [33] Suppose 𝛼 > 0 and (𝑆(𝑡))𝑡∈R is an 𝛼-times integrated group
generated by 𝐴. Put 𝐺(𝜙)𝑥 :=

∫︀∞
0 𝑊𝛼+𝜙(𝑡)𝑆(𝑡)𝑥 𝑑𝑡+

∫︀∞
0 𝑊𝛼+𝜙(𝑡)𝑆(−𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟,

𝑥 ∈ 𝐸. Then 𝐺 is a (𝐷𝐺) generated by 𝐴.

Notice that, in the case 𝛼 = 𝑛 ∈ N, we have the following equality:

𝐺(𝜙)𝑥 = (−1)𝑛
∞∫︁

0

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡+
0∫︁

−∞

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡.

We refer the reader to [9, Section XXI] and [24]–[25] for the basic material
concerning analytic integrated semigroups.

Remark 2.1. Let 𝛼 > 0, 𝜔 > 0 and let 𝐴 be the generator of an 𝛼-times inte-
grated group (𝑆𝛼(𝑡))𝑡∈R with ‖𝑆𝛼(𝑡)‖ = 𝑂(𝑒𝜔|𝑡|), 𝑡 ∈ R. Due to [33, Theorem 8],
𝐴2 generates an exponentially bounded, (𝛼2 )-times integrated semigroup (𝑉𝛼(𝑡))𝑡>0

given by 𝑉𝛼(𝑡) := 1√
4𝑡𝜋

∫︀∞
−∞ 𝑒−𝑠

2/4𝑡𝑆𝛼(𝑠) 𝑑𝑠. If Re 𝑧 > 0, then one can define 𝑉𝛼(𝑧)
by 𝑉𝛼(𝑧) := 1√

4𝑧𝜋

∫︀∞
−∞ 𝑒−𝑠

2/4𝑧𝑆𝛼(𝑠) 𝑑𝑠 (
√

1 = 1). Arguing as in the proof of [25,
Theorem 11] (cf. also [3, p. 220], [25, Proposition 8] and [26, Proposition 2.4]),
we have that (𝑉𝛼(𝑡))𝑡>0 is an exponentially bounded, analytic (𝛼2 )-times integrated
semigroup of angle 𝜋2 .

The next theorem clarifies an interesting relation between integrated groups
and global differentiable regularized groups.

Theorem 2.2. Suppose 𝛼 > 0, 𝜏 ∈ (0,∞], 𝑏 ∈ (0, 1) and 𝐴 generates an
𝛼-times integrated group (𝑆𝛼(𝑡))𝑡∈(−𝜏,𝜏). Then, for every 𝛾 ∈ (0, arctan(cos(𝑏𝜋2 ))),
there exist two analytic operator families (𝑇𝑏,+(𝑡))𝑡∈Σ𝛾 ⊆ 𝐿(𝐸) and (𝑇𝑏,−(𝑡))𝑡∈Σ𝛾 ⊆
𝐿(𝐸) so that:

(a) For every 𝑡 ∈ Σ𝛾 , 𝑇𝑏,+(𝑡) and 𝑇𝑏,−(𝑡) are injective operators.
(b) For every 𝑡1 ∈ Σ𝛾 and 𝑡2 ∈ Σ𝛾 , 𝐴 generates a global (𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))-

group (𝑉𝑏,𝑡1,𝑡2(𝑠))𝑠∈R.
(c) For every 𝑥 ∈ 𝐸, 𝑡1 ∈ Σ𝛾 and 𝑡2 ∈ Σ𝛾 , the mapping 𝑠 ↦→ 𝑉𝑏,𝑡1,𝑡2(𝑠)𝑥,

𝑠 ∈ R is infinitely differentiable in (−∞, 0) ∪ (0,∞).
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Proof. Due to Corollary 2.1, there exist 𝑐 > 0, 𝑑 > 0 and 𝑀 > 0 so that
𝐸(𝑐, 𝑑) ⊆ 𝜌(±𝐴) and that ‖𝑅(𝜆 : ±𝐴)‖ 6 𝑀 |𝜆|𝛼, 𝜆 ∈ 𝐸(𝑐, 𝑑). Choose a number
𝑎 ∈ (0, 𝜋2 ) such that 𝑏 ∈

(︀
0, 𝜋

2(𝜋−𝑎)
)︀

and that 𝛾 ∈
(︀
0, arctan(cos(𝑏(𝜋 − 𝑎)))

)︀
. It is

clear that there are numbers 𝑑 ∈ (0, 1] and 𝜔 ∈ (𝑑+ 1,∞) so that

Ω𝑎,𝑑 :=
{︀
𝑧 ∈ C : |𝑧| 6 𝑑

}︀
∪
{︀
𝑟𝑒𝑖𝜃 : 𝑟 > 0, 𝜃 ∈ [−𝑎, 𝑎]

}︀
⊆ 𝜌(𝐴− 𝜔) ∩ 𝜌(−𝐴− 𝜔).

Let the curve Γ𝑎,𝑑 = 𝜕Ω𝑎,𝑑 be oriented upwards. Define 𝑇𝑏,±(𝑡), 𝑡 ∈ Σ𝛾 by:

𝑇𝑏,±(𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : ±𝐴− 𝜔)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸.

Applying the arguments given in Section 2 of [39], one can deduce that (𝑇𝑏,±(𝑡))𝑡∈Σ𝛾
are analytic operator families and that, for every 𝑡 ∈ Σ𝛾 , 𝑇𝑏,+(𝑡) and 𝑇𝑏,−(𝑡) are
injective operators. Clearly,

𝑇𝑏,+(𝑡1)(−𝐴− 𝜔) ⊆ (−𝐴− 𝜔)𝑇𝑏,+(𝑡1),
𝑇𝑏,−(𝑡2)(𝐴− 𝜔) ⊆ (𝐴− 𝜔)𝑇𝑏,−(𝑡2), 𝑡1, 𝑡2 ∈ Σ𝛾 .

It is straightforward to prove that 𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2) = 𝑇𝑏,−(𝑡2)𝑇𝑏,+(𝑡1), 𝑡1, 𝑡2 ∈ Σ𝛾
and the arguments given in [21] shows that ±𝐴−𝜔 are generators of global 𝑇𝑏,±(𝑡)-
semigroups (𝑈𝑏,𝑡,±(𝑠))𝑠>0. Suppose 𝑡1, 𝑡2 ∈ Σ𝛾 and 𝑥 ∈ 𝐸. Then one obtains

𝑇𝑏,−(𝑡2)(𝑈𝑏,𝑡1,+(𝑠)𝑥− 𝑇𝑏,+(𝑡1)𝑥)

= 𝑇𝑏,−(𝑡2)(𝐴− 𝜔)
𝑠∫︁

0

𝑈𝑏,𝑡1,+(𝑣)𝑥 𝑑𝑣 = (𝐴− 𝜔)𝑇𝑏,−(𝑡2)
𝑠∫︁

0

𝑈𝑏,𝑡1,+(𝑣)𝑥 𝑑𝑣.

Hence,

(𝐴−𝜔)
𝑠∫︁

0

(︀
𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑣)

)︀
𝑥 𝑑𝑣 = 𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)𝑥−𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2)𝑥, 𝑠 > 0.

Furthermore, [𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)]𝑇𝑏,+(𝑡1) = 𝑇𝑏,+(𝑡1)[𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)], 𝑠 > 0, and
[𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)](𝐴−𝜔) ⊆ (𝐴−𝜔)[𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)], 𝑠 > 0. This simply implies
that (𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠))𝑠>0 is a global (𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))-semigroup generated by
(𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))−1(𝐴−𝜔)(𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2)) = 𝐴−𝜔. So, (𝑒𝜔𝑠𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠))𝑠>0
is a global (𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))-semigroup generated by 𝐴. Analogically, for every
𝑡1, 𝑡2 ∈ Σ𝛾 , (𝑒𝜔𝑠𝑇𝑏,+(𝑡1)𝑈𝑏,𝑡2,−(𝑠))𝑠>0 is a global (𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))-semigroup gen-
erated by −𝐴. Hence, for every 𝑡1 ∈ Σ𝛾 and 𝑡2 ∈ Σ𝛾 , 𝐴 generates a global
(𝑇𝑏,+(𝑡1)𝑇𝑏,−(𝑡2))-group (𝑉𝑏,𝑡1,𝑡2(𝑠))𝑠∈R given by:

𝑉𝑏,𝑡1,𝑡2(𝑠) :=
{︃
𝑒𝜔𝑠𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠), 𝑠 > 0,
𝑒−𝜔𝑠𝑇𝑏,+(𝑡1)𝑈𝑏,𝑡2,−(−𝑠), 𝑠 < 0.

The mapping 𝑠 ↦→ 𝑉𝑏,𝑡1,𝑡2(𝑠)𝑥, 𝑠 ∈ R is infinitely differentiable in (−∞, 0) ∪ (0,∞)
since the mappings 𝑠 ↦→ 𝑇𝑏,−(𝑡2)𝑈𝑏,𝑡1,+(𝑠)𝑥 and 𝑠 ↦→ 𝑇𝑏,+(𝑡1)𝑈𝑏,𝑡2,−(𝑠)𝑥 are infin-
itely differentiable in 𝑠 > 0 [21]. The proof is completed. �
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3. [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-groups

We introduce [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-groups as follows.
Definition 3.1. Let 𝐴 be a closed linear operator. Suppose, further, 0 < 𝜏 6

∞, 𝑛 ∈ N and 𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1 ∈ 𝐿(𝐸). A strongly continuous operator
family (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group with a subgenerator 𝐴
if and only if:

(a) 𝐴
𝑡∫︀

0
𝑆(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥+

𝑛∑︀
𝑗=0

𝑡𝑗𝐵𝑗𝑥, 𝑡 ∈ (−𝜏, 𝜏), 𝑥 ∈ 𝐸 and

(b) 𝐴𝑆(𝑡)𝑥− 𝑆(𝑡)𝐴𝑥 =
𝑛−1∑︀
𝑗=0

𝑡𝑗𝐶𝑗𝑥, 𝑡 ∈ (−𝜏, 𝜏), 𝑥 ∈ 𝐷(𝐴).

It is said that (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is non-degenerate if the assumption 𝑆(𝑡)𝑥 = 0, for
all 𝑡 ∈ (−𝜏, 𝜏), implies 𝑥 = 0. Define the integral generator of a non-degenerate
[𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏) by:

𝐴 =
{︂

(𝑥, 𝑦) ∈ 𝐸2 : 𝑆(𝑡)𝑥+
𝑛∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑥−
𝑛−1∑︁
𝑗=0

𝑡𝑗+1

𝑗 + 1𝐶𝑗𝑥 =
𝑡∫︁

0

𝑆(𝑠)𝑦𝑑𝑠, 𝑡 ∈ (−𝜏, 𝜏)
}︂
.

The integral generator 𝐴 of a non-degenerate [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group
(𝑆(𝑡))𝑡∈(−𝜏,𝜏) is a function and it is straightforward to see that 𝐴 is a closed linear
operator which is an extension of any subgenerator of (𝑆(𝑡))𝑡∈(−𝜏,𝜏). Further on,
the injectiveness of 𝐵𝑖 for some 𝑖 ∈ {0, . . . , 𝑛} implies that (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is non-
degenerate. In general, a subgenerator 𝐴 of (𝑆(𝑡))𝑡∈(−𝜏,𝜏) does not commute with
𝑆(·) and the set of all subgenerators of (𝑆(𝑡))𝑡∈(−𝜏,𝜏) need not be monomial. Let
us show this by the following illustrative example.

Example 3.1. (i) Let
𝐸 := R2, 𝐴(𝑥1, 𝑥2) := (𝑥1 − 𝑥2, 0),

𝐵0(𝑥1, 𝑥2) := (0,−𝑥2), 𝐵1(𝑥1, 𝑥2) := (−𝑥1 − 𝑥2,−𝑥1), 𝐵2(𝑥1, 𝑥2) := (0, 0),
𝐶0(𝑥1, 𝑥2) := (−𝑥2, 0), 𝐶1(𝑥1, 𝑥2) := (−𝑥1 + 𝑥2,−𝑥1 + 𝑥2),

𝑆(𝑡)(𝑥1, 𝑥2) := (𝑡𝑥1, 𝑡𝑥1 + 𝑥2), 𝑡 ∈ R, (𝑥1, 𝑥2) ∈ 𝐸.
It is straightforward to verify that (𝑆(𝑡))𝑡∈R is a [𝐵0, 𝐵1, 𝐵2, 𝐶0, 𝐶1]-group with a
subgenerator 𝐴 and that: 𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑠)𝑆(𝑡) iff 𝑡 = 𝑠, 𝑆(𝑡)𝐷 ̸= 𝐷𝑆(𝑡), 𝑡 ∈ R,
𝐷 ∈ {𝐵1, 𝐶0, 𝐶1} and 𝐷0𝐷1 ̸= 𝐷1𝐷0, 𝐷𝑖 ∈ {𝐵𝑖, 𝐶𝑖}, 𝑖 = 1, 2.

(ii) Suppose 𝐶𝑗 = 0, 𝑗 = 0, . . . , 𝑛 − 1 and the bounded linear operators 𝐵𝑗 ,
𝑗 = 0, . . . , 𝑛 fulfill 𝐸 ̸=

∑︀𝑛
𝑖=0 𝑅(𝐵𝑖). Put 𝑆(𝑡)𝑥 := −

∑︀𝑛
𝑗=0 𝑡

𝑗𝐵𝑗𝑥, 𝑡 ∈ (−𝜏, 𝜏), 𝑥 ∈
𝐸 and denote by Λ the family of all closed subspaces of 𝐸 containing

∑︀𝑛
𝑖=0 𝑅(𝐵𝑖).

If 𝐹 ∈ Λ, define a closed linear operator 𝐴𝐹 by 𝐷(𝐴𝐹 ) := 𝐹 and 𝐴𝐹𝑥 := 0, 𝑥 ∈
𝐷(𝐴𝐹 ). Then 𝐴𝐹 is a subgenerator of a [𝐵0, . . . , 𝐵𝑛, 0, . . . , 0⏟  ⏞  

𝑛

]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏).

Remark 3.1. (i) Assume 𝑛 ∈ N, 𝜏 ∈ (0,∞] and 𝐴 generates an 𝑛-times
integrated group (𝑆(𝑡))𝑡∈(−𝜏,𝜏). Put 𝑆(𝑡) := 𝑆(𝑡), 𝑡 ∈ [0, 𝜏) and 𝑆(𝑡) := (−1)𝑛𝑆(𝑡),
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𝑡 ∈ (−𝜏, 0). Then (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is a
[︀

0, . . . , 0⏟  ⏞  
𝑛

, (−1)
𝑛! 𝐼, 0, . . . , 0⏟  ⏞  

𝑛

]︀
-group having 𝐴 as a

subgenerator.

(ii) Let𝐴 be a subgenerator of a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏).
Put 𝑆(𝑡) := 𝑆(−𝑡), 𝑡 ∈ (−𝜏, 𝜏), �̌�𝑗 := (−1)𝑗𝐵𝑗 and 𝐶𝑗 := (−1)𝑗+1𝐶𝑗 . Then
(𝑆(𝑡))𝑡∈(−𝜏,𝜏) is a [�̌�0, . . . , �̌�𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group with a subgenerator −𝐴.

(iii) Let 𝑘 ∈ N and let 𝐷1, . . . , 𝐷𝑘 ∈ 𝐿(𝐸). For a given 𝑖 ∈ {1, . . . , 𝑘}, put
𝐷𝑖 :=

∏︀𝑖
𝑗=1 𝐷𝑗 . Define 𝑆𝑖(·), 𝑖 ∈ {0, . . . , 𝑘} recursively by:

𝑆0(𝑡)𝑥 := 𝑆(𝑡)𝑥, . . . , 𝑆𝑖(𝑡)𝑥 :=
𝑡∫︁

0

𝑆𝑖−1(𝑠)𝐷𝑖𝑥 𝑑𝑠, 𝑥 ∈ 𝐸, 𝑡 ∈ (−𝜏, 𝜏),

and suppose, additionally, that 𝐷𝑖𝐴 ⊆ 𝐴𝐷𝑖, 𝑖 ∈ {1, . . . , 𝑘}. By a simple induc-
tion argument, one can deduce that, for every 𝑖 ∈ {1, . . . , 𝑘}, (𝑆𝑖(𝑡))𝑡∈(−𝜏,𝜏) is a[︀

0, . . . , 0⏟  ⏞  
𝑖

, 0!𝐵0𝐷𝑖
𝑖! , . . . , 𝑛!𝐵𝑛𝐷𝑖

(𝑖+𝑛)! , 0, . . . , 0⏟  ⏞  
𝑖

, 0!𝐶0𝐷𝑖
𝑖! , (𝑛−1)!𝐶𝑛−1𝐷𝑖

(𝑖+𝑛−1)!
]︀
-group with a subgener-

ator 𝐴.
(iv) Suppose 𝐴 generates a 𝐶-regularized group (𝑇 (𝑡))𝑡∈R in the sense of [9,

Definition 7.2]. Put 𝑇𝑘(𝑡)𝑥 :=
∫︀ 𝑡

0
(𝑡−𝑠)𝑘−1

(𝑘−1)! 𝑇 (𝑠)𝑥 𝑑𝑠, 𝑡 ∈ R, 𝑥 ∈ 𝐸, 𝑘 ∈ N. Then
(𝑇𝑘(𝑡))𝑡∈R is a [0, . . . , 0⏟  ⏞  

𝑘

,− 1
𝑘!𝐶, 0, . . . , 0⏟  ⏞  

𝑘

]-group having 𝐴 as a subgenerator.

Suppose 𝐴 is closed, 𝐵0, · · · , 𝐵𝑛 ∈ 𝐿(𝐸) and define

𝜌𝐵0,...,𝐵𝑛(𝐴) :=
{︂
𝜆 ∈ C : 𝑅

(︂ 𝑛∑︁
𝑗=0

𝑗!
𝜆𝑗
𝐵𝑗

)︂
⊆ 𝑅(𝜆−𝐴)

}︂
.

The following profiling of exponentially bounded [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-
groups can be simply proved ([24]).

Proposition 3.1. (i) Let 𝐴 be a subgenerator of a [𝐵+
0 , . . . , 𝐵

+
𝑛 , 𝐶

+
0 , . . . , 𝐶

+
𝑛−1]-

group (𝑆(𝑡))𝑡∈R satisfying ‖𝑆(𝑡)‖ 6𝑀𝑒𝜔|𝑡|, 𝑡 ∈ R, for some 𝑀 > 0 and 𝜔 > 0. Set
𝐵−𝑗 := (−1)𝑗𝐵+

𝑗 and 𝐶−𝑗 := (−1)𝑗+1𝐶+
𝑗 . Then:

(i1) 𝜌𝐵+
0 ,...,𝐵

+
𝑛

(𝐴) ∩ 𝜌𝐵−0 ,...,𝐵−𝑛 (−𝐴) ⊇ {𝜆 ∈ C : Re𝜆 > 𝜔},

(i2)
∫︀∞

0 𝑒−𝜆𝑡𝑆(±𝑡)𝑥 𝑑𝑡 = −(𝜆∓𝐴)−1∑︀𝑛
𝑗=0

𝑗!
𝜆𝑗𝐵

±
𝑗 𝑥, Re𝜆 > 𝜔, 𝑥 ∈ 𝐸 and

(i3) ±𝐴
∫︀∞

0 𝑒−𝜆𝑡𝑆(±𝑡)𝑥 𝑑𝑡−
∫︀∞

0 𝑒−𝜆𝑡𝑆(±𝑡)±𝐴𝑥𝑑𝑡 =
∑︀𝑛−1
𝑗=0

𝑗!
𝜆𝑗+1𝐶

±
𝑗 𝑥,

Re𝜆 > 𝜔, 𝑥 ∈ 𝐷(𝐴).
(ii) Suppose 𝐴 is a closed operator and (𝑆(𝑡))𝑡∈R is a strongly continuous op-

erator family satisfying ‖𝑆(𝑡)‖ 6 𝑀𝑒𝜔|𝑡|, 𝑡 ∈ R, for some 𝑀 > 0 and 𝜔 > 0. If
(i1), (i2) and (i3) hold, then (𝑆(𝑡))𝑡∈R is a [𝐵+

0 , . . . , 𝐵
+
𝑛 , 𝐶

+
0 , . . . , 𝐶

+
𝑛−1]-group with

a subgenerator 𝐴.
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Suppose 𝑛 ∈ N. If 𝐴 is a closed operator and 𝐵0, · · · , 𝐵𝑛 ∈ 𝐿(𝐸), then we
define linear operators 𝑌𝑖, 𝑖 ∈ {0, . . . , 𝑛} recursively by:

𝑌0 := 𝐵0, 𝑌𝑖+1 := (𝑖+ 1)!𝐵𝑖+1 +𝐴𝑌𝑖, 𝑖 ∈ {0, . . . , 𝑛− 1}.
Note that 𝑌1 is closed and that the assumption 0 ∈ 𝜌(𝐴) simply implies the closed-
ness of 𝑌𝑖, 𝑖 ∈ {0, . . . , 𝑛}.

Proposition 3.2. Suppose 𝜏 ∈ (0,∞], 𝑛 ∈ N r {1} and 𝐴 is a subgenerator
of a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏). Then:

(i) 𝑖𝐵𝑖𝑥 − 𝐶𝑖−1𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ 𝐷(𝐴), 𝑖 ∈ {1, . . . , 𝑛}, 𝐴(𝑖𝐵𝑖𝑥 − 𝐶𝑖−1𝑥) =
𝑖𝐵𝑖𝐴𝑥− 𝑖𝐶𝑖𝑥, 𝑖 ∈ {1, . . . , 𝑛− 1} and 𝐴(𝑛𝐵𝑛𝑥− 𝐶𝑛−1𝑥) = 𝑛𝐵𝑛𝐴𝑥, 𝑥 ∈ 𝐷(𝐴).

(ii) 𝐷(𝐴𝑘) ⊆
⋂︀𝑘
𝑗=0 𝐷(𝑌𝑗), 𝑘 ∈ {0, . . . , 𝑛} and 𝑌𝑘𝑥 = −

(︀
𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥

)︀
𝑡=0, 𝑥 ∈

𝐷(𝐴𝑘), 𝑘 ∈ {0, . . . , 𝑛}.
(iii) For every 𝑘 ∈ {0, . . . , 𝑛− 1} and 𝑥 ∈ 𝐷(𝐴𝑘+1):

(3.1) 𝐶𝑘𝑥+ 1
𝑘!𝐴𝑌𝑘(𝑥) = 1

𝑘!𝑌𝑘(𝐴𝑥).

(iv) If 𝑅(𝐵0)⊆𝐷(𝐴), then 𝑌2 is closed, 𝐷(𝐴𝑘) ⊆
⋂︀𝑘+1
𝑗=0 𝐷(𝑌𝑗), 𝑘∈{0, ..., 𝑛−1},

(3.1) holds for every 𝑘 ∈ {1, . . . , 𝑛− 1} and 𝑥 ∈ 𝐷(𝐴𝑘) and there exists an appro-
priate constant 𝑀 > 0 so that ‖𝑌𝑘+1𝑥‖ 6𝑀‖𝑥‖𝑘, 𝑘 ∈ {0, . . . , 𝑛− 1}, 𝑥 ∈ 𝐷(𝐴𝑘).

(v) 𝐴(−𝑌𝑛𝑥 + 𝑌𝑛−1𝐴𝑥) = −𝑛!𝐵𝑛𝐴𝑥, 𝑥 ∈ 𝐷(𝐴𝑛); if 𝑅(𝐵0) ⊆ 𝐷(𝐴), then
𝐴𝑌𝑛𝑥 = 𝑌𝑛𝐴𝑥, 𝑥 ∈ 𝐷(𝐴𝑛).

Proof. Suppose 𝑥 ∈ 𝐷(𝐴). Clearly, 𝑑
𝑑𝑡𝑆(𝑡)𝑥 = 𝐴𝑆(𝑡)𝑥 −

∑︀𝑛
𝑖=1 𝑖𝑡

𝑖−1𝐵𝑖𝑥,
𝑡 ∈ (−𝜏, 𝜏) and
𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥 = 𝐴𝑆(𝑡)𝑥−𝑆(𝑡)𝐴𝑥 = 𝐴𝑆(𝑡)𝑥−
[︂
𝐴

𝑡∫︁
0

𝑆(𝑠)𝐴𝑥𝑑𝑠−
𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐴𝑥

]︂
, 𝑡 ∈ (−𝜏, 𝜏).

Hence,
𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥−
𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐴𝑥 = 𝐴

[︂
𝑆(𝑡)𝑥−

𝑡∫︁
0

𝑆(𝑠)𝐴𝑥𝑑𝑠
]︂
, 𝑡 ∈ (−𝜏, 𝜏).

Since

𝑑

𝑑𝑡

[︂
𝑆(𝑡)𝑥−

𝑡∫︁
0

𝑆(𝑠)𝐴𝑥𝑑𝑠
]︂

= 𝐴𝑆(𝑡)𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝑥− 𝑆(𝑡)𝐴𝑥

=
𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝑥, 𝑡 ∈ (−𝜏, 𝜏),

the closedness of 𝐴 implies
𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝑥 = 𝑑

𝑑𝑡

[︂
𝑆(𝑡)𝑥−

𝑡∫︁
0

𝑆(𝑠)𝐴𝑥𝑑𝑠
]︂
∈ 𝐷(𝐴), 𝑡 ∈ (−𝜏, 𝜏)
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and:

(3.2) 𝐴

[︂𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝑥

]︂
=
𝑛−1∑︁
𝑖=1

𝑖𝑡𝑖−1𝐶𝑖𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝐴𝑥, 𝑡 ∈ (−𝜏, 𝜏).

Differentiate (3.2) sufficiently many times in order to see that 𝑖𝐵𝑖𝑥−𝐶𝑖−1𝑥 ∈ 𝐷(𝐴),
𝑖 ∈ {1, . . . , 𝑛} and that (i) holds. To prove (ii), notice that the closedness of
𝐴 and argumentation used in the proof of (i) enable one to conclude that the
mapping 𝑡 ↦→ 𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥, 𝑡 ∈ (−𝜏, 𝜏) is 𝑘-times continuously differentiable for every

𝑘 ∈ {0, . . . , 𝑛} and 𝑥 ∈ 𝐷(𝐴𝑘). Fix a 𝑘 ∈ {0, . . . , 𝑛}; then we obtain:

(3.3) 𝑑𝑙+1

𝑑𝑡𝑙+1𝑆(𝑡)𝑥 = 𝐴
𝑑𝑙

𝑑𝑡𝑙
𝑆(𝑡)𝑥−

𝑛∑︁
𝑗=𝑙+1

𝑗 · · · (𝑗 − 𝑙)𝑡𝑗−𝑙−1𝐵𝑗𝑥, 𝑡 ∈ (−𝜏, 𝜏),

for every 𝑙 ∈ {0, . . . , 𝑘 − 1}.
Since 𝑌0 = 𝐵0, the proof of (ii) follows by induction.
Suppose now 𝑥 ∈ 𝐷(𝐴𝑘+1). Then the mapping 𝑡 ↦→ 𝑆(𝑡)𝐴𝑥, 𝑡 ∈ (−𝜏, 𝜏)

is 𝑘-times continuously differentiable. Since 𝐶𝑘𝑥 = 1
𝑘!
𝑑𝑘

𝑑𝑡𝑘
[𝐴𝑆(𝑡)𝑥 − 𝑆(𝑡)𝐴𝑥], 𝑡 ∈

(−𝜏, 𝜏), we have that the mapping 𝑡 ↦→ 𝐴𝑆(𝑡)𝑥, 𝑡 ∈ (−𝜏, 𝜏) is 𝑘-times continuously
differentiable and the closedness of 𝐴 implies that 𝑑𝑘

𝑑𝑡𝑘
𝐴𝑆(𝑡)𝑥 = 𝐴 𝑑

𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥, 𝑡 ∈

(−𝜏, 𝜏) and that 𝐶𝑘𝑥 = 1
𝑘!
[︀
𝐴 𝑑

𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥 − 𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝐴𝑥

]︀
, ∈ (−𝜏, 𝜏). Put 𝑡 = 0 in the

last equality to finish the proof of (iii).
To prove (iv), notice that 𝑅(𝐵0) ⊆ 𝐷(𝐴) and that the Closed Graph Theorem

implies 𝑌1 = 𝐴𝐵0 +𝐵1 ∈ 𝐿(𝐸); the closedness of 𝑌2 simply follows from this fact.
Suppose now 𝑥 ∈ 𝐷(𝐴𝑘). Since 𝑑𝑑𝑡𝑆(𝑡)𝑥− 𝑆(𝑡)𝐴𝑥 =

∑︀𝑛−1
𝑖=0 𝑡

𝑖𝐶𝑖𝑥−
∑︀𝑛
𝑖=1 𝑖𝑡

𝑖−1𝐵𝑖𝑥,
𝑡 ∈ (−𝜏, 𝜏), one concludes that

𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥− 𝑑𝑘−1

𝑑𝑡𝑘−1𝑆(𝑡)𝐴𝑥 = 𝑑𝑘−1

𝑑𝑡𝑘−1

[︂ 𝑛−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥−
𝑛∑︁
𝑖=1

𝑖𝑡𝑖−1𝐵𝑖𝑥

]︂
, 𝑡 ∈ (−𝜏, 𝜏).

This implies −𝑌𝑘𝑥 + 𝑌𝑘−1𝐴𝑥 = (𝑘 − 1)!𝐶𝑘−1𝑥 − 𝑘!𝐵𝑘𝑥 and an employment of (i)
gives −𝑌𝑘𝑥+ 𝑌𝑘−1𝐴𝑥 ∈ 𝐷(𝐴) and:

(3.4) 𝐴[−𝑌𝑘𝑥+ 𝑌𝑘−1𝐴𝑥] = 𝑘!𝐶𝑘𝑥− 𝑘!𝐵𝑘𝐴𝑥, 𝑘 ∈ {1, . . . , 𝑛− 1}, 𝑥 ∈ 𝐷(𝐴𝑘).
Because 𝑅(𝐵0) ⊆ 𝐷(𝐴), one concludes inductively from (3.4) that 𝑌𝑘𝑥 ∈ 𝐷(𝐴),
𝑥 ∈ 𝐷(𝐴𝑘), 𝑘 ∈ {0, . . . , 𝑛 − 1}, i.e., 𝐷(𝐴𝑘) ⊆

⋂︀𝑘+1
𝑖=0 𝐷(𝑌𝑖), 𝑘 ∈ {0, . . . , 𝑛 − 1} and

(3.4) implies 𝑘!𝐶𝑘𝑥 + 𝐴𝑌𝑘𝑥 = 𝑘!𝐵𝑘𝐴𝑥 + 𝐴𝑌𝑘−1𝐴𝑥 = 𝑌𝑘𝐴𝑥, 𝑘 ∈ {1, . . . , 𝑛 − 1},
𝑥 ∈ 𝐷(𝐴𝑘). The existence of a constant 𝑀 > 0 satisfying ‖𝑌𝑘+1𝑥‖ 6 𝑀‖𝑥‖𝑘,
𝑘 ∈ {0, . . . , 𝑛 − 1}, 𝑥 ∈ 𝐷(𝐴𝑘) essentially follows from an application of (3.1) and
an induction argument. This ends the proof of (iv) while the proof of (v) follows
simply from that of (iv). �

Remark 3.2. (a) Suppose 𝜏 ∈ (0,∞] and 𝐴 is a subgenerator of a [𝐵0, 𝐵1, 𝐶0]-
group (𝑆(𝑡))𝑡∈[0,𝜏). Arguing as in the proof of Proposition 3.2, one obtains 𝐴(𝐵1𝑥−
𝐶0𝑥) = 𝐵1𝐴𝑥, 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑌1𝑥 = 𝑌1𝐴𝑥, 𝑥 ∈ 𝐷(𝐴2). Furthermore, if 𝑅(𝐵0) ⊆
𝐷(𝐴), then 𝐴𝑌1𝑥 = 𝑌1𝐴𝑥, 𝑥 ∈ 𝐷(𝐴).
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(b) The next question is motivated by the analysis of Arendt, El-Mennaoui
and Keyantuo [1]: If 𝐴 is a subgenerator of a [0, . . . , 0⏟  ⏞  

𝑛

, −1
𝑛! 𝐼, 𝐶0, . . . , 𝐶𝑛−1]-group

(𝑆(𝑡))𝑡∈[0,𝜏), 𝑛 ∈ N, 0 < 𝜏 6 ∞, does 𝑆(𝑡)𝐴 ⊆ 𝐴𝑆(𝑡), 𝑡 ∈ (−𝜏, 𝜏)? The answer
is affirmative and we will show this only in the non-trivial case 𝑛 > 1. Indeed,
𝑆(0) = 0 and this implies 𝐶0𝑥 = 0, 𝑥 ∈ 𝐷(𝐴). By Proposition 3.2(i), we have
𝐴𝐶𝑖−1𝑥 = 𝑖𝐶𝑖𝑥, 𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝑥 ∈ 𝐷(𝐴). Inductively, 𝐶𝑖𝑥 = 0, 𝑖 ∈ {1, . . . ,
𝑛− 1}, 𝑥 ∈ 𝐷(𝐴) and an immediate consequence is 𝑆(𝑡)𝐴 ⊆ 𝐴𝑆(𝑡), 𝑡 ∈ (−𝜏, 𝜏).

(c) Let𝐴 be a subgenerator of a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏),
𝑛 > 2, (𝑆(𝑡))𝑡∈(−𝜏,𝜏) non-degenerate and 𝐴 the integral generator of (𝑆(𝑡))𝑡∈(−𝜏,𝜏).
Then 𝑖𝐵𝑖𝑥 − 𝐶𝑖−1𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ 𝐷(𝐴), 𝑖 ∈ {1, . . . , 𝑛}, 𝐴(𝑖𝐵𝑖𝑥 − 𝐶𝑖−1𝑥) =
𝑖𝐵𝑖𝐴𝑥 − 𝑖𝐶𝑖𝑥, 𝑖 ∈ {1, . . . , 𝑛 − 1} and 𝐴(𝑛𝐵𝑛𝑥 − 𝐶𝑛−1𝑥) = 𝑛𝐵𝑛𝐴𝑥, 𝑥 ∈ 𝐷(𝐴).
To prove this, suppose (𝑥, 𝑦) ∈ 𝐴. Clearly,

𝐴

𝑡∫︁
0

𝑆(𝑠)𝑥 𝑑𝑠 =
𝑡∫︁

0

(︂
𝑆(𝑠)𝑦 +

𝑛−1∑︁
𝑗=0

𝑠𝑗𝐶𝑗𝑥

)︂
𝑑𝑠, 𝑡 ∈ (−𝜏, 𝜏).

Differentiate this equality to obtain that 𝑆(𝑡)𝑥 ∈ 𝐷(𝐴) and that 𝐴𝑆(𝑡)𝑥 = 𝑆(𝑡)𝑦+∑︀𝑛−1
𝑗=0 𝑡

𝑗𝐶𝑗𝑥, 𝑡 ∈ (−𝜏, 𝜏). Hence,

𝐴

[︂ 𝑡∫︁
0

𝑆(𝑠)𝑦 𝑑𝑠+
𝑛−1∑︁
𝑗=0

𝑡𝑗+1

𝑗 + 1𝐶𝑗𝑥−
𝑛∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑥

]︂
= 𝑆(𝑡)𝑦 +

𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗𝑥,

𝐴

[︂ 𝑛−1∑︁
𝑗=0

𝑡𝑗+1

𝑗 + 1𝐶𝑗𝑥−
𝑛∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑥

]︂
=
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗𝑥−
𝑛∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑦, 𝑡 ∈ (−𝜏, 𝜏).

Differentiation of the previous equality leads us to the desired assertion. Notice
that (c) extends Proposition 3.2(i) to non-degenerate groups and that, in the case
𝑛 = 1, 𝐴(𝐵1𝑥− 𝐶0𝑥) = 𝐵1𝐴𝑥, 𝑥 ∈ 𝐷(𝐴).

Proposition 3.3. Suppose 0 < 𝜏 6∞ and 𝐴 is a subgenerator of a [𝐵0, . . . , 𝐵𝑛,
𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏). If
(3.5) 𝐶𝑗𝐴 ⊆ 𝐴𝐶𝑗 , 𝑗 = 0, . . . , 𝑛− 1 and 𝐵𝑗𝐴 ⊆ 𝐴𝐵𝑗 , 𝑗 = 1, . . . , 𝑛,
then, for every 𝑥 ∈ 𝐸,

𝑆(𝑡)𝑆(𝑠)𝑥 =
𝑛∑︁
𝑗=1

[︂ 𝑠∫︁
0

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝐵𝑗𝑆(𝑟)𝑥 𝑑𝑟 −
𝑡+𝑠∫︁
𝑡

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟
]︂

−
𝑛−1∑︁
𝑗=0

[︂ 𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗𝐶𝑗𝑆(𝑟)𝑥 𝑑𝑟 + 𝑡𝑗𝐶𝑗

𝑠∫︁
0

𝑆(𝑟)𝑥 𝑑𝑟
]︂

(3.6)

−𝑆(𝑡+ 𝑠)𝐵0𝑥−
𝑛−1∑︁
𝑗=0

𝑛∑︁
𝑖=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗𝑟𝑖𝑑𝑟𝐶𝑗𝐵𝑖𝑥, 𝑡, 𝑠 ∈ (−𝜏, 𝜏), |𝑡+ 𝑠| < 𝜏.
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Proof. Suppose, for a moment, 𝑦 ∈ 𝐷(𝐴) and 𝑡 ∈ (−𝜏, 𝜏). Then
∫︀ 𝑡

0 𝐴𝑆(𝑠)𝑦 𝑑𝑠
= 𝑆(𝑡)𝑦 +

∑︀𝑛
𝑗=0 𝑡

𝑗𝐵𝑗𝑦, i.e.,
∫︀ 𝑡

0
[︀
𝑆(𝑠)𝐴𝑦 +

∑︀𝑛−1
𝑗=0 𝑠

𝑗𝐶𝑗𝑦
]︀
𝑑𝑠 = 𝑆(𝑡)𝑦 +

∑︀𝑛
𝑗=0 𝑡

𝑗𝐵𝑗𝑦.
Hence,

𝑑

𝑑𝑡
𝑆(𝑡)𝑦 = 𝑆(𝑡)𝐴𝑦 +

𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗𝑦 −
𝑛∑︁
𝑗=1

𝑗𝑡𝑗−1𝐵𝑗𝑦, 𝑡 ∈ (−𝜏, 𝜏).

Fix an 𝑥 ∈ 𝐸 and 𝑡, 𝑠 ∈ (−𝜏, 𝜏) with |𝑡 + 𝑠| < 𝜏 . Define afterwards the function
𝑓 : (𝑡+ 𝑠− 𝜏, 𝑡+ 𝑠+ 𝜏)∩ (−𝜏, 𝜏)→ 𝐸 by 𝑓(𝑟) := 𝑆(𝑡+ 𝑠− 𝑟)

∫︀ 𝑟
0 𝑆(𝑠)𝑥 𝑑𝑠. Then we

obtain:

𝑑

𝑑𝑟
𝑓(𝑟) = 𝑑

𝑑𝑟

[︂
𝑆(𝑡+𝑠−𝑟)

𝑟∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣
]︂

= 𝑆(𝑡+𝑠−𝑟)𝑆(𝑟)𝑥−
[︂
𝑆(𝑡+𝑠−𝑟)𝐴

𝑟∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣

+
𝑛−1∑︁
𝑗=0

(𝑡+𝑠−𝑟)𝑗𝐶𝑗
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛∑︁
𝑗=1

𝑗(𝑡+𝑠−𝑟)𝑗−1𝐵𝑗

𝑟∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣
]︂

= 𝑆(𝑡+𝑠−𝑟)𝑆(𝑟)𝑥− 𝑆(𝑡+𝑠−𝑟)
[︂
𝑆(𝑟)𝑥+

𝑛∑︁
𝑗=0

𝑟𝑗𝐵𝑗𝑥

]︂

−
𝑛−1∑︁
𝑗=0

(𝑡+𝑠−𝑟)𝑗𝐶𝑗
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 +
𝑛∑︁
𝑗=1

𝑗(𝑡+𝑠−𝑟)𝑗−1𝐵𝑗

𝑟∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣

= −
𝑛−1∑︁
𝑗=0

(𝑡+𝑠−𝑟)𝑗𝐶𝑗
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 +
𝑛∑︁
𝑗=1

𝑗(𝑡+𝑠−𝑟)𝑗−1𝐵𝑗

𝑟∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣

−
𝑛∑︁
𝑗=0

𝑟𝑗𝑆(𝑡+𝑠−𝑟)𝐵𝑗𝑥,

for all 𝑟 ∈ (𝑡 + 𝑠 − 𝜏, 𝑡 + 𝑠 + 𝜏) ∩ (−𝜏, 𝜏). Integrate the last equality with respect
to 𝑟 from 0 to 𝑠 to conclude that:

(3.7) 𝑆(𝑡)
𝑠∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 = −
𝑛−1∑︁
𝑗=0

𝐶𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟

+
𝑛∑︁
𝑗=1

𝑗𝐵𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 −
𝑛∑︁
𝑗=0

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+ 𝑠− 𝑟)𝐵𝑗𝑥 𝑑𝑟.

Thereby,

𝑆(𝑡)𝑆(𝑠)𝑥 = 𝑆(𝑡)
[︂
𝐴

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛∑︁
𝑗=0

𝑠𝑗𝐵𝑗𝑥

]︂

=
[︂
𝐴𝑆(𝑡)

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣
]︂
−
𝑛∑︁
𝑗=0

𝑠𝑗𝑆(𝑡)𝐵𝑗𝑥
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= 𝐴

[︂
−
𝑛−1∑︁
𝑗=0

𝐶𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟

+
𝑛∑︁
𝑗=1

𝑗𝐵𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1
𝑟∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 −
𝑛∑︁
𝑗=0

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+ 𝑠− 𝑟)𝐵𝑗𝑥 𝑑𝑟
]︂

−
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛∑︁
𝑗=0

𝑠𝑗𝑆(𝑡)𝐵𝑗𝑥.

Taking into consideration (3.5), we get:

= −
𝑛−1∑︁
𝑗=0

𝐶𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
[︂
𝑆(𝑟)𝑥+

𝑛∑︁
𝑖=0

𝑟𝑖𝐵𝑖𝑥

]︂
𝑑𝑟

+
𝑛∑︁
𝑗=1

𝑗𝐵𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1
[︂
𝑆(𝑟)𝑥+

𝑛∑︁
𝑖=0

𝑟𝑖𝐵𝑖𝑥

]︂
𝑑𝑟

−𝐴
𝑛∑︁
𝑗=0

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+𝑠−𝑟)𝐵𝑗𝑥 𝑑𝑟 −
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛∑︁
𝑗=0

𝑠𝑗𝑆(𝑡)𝐵𝑗𝑥.(3.8)

Observing that:

𝐴

𝑠∫︁
0

𝑆(𝑡+𝑠−𝑟)𝐵0𝑥 𝑑𝑟 = 𝐴

𝑡+𝑠∫︁
𝑡

𝑆(𝑣)𝐵0𝑥 𝑑𝑣 = 𝐴

[︂ 𝑡+𝑠∫︁
0

𝑆(𝑣)𝐵0𝑥 𝑑𝑣−
𝑡∫︁

0

𝑆(𝑣)𝐵0𝑥 𝑑𝑣

]︂

= 𝑆(𝑡+ 𝑠)𝐵0𝑥+
𝑛∑︁
𝑖=0

(𝑡+ 𝑠)𝑖𝐵𝑖𝐵0𝑥− 𝑆(𝑡)𝐵0𝑥−
𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐵0𝑥

and that

𝐴

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+ 𝑠− 𝑟)𝐵𝑗𝑥 𝑑𝑟 = 𝐴

𝑡+𝑠∫︁
𝑡

(𝑡+ 𝑠− 𝑣)𝑗𝑆(𝑣)𝐵𝑗𝑥 𝑑𝑣

= 𝐴

[︂
− 𝑠𝑗

𝑡∫︁
0

𝑆(𝜎)𝐵𝑗𝑥 𝑑𝜎 +
𝑡+𝑠∫︁
𝑡

𝑗(𝑡+ 𝑠− 𝑣)𝑗−1
𝑣∫︁

0

𝑆(𝜎)𝐵𝑗𝑥 𝑑𝜎 𝑑𝑣
]︂

= −𝑠𝑗
[︂
𝑆(𝑡)𝐵𝑗𝑥+

𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐵𝑗𝑥

]︂
+
𝑡+𝑠∫︁
𝑡

𝑗(𝑡+𝑠−𝑣)𝑗−1
[︂
𝑆(𝑣)𝐵𝑗𝑥+

𝑛∑︁
𝑖=0

𝑣𝑖𝐵𝑖𝐵𝑗𝑥

]︂
𝑑𝑣,

for all 𝑗 = 1, . . . , 𝑛, (3.8) implies:

𝑆(𝑡)𝑆(𝑠)𝑥 = −
𝑛−1∑︁
𝑗=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗𝐶𝑗𝑆(𝑟)𝑥 𝑑𝑟 −
𝑛−1∑︁
𝑗=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
𝑛∑︁
𝑖=0

𝑟𝑖𝐶𝑗𝐵𝑖𝑥 𝑑𝑟
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+
𝑛∑︁
𝑗=1

𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1𝐵𝑗𝑆(𝑟)𝑥 𝑑𝑟 +
𝑛∑︁
𝑗=1

𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1
𝑛∑︁
𝑖=0

𝑟𝑖𝐵𝑗𝐵𝑖𝑥 𝑑𝑟

− 𝑆(𝑡+ 𝑠)𝐵0𝑥−
𝑛∑︁
𝑖=0

(𝑡+ 𝑠)𝑖𝐵𝑖𝐵0𝑥+ 𝑆(𝑡)𝐵0𝑥+
𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐵0𝑥

+
𝑛∑︁
𝑗=1

𝑠𝑗
[︂
𝑆(𝑡)𝐵𝑗𝑥+

𝑛∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝐵𝑗𝑥

]︂
−
𝑛∑︁
𝑗=1

𝑗

𝑡+𝑠∫︁
𝑡

(𝑡+𝑠−𝑣)𝑗−1
[︂
𝑆(𝑣)𝐵𝑗𝑥+

𝑛∑︁
𝑖=0

𝑣𝑖𝐵𝑖𝐵𝑗𝑥

]︂
𝑑𝑣

(3.9) −
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗

𝑠∫︁
0

𝑆(𝑣)𝑥 𝑑𝑣 −
𝑛∑︁
𝑗=0

𝑠𝑗𝑆(𝑡)𝐵𝑗𝑥.

Clearly, 𝑆(𝑡)𝐵0𝑥+
∑︀𝑛
𝑗=1 𝑠

𝑗𝑆(𝑡)𝐵𝑗𝑥−
∑︀𝑛
𝑗=0 𝑠

𝑗𝑆(𝑡)𝐵𝑗𝑥 = 0 and:

−
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑡+𝑠∫︁
𝑡

𝑗(𝑡+ 𝑠− 𝑣)𝑗−1𝑣𝑖𝑑𝑣𝐵𝑖𝐵𝑗𝑥 = −
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑖𝑗𝑟𝑗−1𝑑𝑟𝐵𝑖𝐵𝑗𝑥

= −
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑡𝑖𝑠𝑗𝐵𝑖𝐵𝑗𝑥−
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑠∫︁
0

𝑖(𝑡+ 𝑠− 𝑟)𝑖−1𝑟𝑗𝑑𝑟𝐵𝑖𝐵𝑗𝑥

= −
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑡𝑖𝑠𝑗𝐵𝑖𝐵𝑗𝑥−
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑠∫︁
0

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝑟𝑖𝑑𝑟𝐵𝑗𝐵𝑖𝑥.

Therefore,

(3.10) −
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑡+𝑠∫︁
𝑡

𝑗(𝑡+ 𝑠− 𝑣)𝑗−1𝑣𝑖𝑑𝑣𝐵𝑖𝐵𝑗𝑥+
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑠𝑗𝑡𝑖𝐵𝑖𝐵𝑗𝑥

+
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=0

𝑠∫︁
0

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝑟𝑖𝑑𝑟𝐵𝑗𝐵𝑖𝑥

=
𝑛∑︁
𝑗=1

𝑠∫︁
0

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝑑𝑟𝐵𝑗𝐵0𝑥 =
𝑛∑︁
𝑗=1

[(𝑡+ 𝑠)𝑗 − 𝑡𝑗 ]𝐵𝑗𝐵0𝑥.

Finally, (3.6) follows from an application of (3.9) and (3.10). �

Remark 3.3. The composition property does not remain true if the condition
(3.5) is neglected. Namely, let 𝐴,𝐵0, 𝐵1, 𝐵2, 𝐶0, 𝐶1 and (𝑆(𝑡))𝑡∈R possess the same
meaning as in Example 3.1(i). Then (𝑆(𝑡))𝑡∈R is a [𝐵0, 𝐵1, 𝐵2, 𝐶0, 𝐶1]-group with a
subgenerator 𝐴 and a tedious matrix computation shows that (3.5) and (3.6) are not
valid. Moreover, 𝜌𝐵0,𝐵1,𝐵2(𝐴) ⊇ {𝜆 ∈ C : Re𝜆 > 0} and 𝑅(𝐵0)+𝑅(𝐵1)+𝑅(𝐵2) *
𝑅(1−𝐴) (see Proposition 3.1).
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4. Connections between distribution groups
and local integrated groups

In order to establish a satisfactory relationship of distribution groups with
local integrated groups, we need the following definition introduced by Tanaka and
Okazawa in [40] (cf. [40, Definition 4]):

(M) Suppose 𝑛 ∈ N and 𝜏 ∈ (0,∞]. A strongly continuous operator family
(𝑆(𝑡))𝑡∈[0,𝜏) is called a (local) 𝑛-times integrated semigroup if:

(i) 𝑆(𝑡)𝑆(𝑠)𝑥 =
[︁∫︀ 𝑡+𝑠

0 −
∫︀ 𝑡

0 −
∫︀ 𝑠

0

]︁
(𝑡+𝑠−𝑟)𝑛−1

(𝑛−1)! 𝑆(𝑟)𝑥 𝑑𝑟, 𝑥 ∈ 𝐸, 0 6 𝑡,
𝑠, 𝑡+𝑠 < 𝜏 , and 𝑆(0) = 0,

(ii) 𝑆(𝑡)𝑥 = 0 for every 𝑡 ∈ [0, 𝜏) implies 𝑥 = 0.

Suppose (𝑆(𝑡))𝑡∈[0,𝜏) is an 𝑛-times integrated semigroup in the sense of (M).
The infinitesimal generator 𝐴0 of (𝑆(𝑡))𝑡∈[0,𝜏) is defined in [40] by

𝐷(𝐴0) :=
{︂
𝑥 ∈

⋃︁
𝜎∈(0,𝜏 ]

𝐶𝑛(𝜎) : lim
ℎ→0+

𝑆(𝑛)(ℎ)𝑥− 𝑥
ℎ

exists
}︂
,

𝐴0𝑥 := lim
ℎ→0+

𝑆(𝑛)(ℎ)𝑥− 𝑥
ℎ

, 𝑥 ∈ 𝐷(𝐴0),

where 𝐶𝑛(𝜎) := {𝑥 ∈ 𝐸 | 𝑆(·)𝑥 : [0, 𝜎)→ 𝐸 is 𝑛-times continuously differentiable}.
The infinitesimal generator 𝐴0 of (𝑆(𝑡))𝑡∈[0,𝜏) is a closable linear operator and

the closure of 𝐴0, 𝐴0, is said to be the complete infinitesimal generator, c.i.g in
short, of (𝑆(𝑡))𝑡∈[0,𝜏).

Suppose (𝑆(𝑡))𝑡∈[0,𝜏) is a (local) 𝑛-times integrated semigroup in the sense of
Definition 2.3. Then (𝑆(𝑡))𝑡∈[0,𝜏) is an 𝑛-times integrated semigroup in the sense of
(M); in general, the converse statement does not hold (see [1], [24, Proposition 2.1],
[28] and [40, Proposition 4.5]).

Theorem 4.1. (a) Suppose 𝐺 ∈ 𝒟′(𝐿(𝐸)) and 𝐴 is a closed linear opera-
tor so that (1.2) holds. Then, for every 𝜏 ∈ (0,∞), there exist 𝑛0 = 𝑛0(𝜏) ∈
N and 𝐵0, . . . , 𝐵𝑛0 , 𝐶0, . . . , 𝐶𝑛0−1 ∈ 𝐿(𝐸) such that 𝐴 is a subgenerator of a
[𝐵0, . . . , 𝐵𝑛0 , 𝐶0, . . . , 𝐶𝑛0−1]-group (𝑆𝜏 (𝑡))𝑡∈(−𝜏,𝜏) satisfying 𝑆𝜏 (𝑡)𝑥 ∈ 𝐷(𝐴) for all
𝑥 ∈ 𝐸 and 𝑡 ∈ (−𝜏, 𝜏).

(b) Let 𝐺 and 𝐴 be as in the formulation of (a) and let 𝐴1 = 𝐴ℛ(𝐺). Suppose, in
addition, that 𝐺 is regular and put 𝑆(𝑡) := 𝑆𝜏 (𝑡), 𝑡 ∈ (−𝜏, 𝜏), where (𝑆𝜏 (𝑡))𝑡∈(−𝜏,𝜏)
is a [𝐵0, . . . , 𝐵𝑛0 , 𝐶0, . . . , 𝐶𝑛0−1]-group constructed in (a). Then:

(b1) ℛ(𝐺) ⊆
⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖), 𝑌𝑛0𝑥 = −𝑥, 𝑥 ∈ ℛ(𝐺), the function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 ∈

R is infinitely differentiable, 𝑢(𝑡;𝑥) ∈ 𝐷∞(𝐴) and 𝑑𝑛

𝑑𝑡𝑛𝑢(𝑡;𝑥) = 𝑢(𝑡;𝐴𝑛𝑥),
𝑡 ∈ R, 𝑥 ∈ ℛ(𝐺), 𝑛 ∈ N.

(b2) If 𝑛0 = 1, then ±𝐴1 generate local once integrated semigroups (𝑆1
±(𝑡))𝑡∈[0,𝜏)

in ℛ(𝐺) given by 𝑆1
±(𝑡)𝑥 := 𝑆(±𝑡)(±𝑥)±𝐵0𝑥, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏). Fur-

thermore, 𝐴1 generates a 𝐶0-group in ℛ(𝐺).
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(b3) Suppose 𝑛0 = 2 and put 𝑆2
±(𝑡)𝑥 := 𝑆(±𝑡)𝑥 + 𝐵0𝑥 + 𝑡(±𝐴𝐵0 ± 𝐵1)𝑥,

𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Then 𝑆2
±(𝑡) ∈ 𝐿(ℛ(𝐺)),(︂ 𝑡∫︁

0

𝑆2
±(𝑠)𝑥 𝑑𝑠, 𝑆2

±(𝑡)𝑥− 𝑡2

2 𝑥
)︂
∈ ±𝐴1, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏),

𝑆2
±(𝑡)𝐴1𝑥 = 𝐴1𝑆

2
±(𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺), 𝑆2

±(𝑡)𝑥 ∈ 𝐷(𝐴), 𝑥 ∈
ℛ(𝐺), the mapping 𝑡 ↦→ 𝑑

𝑑𝑡𝑆
2
±(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuously differen-

tiable for every 𝑥 ∈ ℛ(𝐺), ℛ(𝐺) ⊆
⋂︀2
𝑖=0 𝐷(𝑌𝑖) and 𝑌2𝑥 = −𝑥, 𝑥 ∈

ℛ(𝐺). Furthermore, ±𝐴1 are generators of local once integrated semi-
groups ( 𝑑𝑑𝑡𝑆

2
±(𝑡))𝑡∈[0,𝜏).

(b4) Suppose 𝑛0 > 3,

(4.1) ℛ(𝐺) ⊆
𝑛0−1⋂︁
𝑖=2

𝐷(𝑌𝑖)

and there exists 𝑀 > 0 with
(4.2) ‖𝑌𝑖𝑥‖ 6𝑀‖𝑥‖, 𝑥 ∈ ℛ(𝐺), 𝑖 = 2, . . . , 𝑛0 − 1.

The following holds: ℛ(𝐺) ⊆ 𝐷(𝑌𝑛0) and 𝑌𝑛0𝑥 = −𝑥, 𝑥 ∈ ℛ(𝐺).
Set 𝑆𝑛0

+ (𝑡)𝑥 := 𝑆(𝑡)𝑥 +
∑︀𝑛0−1
𝑖=0

𝑡𝑖

𝑖! 𝑌𝑖𝑥 and 𝑆𝑛0
− (𝑡)𝑥 := (−1)𝑛0𝑆(−𝑡)𝑥 +∑︀𝑛0−1

𝑖=0
(−1)𝑛0+𝑖𝑡𝑖

𝑖! 𝑌𝑖𝑥, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏). Then: 𝑆𝑛0
± (𝑡) ∈ 𝐿(ℛ(𝐺)),(︀ ∫︀ 𝑡

0 𝑆
𝑛0
± (𝑠)𝑥 𝑑𝑠, 𝑆𝑛0

± (𝑡)𝑥− 𝑡
𝑛0

𝑛0!𝑥
)︀
∈ ±𝐴1, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏), 𝑆𝑛0

± (𝑡)𝐴1𝑥 =
𝐴1𝑆

𝑛0
± (𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺) and 𝑆𝑛0

± (𝑡)𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ ℛ(𝐺). Set

𝐴′𝑛0−1,± :=
{︁

(𝑥, 𝑦) ∈ ±𝐴1 : 𝐶𝑖𝑥+ 1
𝑖!𝐴𝑌𝑖𝑥 = ± 1

𝑖!𝑌𝑖𝑦, 𝑖 = 2, . . . , 𝑛0 − 1
}︁
.

Then 𝐴′𝑛0−1,± are generators of local (𝑛0−1)-times integrated semigroups
( 𝑑𝑑𝑡𝑆

𝑛0
± (𝑡))𝑡∈[0,𝜏).

(b5) Suppose 𝑛0 > 3 and 𝜌(𝐴) ̸= ∅. Then, for every 𝜏0 ∈ (0,∞), there exists
𝑛(𝜏0) ∈ N such that 𝐴1 generates a local 𝑛(𝜏0)-times integrated group on
(−𝜏0, 𝜏0).

Proof. (a) Let 𝜏 ∈ (0,∞) be chosen arbitrarily. Since 𝐴𝐺(𝜙)𝑥 = 𝐺(−𝜙′)𝑥,
𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸 we have 𝐺 ∈ 𝒟′

(︀
𝐿
(︀
𝐸, [𝐷(𝐴)]

)︀)︀
. An employment of [32, Theo-

rem 2.1.1] implies that there exist an integer 𝑛0 = 𝑛0(𝜏) and a continuous func-
tion 𝑆𝜏 : [−𝜏, 𝜏 ] → 𝐿(𝐸, [𝐷(𝐴)]) such that 𝐺(𝜙)𝑥 = (−1)𝑛0

∫︀ 𝜏
−𝜏 𝜙

(𝑛0)(𝑡)𝑆𝜏 (𝑡)𝑥 𝑑𝑡,
𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸. We obtain:

𝐴𝐺(𝜙)𝑥 = (−1)𝑛0

𝜏∫︁
−𝜏

𝜙(𝑛0)(𝑡)𝐴𝑆𝜏 (𝑡)𝑥 𝑑𝑡 = (−1)𝑛0+1
𝜏∫︁
−𝜏

𝜙(𝑛0+1)(𝑡)
𝑡∫︁

0

𝐴𝑆𝜏 (𝑠)𝑥 𝑑𝑠 𝑑𝑡

= 𝐺(−𝜙′)𝑥 = (−1)𝑛0+1
𝜏∫︁
−𝜏

𝜙(𝑛0+1)(𝑡)𝑆𝜏 (𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸.
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An immediate consequence is:
𝜏∫︁
−𝜏

𝜙(𝑛0+1)(𝑡)
[︂ 𝑡∫︁

0

𝐴𝑆𝜏 (𝑠)𝑥 𝑑𝑠− 𝑆𝜏 (𝑡)𝑥
]︂
𝑑𝑡 = 0, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸.

The well-known arguments of distribution theory (cf. for instance [17, Lemma 8.1.1]
or apply the Hanh–Banach theorem and [36, Theorem 5.10, p. 80]) imply that there
exist 𝐵0, . . . , 𝐵𝑛0 ∈ 𝐿(𝐸) which satisfy (a) of Definition 3.1. Similarly, if 𝑥 ∈ 𝐷(𝐴),
then 𝐺(𝜙)𝐴𝑥 = 𝐴𝐺(𝜙)𝑥, 𝜙 ∈ 𝒟 and we get:

𝜏∫︁
−𝜏

𝜙(𝑛0)(𝑡)[𝐴𝑆𝜏 (𝑡)𝑥− 𝑆𝜏 (𝑡)𝐴𝑥] 𝑑𝑡 = 0, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸.

Thus, there exist 𝐶0, . . . , 𝐶𝑛0−1 ∈ 𝐿(𝐸) which satisfy

𝐴𝑆𝜏 (𝑡)𝑥− 𝑆𝜏 (𝑡)𝐴𝑥 =
𝑛−1∑︁
𝑗=0

𝑡𝑗𝐶𝑗𝑥,

for all 𝑡 ∈ (−𝜏, 𝜏) and 𝑥 ∈ 𝐷(𝐴). To prove (b1), we need the following notion from
[23]. Suppose 𝜁 ∈ 𝒟 and

∫︀∞
−∞ 𝜁(𝑡) 𝑑𝑡 = 1. Given 𝜙 ∈ 𝒟, we define 𝐼𝜁(𝜙) by:

𝐼𝜁(𝜙)(𝑡) :=
𝑡∫︁

−∞

[︂
𝜙(𝑢)− 𝜁(𝑢)

∞∫︁
−∞

𝜙(𝑣) 𝑑𝑣
]︂
𝑑𝑢, 𝑡 ∈ R.

Then we have: 𝐼𝜁(𝜙) ∈ 𝒟, 𝐼𝜁(𝜙′) = 𝜙 and 𝑑
𝑑𝑡𝐼𝜁(𝜙)(𝑡) = 𝜙(𝑡) − 𝜁(𝑡)

∫︀∞
−∞ 𝜙(𝑣) 𝑑𝑣,

𝑡 ∈ R [23]. Suppose 𝑥 ∈ ℛ(𝐺). Since 𝐴𝐺(𝜙)𝑥 = 𝐺(−𝜙′)𝑥, 𝜙 ∈ 𝒟 one concludes
−
∫︀∞
−∞ 𝜙′(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡 = 𝐴

∫︀∞
−∞ 𝜙(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡, 𝜙 ∈ 𝒟 and the partial integration

gives:

(4.3) 𝐴

∞∫︁
−∞

𝜙′(𝑡)
𝑡∫︁

0

𝑢(𝑠;𝑥) 𝑑𝑠 𝑑𝑡 =
∞∫︁
−∞

𝜙′(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡, 𝜙 ∈ 𝒟.

Suppose (𝜌𝑛) is a regularizing sequence and put 𝜙𝑛 = 𝐼𝜁(𝜌𝑛) in (4.3) in order to
see that:

𝐴

∞∫︁
−∞

[𝜌𝑛(𝑡)− 𝜁(𝑡)]
𝑡∫︁

0

𝑢(𝑠;𝑥) 𝑑𝑠 𝑑𝑡 =
∞∫︁
−∞

[𝜌𝑛(𝑡)− 𝜁(𝑡)]𝑢(𝑡;𝑥) 𝑑𝑡.

The closedness of 𝐴 and 𝑢(0;𝑥) = 𝑥 imply, for every 𝜁 ∈ 𝒟 with
∫︀∞
−∞ 𝜁(𝑡) 𝑑𝑡 = 1:

(4.4) 𝐴

∞∫︁
−∞

𝜁(𝑡)
𝑡∫︁

0

𝑢(𝑠;𝑥) 𝑑𝑠 𝑑𝑡 =
∞∫︁
−∞

𝜁(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡− 𝑥.

It is evident that, for every 𝑡 ∈ R, there exists a sequence (𝜁𝑛) in 𝒟 so that∫︀∞
−∞ 𝜁𝑛(𝑡) 𝑑𝑡 = 1, 𝑛 ∈ N and that lim𝑛→∞ 𝜁𝑛 = 𝛿𝑡, in the sense of distributions.
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Put 𝜁𝑛 in (4.4). As above, the closedness of 𝐴 implies
∫︀ 𝑡

0 𝑢(𝑠;𝑥)𝑑𝑠 ∈ 𝐷(𝐴) and
𝐴
∫︀ 𝑡

0 𝑢(𝑠;𝑥) 𝑑𝑠 = 𝑢(𝑡;𝑥)− 𝑥, 𝑡 ∈ R. Inductively,

(4.5) 𝐴

𝑡∫︁
0

(𝑡− 𝑠)𝑘

𝑘! 𝑢(𝑠;𝑥) 𝑑𝑠 =
𝑡∫︁

0

(𝑡− 𝑠)𝑘−1

(𝑘 − 1)! 𝑢(𝑠;𝑥) 𝑑𝑠− 𝑡𝑘

𝑘!𝑥, 𝑡 ∈ R, 𝑘 ∈ N.

Clearly, 𝐴𝑥 ∈ ℛ(𝐺) and 𝐴 commutes with 𝐺(·). Hence,

(4.6) 𝐴

∞∫︁
−∞

𝜙(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡 =
∞∫︁
−∞

𝜙(𝑡)𝑢(𝑡;𝐴𝑥) 𝑑𝑡, 𝜙 ∈ 𝒟.

An application of (4.6) gives 𝑢(𝑡;𝑥) ∈ 𝐷(𝐴), 𝐴𝑢(𝑡;𝑥) = 𝑢(𝑡;𝐴𝑥), 𝑡 ∈ R and this
implies 𝑢(𝑡;𝑥) ∈ 𝐷∞(𝐴), 𝑡 ∈ R. Since 𝐴

∫︀ 𝑡
0 𝑢(𝑠;𝑥) 𝑑𝑠 = 𝑢(𝑡;𝑥) − 𝑥, 𝑡 ∈ R one

obtains by induction that the function 𝑡 ↦→ 𝑢(𝑡;𝑥), 𝑡 ∈ R is infinitely differentiable
and that 𝑑

𝑛

𝑑𝑡𝑛𝑢(𝑡;𝑥) = 𝑢(𝑡;𝐴𝑛𝑥), 𝑡 ∈ R, 𝑥 ∈ ℛ(𝐺), 𝑛 ∈ N. Furthermore,

(4.7) 𝐴

𝑡∫︁
0

(𝑡− 𝑠)𝑛0−1

(𝑛0 − 1)! 𝑢(𝑠;𝑥) 𝑑𝑠 =
𝑡∫︁

0

(𝑡− 𝑠)𝑛0−1

(𝑛0 − 1)! 𝑢(𝑠;𝐴𝑥) 𝑑𝑠.

Since

𝐺(𝜙)𝑥 = (−1)𝑛0

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡 =
∞∫︁
−∞

𝜙(𝑡)𝑢(𝑡;𝑥) 𝑑𝑡

= (−1)𝑛0

∞∫︁
−∞

𝜙(𝑛0)(𝑡)
𝑡∫︁

0

(𝑡− 𝑠)𝑛0−1

(𝑛0 − 1)! 𝑢(𝑠;𝑥) 𝑑𝑠 𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏),

there is a subset {𝑦0(𝑥), . . . , 𝑦𝑛0−1(𝑥)} of 𝐸 such that:

(4.8) 𝑆(𝑡)𝑥−
𝑡∫︁

0

(𝑡− 𝑠)𝑛0−1

(𝑛0 − 1)! 𝑢(𝑠;𝑥) 𝑑𝑠 = −
𝑛0−1∑︁
𝑖=0

𝑡𝑖𝑦𝑖(𝑥), 𝑡 ∈ (−𝜏, 𝜏).

Put 𝑡 = 0 to obtain 𝑦0(𝑥) = 𝐵0𝑥. A consequence of (4.8) is:

(4.9)
𝑡∫︁

0

𝑆(𝑠)𝑥 𝑑𝑠−
𝑡∫︁

0

(𝑡− 𝑠)𝑛0

𝑛0! 𝑢(𝑠;𝑥) 𝑑𝑠 = −
𝑛0−1∑︁
𝑖=0

𝑡𝑖+1

𝑖+ 1𝑦𝑖(𝑥), 𝑡 ∈ (−𝜏, 𝜏).

Due to (4.5), one can apply 𝐴 on both sides of (4.9) in order to see that, for every
𝑡 ∈ (−𝜏, 𝜏):[︂

𝑆(𝑡)𝑥+
𝑛0∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝑥

]︂
−
𝑡∫︁

0

(𝑡− 𝑠)𝑛0−1

(𝑛0 − 1)! 𝑢(𝑠;𝑥) 𝑑𝑠+ 𝑡𝑛0

𝑛0! 𝑥 = −𝐴
𝑛0−1∑︁
𝑖=0

𝑡𝑖+1

𝑖+ 1 𝑦𝑖(𝑥).
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Returning to (4.8) implies:

(4.10) −
𝑛0−1∑︁
𝑖=0

𝑡𝑖𝑦𝑖(𝑥) +
𝑛0∑︁
𝑖=0

𝑡𝑖𝐵𝑖𝑥+ 𝑡𝑛0

𝑛0! 𝑥 = −𝐴
𝑛0−1∑︁
𝑖=0

𝑡𝑖+1

𝑖+ 1 𝑦𝑖(𝑥), 𝑡 ∈ (−𝜏, 𝜏).

Since 𝐴 is closed, one can differentiate (4.10) sufficiently many times to obtain that:
𝑥 ∈
⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖), 𝑌𝑛0𝑥 = −𝑥 and 𝑦𝑖(𝑥) = 1

𝑖!𝑌𝑖𝑥, 𝑖 ∈ {0, . . . , 𝑛0 − 1}. This completes
the proof of (b1).

To prove (b2), fix an 𝑥 ∈ ℛ(𝐺). Put 𝑆𝑛0
+ (𝑡)𝑥 = 𝑆(𝑡)𝑥 +

∑︀𝑛0−1
𝑖=0

𝑡𝑖

𝑖! 𝑌𝑖(𝑥), 𝑡 ∈
[0, 𝜏). By (4.8), 𝑆𝑛0

+ (𝑡)𝑥 =
∫︀ 𝑡

0
(𝑡−𝑠)𝑛0−1

(𝑛0−1)! 𝑢(𝑠;𝑥) 𝑑𝑠, 𝑡 ∈ [0, 𝜏) and an employment
of (4.7) implies 𝐴𝑆𝑛0

+ (𝑡)𝑥 = 𝑆𝑛0
+ (𝑡)𝐴𝑥, 𝑡 ∈ [0, 𝜏). To prove (b2), suppose 𝑛0 = 1.

Then 𝑆1
+(𝑡)𝑥 = 𝑆(𝑡)𝑥+𝐵0𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). By the proof of (b1), one yields

𝑆1
+(𝑡)𝑥 =

∫︀ 𝑡
0 𝑢(𝑠;𝑥) 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Accordingly, 𝑆1

+(𝑡)(ℛ(𝐺)) ⊆ ℛ(𝐺),
𝑡 ∈ [0, 𝜏). By (4.5),

(︀ ∫︀ 𝑡
0 𝑆

1
+(𝑠)𝑥 𝑑𝑠, 𝑆1

+(𝑡)𝑥 − 𝑡𝑥
)︀
∈ 𝐴1, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺) and

the closedness of 𝐴 implies
(︀ ∫︀ 𝑡

0 𝑆
1
+(𝑠)𝑥 𝑑𝑠, 𝑆1

+(𝑡)𝑥− 𝑡𝑥
)︀
∈ 𝐴1, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺).

Clearly, 𝑆1
+(𝑡)𝐴1 ⊆ 𝐴1𝑆

1
+(𝑡), 𝑡 ∈ [0, 𝜏) and this proves that (𝑆1

+(𝑡))𝑡∈[0,𝜏) is a
once integrated semigroup generated by 𝐴1. The similar arguments (see also the
proof of (b3)) work for −𝐴1 and (𝑆1

−(𝑡))𝑡∈[0,𝜏). To prove that 𝐴1 generates a
𝐶0-group in ℛ(𝐺), we argue as follows. Since

(︀ ∫︀ 𝑡
0 𝑆

1
+(𝑠)𝑥 𝑑𝑠, 𝑆1

+(𝑡)𝑥 − 𝑡𝑥
)︀
∈ 𝐴1,

𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺) and 𝑅(𝑆1
+(𝑡)) ⊆ 𝐷(𝐴), 𝑡 ∈ [0, 𝜏) one gets that the mapping

𝑡 ↦→ 𝑑
𝑑𝑡𝑆

1
+(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuously differentiable for every 𝑥 ∈ ℛ(𝐺) and that

𝑑
𝑑𝑡𝑆

1
+(𝑡)𝑥 = 𝐴𝑆1(𝑡)𝑥 + 𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Moreover, it can be easily checked

that, for every fixed 𝑥 ∈ ℛ(𝐺), the function 𝑢(𝑡) = 𝑆1
+(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is a unique

solution of the problem:

𝐶1(𝜏) :

⎧⎨⎩ 𝑢 ∈ 𝐶
(︀
[0, 𝜏) : [𝐷(𝐴1)]

)︀
∩ 𝐶1(︀[0, 𝜏) : ℛ(𝐺)

)︀
,

𝑢′(𝑡) = 𝐴1𝑢(𝑡) + 𝑥, 𝑡 ∈ [0, 𝜏),
𝑢(0) = 0.

An application of [1, Theorem 1.2] gives that 𝐴1 generates a 𝐶0-semigroup inℛ(𝐺).
Similarly, −𝐴1 generates a 𝐶0-semigroup in ℛ(𝐺) and this clearly implies that 𝐴1
generates a 𝐶0-group in ℛ(𝐺).

To prove (b3), note that the proof of (b1) implies that 𝑆2
+(𝑡)𝑥 =

∫︀ 𝑡
0 (𝑡 −

𝑠)𝑢(𝑠;𝑥) 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). So, 𝑆2
+(𝑡)(ℛ(𝐺)) ⊆ ℛ(𝐺), 𝑡 ∈ [0, 𝜏). Note

also that 𝑆(0) = −𝐵0 and that the Closed Graph Theorem gives 𝑆2
+(𝑡) ∈ 𝐿(ℛ(𝐺)),

𝑡 ∈ [0, 𝜏). Next, the closedness of 𝐴 and (4.5) imply
(︀ ∫︀ 𝑡

0 𝑆
2
+(𝑠)𝑥 𝑑𝑠, 𝑆2

+(𝑡)− 𝑡
2

2 𝑥
)︀
∈

𝐴1, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏). Since
∫︀ 𝑡

0 𝑆
2
+(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴), 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏) and

𝑅(𝐵0) ⊆ 𝐷(𝐴), we immediately obtain 𝐴𝐵0𝑥 + 𝐵1𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ ℛ(𝐺). Further
on,

𝐴

∫︁ 𝑡
0
𝑆2

+(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥+𝐵0𝑥+ 𝑡𝐵1𝑥+ 𝑡2𝐵2𝑥+ 𝑡𝐴𝐵0𝑥+ 𝑡2

2 𝐴(𝐴𝐵0𝑥+𝐵1𝑥)

= 𝑆2
+(𝑡)𝑥− 𝑡2

2 𝑥, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏).
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Therefore, 𝐴(𝐴𝐵0𝑥 + 𝐵1𝑥) = −𝑥 − 2𝐵2𝑥, 𝑥 ∈ ℛ(𝐺), and in conclusion, one
yields: 𝑆2

+(𝑡)𝑥 ∈ 𝐷(𝐴), 𝐴𝑆2
+(𝑡)𝑥 = 𝐴(𝑆(𝑡)𝑥 + 𝐵0𝑥) + 𝑡(−𝑥 − 2𝐵2𝑥), 𝑥 ∈ ℛ(𝐺),

𝑡 ∈ [0, 𝜏), ℛ(𝐺) ⊆
⋂︀2
𝑖=0 𝐷(𝑌𝑖) and 𝑌2𝑥 = −𝑥, 𝑥 ∈ ℛ(𝐺). Suppose 𝑥 ∈ 𝐷(𝐴1).

Since𝑅(𝐵0) ⊆ 𝐷(𝐴) and 𝐴𝑆2
+(𝑡)𝑥−𝑆2

+(𝑡)𝐴𝑥 =
[︀
𝐴𝑆(𝑡)𝑥+𝐴𝐵0𝑥+𝑡𝐴(𝐴𝐵0+𝐵1)𝑥

]︀
−[︀

𝑆(𝑡)𝐴𝑥+𝐵0𝐴𝑥+ 𝑡(𝐴𝐵0 +𝐵1)𝐴𝑥
]︀

= 𝑡𝐶1𝑥+ 𝑡
[︀
𝐴(𝐴𝐵0 +𝐵1)𝑥− (𝐴𝐵0 +𝐵1)𝐴𝑥

]︀
,

𝑡 ∈ [0, 𝜏), Proposition 3.2(iv) immediately implies (𝑆2
+(𝑡)𝑥, 𝑆2

+(𝑡)𝐴1𝑥) ∈ 𝐴1, 𝑡 ∈
[0, 𝜏). So, (𝑆2

+(𝑡))𝑡∈[0,𝜏) is a twice integrated semigroup generated by 𝐴1. Because
𝑅(𝑆2

+(𝑡)) ⊆ 𝐷(𝐴), 𝑡 ∈ [0, 𝜏), the mapping 𝑡 ↦→ 𝑆2
+(𝑡)𝑥 is continuously differentiable

for every fixed 𝑥 ∈ ℛ(𝐺) and the following holds: 𝑑
𝑑𝑡𝑆

2
+(𝑡)𝑥 = 𝐴𝑆2

+(𝑡)𝑥 + 𝑡𝑥 =
𝐴(𝑆(𝑡)𝑥 + 𝐵0𝑥) − 2𝑡𝐵2𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Then it is straightforward to see
that 𝑑𝑑𝑡𝑆

2
+(𝑡) ∈ 𝐿(ℛ(𝐺)), 𝑡 ∈ [0, 𝜏) and that

(︀ ∫︀ 𝑡
0 ( 𝑑𝑑𝑠𝑆

2
+(𝑠)𝑥) 𝑑𝑠, ( 𝑑𝑑𝑡𝑆

2
+(𝑡)𝑥)− 𝑡𝑥

)︀
∈

𝐴1, 𝑡 ∈ [0, 𝜏). Suppose now 𝑥 ∈ 𝐷(𝐴1). Then 𝑑
𝑑𝑡𝑆

2
+(𝑡)𝑥 = 𝐴𝑆2

+(𝑡)𝑥 + 𝑡𝑥 =
𝑆2

+(𝑡)𝐴𝑥 + 𝑡𝑥 ∈ 𝐷(𝐴) and 𝐴 𝑑𝑑𝑡𝑆
2
+(𝑡)𝑥 = 𝐴𝑆2

+(𝑡)𝐴𝑥 + 𝑡𝐴𝑥 = 𝑑
𝑑𝑡𝑆

2
+(𝑡)𝐴𝑥, 𝑡 ∈

[0, 𝜏),
(︀
𝑑
𝑑𝑡𝑆

2
+(𝑡)𝑥, 𝑑𝑑𝑡𝑆

2
+(𝑡)𝐴1𝑥

)︀
∈ 𝐴1, 𝑡 ∈ [0, 𝜏), and consequently,

(︀
𝑑
𝑑𝑡𝑆

2
+(𝑡)
)︀
𝑡∈[0,𝜏)

is a once integrated semigroup generated by 𝐴1. In order to obtain the corre-
sponding statement for the operator −𝐴1 and (𝑆2

−(𝑡))𝑡∈[0,𝜏), notice the follow-
ing facts: (1.2) holds for −𝐴 and �̌�, �̌� fulfills (𝐷𝐺)4 with 𝑢(̌·;𝑥), �̌�(𝜙)𝑥 =
(−1)𝑛0

∫︀∞
−∞ 𝜙(𝑛0)(𝑡)[(−1)𝑛0𝑆(𝑡)]𝑥 𝑑𝑡, 𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟 and ((−1)𝑛0𝑆(𝑡))𝑡∈(−𝜏,𝜏) is a

[(−1)𝑛0𝐵0, . . . , (−1)𝑛0+𝑛0𝐵𝑛0 , (−1)𝑛0+1𝐶0, . . . , (−1)𝑛0+𝑛0𝐶𝑛0−1]-group with a sub-
generator −𝐴.

In order to prove (b4), assume 𝑥 ∈ ℛ(𝐺). Let (𝑥𝑛) be a sequence in ℛ(𝐺)
with lim𝑛→∞ 𝑥𝑛 = 𝑥. Due to (4.2) and (b1), lim𝑛→∞ 𝑌𝑛0−1(𝑥𝑛) = 𝑌𝑛0−1𝑥 and
lim𝑛→∞𝐴𝑌𝑛0−1(𝑥𝑛) = −𝑥 − 𝑛0!𝐵𝑛0𝑥. Hence, 𝑌𝑛0−1𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ 𝐷(𝑌𝑛0) and
𝑌𝑛0𝑥 = −𝑥 as claimed. This yields 𝑆𝑛0

± (𝑡)𝑥 ∈ 𝐷(𝐴), 𝑥 ∈ ℛ(𝐺). As in the proofs
of (b1), (b2) and (b3), one obtains 𝑆𝑛0

± (𝑡) ∈ 𝐿(ℛ(𝐺)),
(︀ ∫︀ 𝑡

0 𝑆
𝑛0
± (𝑠)𝑥 𝑑𝑠, 𝑆𝑛0

± (𝑡)𝑥 −
𝑡𝑛0

𝑛0!𝑥
)︀
∈ ±𝐴1, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏) and 𝑆𝑛0

± (𝑡)𝐴1𝑥 = 𝐴1𝑆
𝑛0
± (𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈

ℛ(𝐺). We will sketch the rest of the proof of (b4) only for 𝐴 and 𝑆(·). Suppose
𝑡, 𝑠 ∈ [0, 𝜏) and 𝑡 + 𝑠 < 𝜏 . Since 𝐴𝑆𝑛0

+ (·)𝑥 = 𝑆𝑛0
+ (·)𝐴𝑥, 𝑥 ∈ ℛ(𝐺), one can

repeat literally the arguments given in the proof of [29, Propostion 2.4] in order to
conclude that:

(4.11) 𝑆𝑛0
+ (𝑡)𝑆𝑛0

+ (𝑠)𝑥 =
[︂ 𝑡+𝑠∫︁

0

−
𝑡∫︁

0

−
𝑠∫︁

0

]︂
(𝑡+ 𝑠− 𝑟)𝑛0−1

(𝑛0 − 1)! 𝑆2
+(𝑟)𝑥𝑑𝑟, 𝑥 ∈ ℛ(𝐺).

The standard limit procedure implies that (4.11) remains true for every 𝑥 ∈ ℛ(𝐺)
and 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 < 𝜏 . It is straightforward to verify that (𝑆𝑛0

+ (𝑡))𝑡∈[0,𝜏) ⊆
𝐿(ℛ(𝐺)) is a local 𝑛0-times integrated semigroup in the sense of (M). To prove that
𝐴′𝑛0−1,+ is the generator of a local 𝑛0-times integrated semigroup (𝑆𝑛0

+ (𝑡))𝑡∈[0,𝜏) in
the sense of Definition 3.1, we argue as follows. First of all, let us observe that
𝐴′𝑛0−1,+ is a closed operator and that the arguments employed in the proof of
Proposition 3.2 also show that 𝐷(𝐴𝑛0)∩𝐷(𝐴1) ⊆ 𝐶𝑛0(𝜏). Suppose now 𝑥 ∈ 𝐷(𝐴0),
where 𝐴0 is the infinitesimal generator of (𝑆𝑛0

+ (𝑡))𝑡∈[0,𝜏). This implies the existence
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of a number 𝜎 ∈ (0, 𝜏) so that the mapping 𝑡 ↦→ 𝑆𝑛0
+ (𝑡)𝑥, 𝑡 ∈ [0, 𝜎) is 𝑛0-times

continuously differentiable and that 𝐴0𝑥 = lim𝑡→0+
(︀
𝑑𝑛0

𝑑𝑡𝑛0 (𝑆𝑛0
+ (𝑡)𝑥)− 𝑥

)︀
/𝑡. On the

other hand, the closedness of 𝐴 offers one to show that 𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥 ∈ 𝐷(𝐴) and

that 𝑑
𝑘+1

𝑑𝑡𝑘+1𝑆(𝑡)𝑥 = 𝐴 𝑑
𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥−

∑︀𝑛
𝑗=𝑘+1 𝑗 · · · (𝑗 − 𝑘)𝑡𝑗−𝑘−1𝐵𝑗𝑥, for every 𝑡 ∈ [0, 𝜎)

and 𝑘 ∈ {0, . . . , 𝑛0 − 1}. Therefore, 𝑥 ∈
⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖) and 𝑌𝑘𝑥 = −

(︀
𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥

)︀
𝑡=0,

𝑘 ∈ {0, . . . , 𝑛0}. Moreover,

𝑑𝑛0

𝑑𝑡𝑛0

(︀
𝑆𝑛0

+ (𝑡)𝑥
)︀
− 𝑥 = 𝐴

[︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆
𝑛0
+ (𝑡)𝑥

]︁
− 𝑛0!𝐵𝑛0𝑥− 𝑥

= 𝐴
[︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆
𝑛0
+ (𝑡)𝑥

]︁
+𝐴𝑌𝑛0−1𝑥 = 𝐴

[︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆
𝑛0
+ (𝑡)𝑥−

(︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆(𝑡)𝑥
)︁
𝑡=0

𝑥
]︁
.

It is also evident that

𝑥 =
(︀ 𝑑𝑛0

𝑑𝑡𝑛0
𝑆(𝑡)𝑥

)︁
𝑡=0

= lim
𝑡→0+

1
𝑡

(︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆
𝑛0
+ (𝑡)𝑥−

(︁ 𝑑𝑛0−1

𝑑𝑡𝑛0−1𝑆(𝑡)𝑥
)︁
𝑡=0

𝑥
)︁
.

The closedness of 𝐴 implies 𝑥 ∈ 𝐷(𝐴1), 𝐴0𝑥 = 𝐴1𝑥 and, because of that, 𝐴0 ⊆
𝐴1. Further on, ℛ(𝐺) ⊆ 𝐷(𝐴𝑛0) ∩ 𝐷(𝐴1) ⊆ 𝐶𝑛0(𝜏) and an application of [40,
Proposition 4.5] gives

(︀ ∫︀ 𝑡
0 𝑆
𝑛0
+ (𝑠)𝑥 𝑑𝑠, 𝑆𝑛0

+ (𝑡)𝑥 − 𝑡
𝑛0

𝑛0!𝑥
)︀
∈ 𝐴0, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏)

and 𝑆𝑛0
+ (𝑡)𝐴0𝑥 = 𝐴0𝑆

𝑛0
+ (𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝐴0). Suppose (𝑥, 𝑦) ∈ 𝐴0. Then

0 = 𝐴𝑆𝑛0
+ (𝑡)𝑥− 𝑆𝑛0

+ (𝑡)𝑦 =
𝑛0−1∑︁
𝑖=0

𝑡𝑖𝐶𝑖𝑥+
𝑛0−1∑︁
𝑖=0

𝑡𝑖

𝑖!𝐴𝑌𝑖𝑥−
𝑛0−1∑︁
𝑖=0

𝑡𝑖

𝑖!𝑌𝑖𝑦, 𝑡 ∈ [0, 𝜏)

and this implies 𝐴0 ⊆ 𝐴′𝑛0−1,+. Further, fix an 𝑥 ∈ 𝐷(𝐴′𝑛0−1,+) and notice that
𝐴𝑆𝑛0

+ (𝑡)𝑥 = 𝑆𝑛0
+ (𝑡)𝐴𝑥, 𝑡 ∈ [0, 𝜏) and that

𝐴′𝑛0−1,+ ∋
(︂ 𝑡∫︁

0

𝑆𝑛0
+ (𝑠)𝑥 𝑑𝑠, 𝑆𝑛0

+ (𝑡)𝑥− 𝑡𝑛0

𝑛0!𝑥
)︂

=
(︂ 𝑡∫︁

0

𝑆𝑛0
+ (𝑠)𝑥𝑑 𝑠,𝐴1

𝑡∫︁
0

𝑆𝑛0
+ (𝑠)𝑥 𝑑𝑠

)︂

=
(︂ 𝑡∫︁

0

𝑆𝑛0
+ (𝑠)𝑥 𝑑𝑠,

𝑡∫︁
0

𝑆𝑛0
+ (𝑠)𝐴𝑥𝑑𝑠

)︂
, 𝑡 ∈ [0, 𝜏).

This implies

𝐶𝑖

𝑡∫︁
0

𝑆𝑛0
+ (𝑠)𝑥 𝑑𝑠+ 1

𝑖!𝐴𝑌𝑖
𝑡∫︁

0

𝑆𝑛0
+ (𝑠)𝑥 𝑑𝑠 = 1

𝑖!𝑌𝑖
𝑡∫︁

0

𝑆𝑛0
+ (𝑠)𝐴𝑥𝑑𝑠,

𝑡 ∈ [0, 𝜏), 𝑖 ∈ {2, . . . , 𝑛0 − 1}.

Differentiate this equality to obtain that 𝐶𝑖𝑆𝑛0
+ (𝑡)𝑥+ 1

𝑖!𝐴𝑌𝑖𝑆
𝑛0
+ (𝑡)𝑥 = 1

𝑖!𝑌𝑖𝑆
𝑛0
+ (𝑡)𝐴𝑥,

𝑡 ∈ [0, 𝜏), 𝑖 ∈ {2, . . . , 𝑛0− 1}. Thus, 𝑆𝑛0
+ (𝑡)𝐴′𝑛0−1,+ ⊆ 𝐴′𝑛0−1,+𝑆

𝑛0
+ (𝑡), 𝑡 ∈ [0, 𝜏) and

𝐴′𝑛0−1,+ is the generator of a local 𝑛0-times integrated semigroup (𝑆𝑛0
+ (𝑡))𝑡∈[0,𝜏) in

the sense of Definition 2.3. An application of the arguments given in the proof of
[24, Proposition 2.1] gives 𝐴0 = 𝐴′𝑛0−1,+. Since 𝑅(𝑆𝑛0

+ (𝑡)) ⊆ 𝐷(𝐴), the mapping
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𝑡 ↦→ 𝑆𝑛0
+ (𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuously differentiable for every fixed 𝑥 ∈ ℛ(𝐺) and

𝑑

𝑑𝑡
𝑆𝑛0

+ (𝑡)𝑥 = 𝐴𝑆𝑛0
+ (𝑡)𝑥+ 𝑡𝑛0−1

(𝑛0 − 1)!𝑥 = 𝐴𝑆(𝑡)𝑥+
𝑛0−1∑︁
𝑖=0

𝑡𝑖

𝑖!𝐴𝑌𝑖𝑥+ 𝑡𝑛0−1

(𝑛0 − 1)!𝑥,

𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Then it can be easily verified that ( 𝑑𝑑𝑡𝑆
𝑛0
+ (𝑡))𝑡∈[0,𝜏) ⊆ 𝐿(ℛ(𝐺))

is a local (𝑛0 − 1)-times integrated semigroup in the sense of (M). The c.i.g of
( 𝑑𝑑𝑡𝑆

𝑛0
+ (𝑡))𝑡∈[0,𝜏) is 𝐴0 = 𝐴′𝑛0−1,+ and an application of [40, Proposition 4.5] enables

one to conclude that 𝐴′𝑛0−1,+ is the generator of a local (𝑛0 − 1)-times integrated
semigroup ( 𝑑𝑑𝑡𝑆

𝑛0
+ (𝑡))𝑡∈[0,𝜏) in the sense of Definition 2.3.

To prove (b5), suppose 𝜆 ∈ 𝜌(𝐴) and set 𝐴𝜆 = 𝐴 − 𝜆, 𝐺𝜆 = 𝑒−𝜆·𝐺 and
𝑢𝜆(·;𝑥) = 𝑒−𝜆·𝑢(·;𝑥), 𝑥 ∈ ℛ(𝐺) = ℛ(𝐺𝜆). It is straightforward to check that
𝐴𝜆 and 𝐺𝜆 fulfill (1.2) and that 𝐺𝜆 is regular with 𝐺𝜆(𝜙)𝑥 =

∫︀∞
−∞ 𝜙(𝑡)𝑢𝜆(𝑡;𝑥) 𝑑𝑡,

𝜙 ∈ 𝒟, 𝑥 ∈ ℛ(𝐺𝜆). Clearly,

𝐺𝜆(𝜙)𝑥 = 𝐺(𝑒−𝜆·𝜙)𝑥 = (−1)𝑛0

𝜏∫︁
−𝜏

(𝑒−𝜆·𝜙)(𝑛0)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡

= (−1)𝑛0

𝜏∫︁
−𝜏

𝑛0∑︁
𝑖=0

(−1)𝑛0−𝑖
(︂
𝑛0

𝑖

)︂
𝜆𝑛0−𝑖𝑒−𝜆𝑡𝜙(𝑖)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡

=
𝑛0∑︁
𝑖=0

(−1)𝑖
(︂
𝑛0

𝑖

)︂
𝜆𝑛0−𝑖

𝜏∫︁
−𝜏

𝜙(𝑖)(𝑡)
(︀
𝑒−𝜆𝑡𝑆(𝑡)𝑥

)︀
𝑑𝑡 = (−1)𝑛0

𝜏∫︁
−𝜏

𝜙(𝑛0)(𝑡)𝑒−𝜆𝑡𝑆(𝑡)𝑥 𝑑𝑡

+
𝑛0∑︁
𝑖=1

(−1)𝑖
(︂
𝑛0

𝑖

)︂
𝜆𝑛0−𝑖(−1)𝑛0−𝑖

𝜏∫︁
−𝜏

𝜙(𝑛0)(𝑡)
𝑡∫︁

0

(𝑡− 𝑠)𝑛0−𝑖−1

(𝑛0 − 𝑖− 1)! 𝑒
−𝜆𝑠𝑆(𝑠)𝑥 𝑑𝑠 𝑑𝑡

= (−1)𝑛0

𝜏∫︁
−𝜏

𝜙(𝑛0)(𝑡)
[︂
𝑒−𝜆𝑡𝑆(𝑡)𝑥+

𝑛0∑︁
𝑖=1

(︂
𝑛0

𝑖

)︂
𝜆𝑛0−𝑖

𝑡∫︁
0

(𝑡− 𝑠)𝑛0−𝑖−1

(𝑛0 − 𝑖− 1)! 𝑒
−𝜆𝑠𝑆(𝑠)𝑥 𝑑𝑠

]︂
𝑑𝑡,

for every 𝜙 ∈ 𝒟(−𝜏,𝜏) and 𝑥 ∈ 𝐸. Put, for every 𝑡 ∈ (−𝜏, 𝜏) and 𝑥 ∈ 𝐸 :

𝑆𝜆(𝑡)𝑥 := 𝑒−𝜆𝑡𝑆(𝑡)𝑥+
𝑛0∑︁
𝑖=1

(︂
𝑛0

𝑖

)︂
𝜆𝑛0−𝑖

𝑡∫︁
0

(𝑡− 𝑠)𝑛0−𝑖−1

(𝑛0 − 𝑖− 1)! 𝑒
−𝜆𝑠𝑆(𝑠)𝑥 𝑑𝑠.

Then the mapping 𝑆𝜆 : (−𝜏, 𝜏) → 𝐿(𝐸, [𝐷(𝐴𝜆)]) is continuous and 𝐺𝜆(𝜙)𝑥 =
(−1)𝑛0

∫︀ 𝜏
−𝜏 𝜙

(𝑛0)(𝑡)𝑆𝜆(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸. The proof of (a) implies that
there exist bounded linear operators 𝐵𝜆0 , . . . , 𝐵𝜆𝑛0

, 𝐶𝜆0 , . . . , 𝐶
𝜆
𝑛0−1 such that 𝐴𝜆 is

a subgenerator of a [𝐵𝜆0 , . . . , 𝐵𝜆𝑛0
, 𝐶𝜆0 , . . . , 𝐶

𝜆
𝑛0−1]-group (𝑆𝜆(𝑡))𝑡∈(−𝜏,𝜏). Define 𝑌 𝜆𝑖

recursively by: 𝑌 𝜆0 = 𝐵𝜆0 and 𝑌 𝜆𝑖+1 := (𝑖+1)!𝐵𝜆𝑖+1+𝐴𝜆𝑌 𝜆𝑖 , 𝑖 ∈ {0, . . . , 𝑛0−1}. Since
0 ∈ 𝜌(𝐴𝜆), we have that 𝑌 𝜆𝑖 is closed, 𝑖 = 1, . . . , 𝑛0. Suppose, for the time being, 𝑥 ∈
ℛ(𝐺) and (𝑥𝑛) is a sequence in ℛ(𝐺) such that lim𝑛→∞ 𝑥𝑛 = 𝑥. A consequence of
𝑌 𝜆𝑛0

𝑥𝑛 = −𝑥𝑛, 𝑛 ∈ N is lim𝑛→∞𝐴𝜆𝑌
𝜆
𝑛0−1𝑥𝑛 = −𝑥− 𝑛0!𝐵𝜆𝑛0

𝑥 and the boundedness
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of 𝐴−1
𝜆 implies lim𝑛→∞ 𝑌 𝜆𝑛0−1𝑥𝑛 = 𝐴−1

𝜆 (−𝑥−𝑛0!𝐵𝜆𝑛0
𝑥). Continuing this procedure

enables one to establish that, for every 𝑖 = 1, . . . , 𝑛0−1, lim𝑛→∞ 𝑌 𝜆𝑖 𝑥𝑛 exists. The
closedness of 𝑌 𝜆𝑖 yields 𝑥 ∈

⋂︀𝑛0
𝑖=0 𝐷(𝑌 𝜆𝑖 ) and 𝑌 𝜆𝑛0

𝑥 = −𝑥. Put𝐴1,𝜆 = (𝐴𝜆)ℛ(𝐺𝜆) and
𝐶𝑥 = 𝐴

−(𝑛0−1)
𝜆 𝑥, 𝑥 ∈ ℛ(𝐺). Because 𝐺𝜆𝐴𝜆 ⊆ 𝐴𝜆𝐺𝜆, we have 𝐴−𝑘𝜆 𝐺𝜆 = 𝐺𝜆𝐴

−𝑘
𝜆 ,

𝑘 ∈ N, 𝐴−𝑘𝜆 (ℛ(𝐺)) ⊆ ℛ(𝐺), 𝑘 ∈ N and 𝐴−𝑘𝜆 (ℛ(𝐺)) ⊆ ℛ(𝐺), 𝑘 ∈ N. This offers
one to see that 0 ∈ 𝜌(𝐴1,𝜆) and that 𝐶 ∈ 𝐿(ℛ(𝐺)) is injective. Assume now
𝑥 ∈ 𝐷(𝐴𝑛0−1

1,𝜆 ). Then 𝐴𝑛0−1
1,𝜆 𝑥 ∈ ℛ(𝐺) and this gives 𝑥 = 𝐴

−(𝑛0−1)
𝜆 (𝐴𝑛0−1

𝜆 𝑥) =
𝐶(𝐴𝑛0−1

𝜆 𝑥) ∈ 𝑅(𝐶). Hence, 𝐷(𝐴𝑛0−1
1,𝜆 ) ⊆ 𝑅(𝐶). Proceeding as in the proof of

Proposition 3.2, one obtains that the mapping 𝑡 ↦→ 𝑆𝜆(𝑡)𝑥, 𝑡 ∈ (−𝜏, 𝜏) is 𝑛0-times
continuously differentiable and that there exists a function 𝑀 : (−𝜏, 𝜏) → (0,∞),
independent of 𝑥, so that ‖ 𝑑

𝑛0

𝑑𝑡𝑛0 𝑆𝜆(𝑡)𝑥‖ 6 𝑀(|𝑡|)
∑︀𝑛0
𝑖=0 ‖𝐴𝑖𝜆𝑥‖, 𝑡 ∈ (−𝜏, 𝜏). Put

𝑢𝜆(𝑡;𝑥) = 𝑑𝑛0

𝑑𝑡𝑛0 𝑆𝜆(𝑡)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝐴𝑛0−1
𝜆 ) and 𝑇 (𝑡)𝑥 = 𝑢𝜆(𝑡;𝐶𝑥), 𝑡 ∈ [0, 𝜏),

𝑥 ∈ ℛ(𝐺). Due to Proposition 3.2, 𝐷(𝐴𝑛0−1
𝜆 ) ⊆ 𝐷(𝑌 𝑛0

𝜆 ) and 𝑢𝜆(0;𝑥) = −𝑌 𝑛0
𝜆 𝑥,

𝑥 ∈ 𝐷(𝐴𝑛0−1
𝜆 ). Moreover, 𝑅(𝐶) ⊆ ℛ(𝐺) ∩𝐷(𝐴𝑛0−1

𝜆 ) and this implies 𝑢𝜆(0;𝐶𝑥) =
−𝑌 𝑛0
𝜆 𝐶𝑥 = 𝐶𝑥. The mapping 𝑡 ↦→ 𝑇 (𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuous for every fixed 𝑥 ∈

ℛ(𝐺) and ‖𝑇 (𝑡)𝑥‖ = ‖𝑢𝜆(𝑡;𝐴−(𝑛0−1)
𝜆 𝑥)‖ 6 𝑀(𝑡)

∑︀𝑛0−1
𝑖=0 ‖𝐴

−1
𝜆 ‖𝑖‖𝑥‖, 𝑡 ∈ [0, 𝜏), 𝑥 ∈

ℛ(𝐺). The partial integration shows 𝐺𝜆(𝜙)𝑥 =
∫︀ 𝜏
−𝜏 𝜙(𝑡)𝑢𝜆(𝑡;𝑥) 𝑑𝑡, 𝜙 ∈ 𝒟[0,𝜏), 𝑥 ∈

𝐷(𝐴𝑛0−1
𝜆 ) and this implies 𝑢𝜆(𝑡;𝑥) ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝐴𝑛0−1

𝜆 ). Therefore,
𝑇 (𝑡)𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺) and 𝑇 (𝑡) ∈ 𝐿(ℛ(𝐺)), 𝑡 ∈ [0, 𝜏). As in the
proof of (b1), one concludes 𝐴𝜆

∫︀ 𝑡
0 𝑢
𝜆(𝑠;𝐶𝑥) 𝑑𝑠 = 𝐴𝜆

∫︀ 𝑡
0 𝑇 (𝑠)𝑥𝑑𝑠 = 𝑢𝜆(𝑡;𝐶𝑥) −

𝑢𝜆(0;𝐶𝑥) = 𝑇 (𝑡)𝑥 − 𝐶𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺) and that 𝑢𝜆(𝑡;𝐴𝜆𝑥) = 𝐴𝜆𝑢
𝜆(𝑡;𝑥),

𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝐴𝑛0
𝜆 ). Due to the previous equality, we have 𝑇 (𝑡)𝐴1,𝜆 ⊆ 𝐴1,𝜆𝑇 (𝑡)

and 𝑇 (𝑡)𝐶 = 𝐶𝑇 (𝑡), 𝑡 ∈ [0, 𝜏). Now it is straightforward to prove that the abstract
Cauchy problem:⎧⎨⎩ 𝑣 ∈ 𝐶

(︀
[0, 𝜏) : [𝐷(𝐴1,𝜆)]

)︀
∩ 𝐶1(︀[0, 𝜏) : ℛ(𝐺)

)︀
,

𝑣′(𝑡) = 𝐴1,𝜆𝑣(𝑡) + 𝐶𝑥, 𝑡 ∈ [0, 𝜏),
𝑣(0) = 0,

possesses a unique solution for every 𝑥 ∈ ℛ(𝐺), given by 𝑣(𝑡) =
∫︀ 𝑡

0 𝑇 (𝑠)𝑥 𝑑𝑠, 𝑡 ∈
[0, 𝜏), 𝑥 ∈ ℛ(𝐺). This simply implies that the abstract Cauchy problem:

(𝐴𝐶𝑃, 𝜏) :

⎧⎨⎩ 𝑓 ∈ 𝐶
(︀
[0, 𝜏) : [𝐷(𝐴1,𝜆)]

)︀
∩ 𝐶1(︀[0, 𝜏) : ℛ(𝐺)

)︀
,

𝑓 ′(𝑡) = 𝐴1,𝜆𝑓(𝑡), 𝑡 ∈ [0, 𝜏),
𝑓(0) = 𝑥,

has a unique solution for every 𝑥 ∈ 𝐶(𝐷(𝐴1,𝜆)) and that 𝐴1,𝜆 is the integral
generator of a local 𝐶-semigroup (𝑇 (𝑡))𝑡∈[0,𝜏). As before, 𝐷(𝐴𝑛0

𝜆 ) ⊆ 𝐶(𝐷(𝐴𝜆)) and
an application of [44, Theorem 4.4] shows that 𝐴1,𝜆 generates a local (𝑛0−1)-times
integrated semigroup on [0, 𝜏). A rescaling result for local integrated semigroups
(cf. for instance [1]) implies that 𝐴1 generates a local (𝑛0 − 1)-times integrated
semigroup on [0, 𝜏). Analogously, −𝐴1 generates a local (𝑛0 − 1)-times integrated
semigroup on [0, 𝜏) and the proof ends an employment of Corollary 2.1. �
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Theorem 4.2. Let 𝐺 be a (𝐷𝐺) generated by 𝐴. Then the group (𝑆(𝑡))𝑡∈(−𝜏,𝜏),
constructed in Theorem 4.1(a), is non-degenerate. If 𝑛0 = 1, then 𝐴 generates a
𝐶0-group. If 𝑛0 = 2, then:

(a) (𝑆1
±(𝑡) := ±𝐴(𝑆(±𝑡)𝑥 + 𝐵0𝑥) − 2𝑡𝐵2𝑥)𝑡∈[0,𝜏) are local once integrated

semigroups in the sense of (M).
(b) The c.i.g of (𝑆1

+(𝑡))𝑡∈[0,𝜏), resp., (𝑆1
−(𝑡))𝑡∈[0,𝜏) is 𝐴ℛ(𝐺), resp., (−𝐴)ℛ(𝐺).

(c) Suppose 𝐴 is densely defined or 𝜆−𝐴 is surjective for some 𝜆 ∈ C. Then
±𝐴 are generators of local once integrated semigroups (𝑆1

±(𝑡))𝑡∈[0,𝜏).
Furthermore:

(i) For every 𝑥 ∈ 𝐸 and 𝜙, 𝜓 ∈ 𝒟(−𝜏,𝜏) with supp𝜙+ supp𝜓 ⊆ (−𝜏, 𝜏):

(4.12) 𝐺(𝜙)𝐺(𝜓)𝑥 =
𝑛0∑︁
𝑖=0

(−1)𝑖+1𝑖!
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0−𝑖)(𝑠)𝑆(𝑡+ 𝑠)𝐵𝑖𝑥 𝑑𝑠 𝑑𝑡.

(ii) 𝑌𝑛0𝑥 = −𝑥, 𝑥 ∈
⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖).

(iii) Suppose 𝑥 ∈ 𝐷(𝐴𝑛0−1). Then {𝑥,𝐴𝑥} ⊆
⋂︀𝑛0
𝑖=2 𝐷(𝑌𝑖), 𝑌𝑛0𝑥 = −𝑥,

𝑌𝑛0𝐴𝑥 = −𝐴𝑥 and 𝐷(𝐴𝑛0−1) ⊆ ℛ(𝐺).
(iv) 𝐴 is stationary dense with 𝑛(𝐴) 6 𝑛0 − 1.
(v) If 𝜌(𝐴) ̸= ∅, then for every 𝜏0 ∈ (0,∞), there is an 𝑛(𝜏0) ∈ N so that 𝐴

generates a local 𝑛(𝜏0)-times integrated group on (−𝜏0, 𝜏0).
(vi) 𝐺 is dense iff 𝐷∞(𝐴) is dense in 𝐸. In the case 𝜌(𝐴) ̸= ∅, 𝐺 is dense iff

𝐴 is densely defined.
(vii)

⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0} and
⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0}.

Proof. Assume 𝑆(𝑡)𝑥 = 0, 𝑡 ∈ (−𝜏, 𝜏). This implies 𝐺(𝜓)𝑥 = 0, 𝜓 ∈ 𝒟(−𝜏,𝜏)
and 𝐺(𝜌)𝑥 = lim𝑛→∞𝐺(𝜌 * 𝜌𝑛)𝑥 = lim𝑛→∞𝐺(𝜌)𝐺(𝜌𝑛)𝑥 = 0, 𝜌 ∈ 𝒟, where (𝜌𝑛)
is a regularizing sequence. Owing to (𝐷𝐺)2, one can deduce that 𝑥 ∈ 𝒩 (𝐺) and
that (𝑆(𝑡))𝑡∈(−𝜏,𝜏) is non-degenerate. Put now 𝑆1(𝑡)𝑥 = 𝑆(𝑡)𝑥+ 𝐵0𝑥, 𝑡 ∈ (−𝜏, 𝜏),
𝑥 ∈ 𝐸. We will prove that (𝑆1(𝑡))𝑡∈[0,𝜏) is a once integrated semigroup generated
by 𝐴. First of all, note that 𝑆1(𝑡)𝐴 ⊆ 𝐴𝑆1(𝑡), 𝑡 ∈ (−𝜏, 𝜏) and that 𝑆1 : (−𝜏, 𝜏)→
𝐿(𝐸, [𝐷(𝐴)]) is continuous. This clearly implies 𝑑

𝑑𝑡𝑆1(𝑡)𝑥 = 𝐴𝑆1(𝑡)𝑥 + 𝐵𝑥, 𝑡 ∈
(−𝜏, 𝜏), 𝑥 ∈ 𝐸, where 𝐵 = −𝐵1 − 𝐴𝐵0 ∈ 𝐿(𝐸). Further,

∫︀ 𝑡
0 𝑆1(𝑠)𝑥𝑑𝑠 ∈ 𝐷(𝐴), 𝑡 ∈

(−𝜏, 𝜏), 𝑥 ∈ 𝐸 and one gets that 𝐴
∫︀ 𝑡

0 𝑆1(𝑠)𝑥 𝑑𝑠 = 𝐴
∫︀ 𝑡

0 (𝑆(𝑠)𝑥+𝐵0𝑥) 𝑑𝑠 = 𝑆(𝑡)𝑥+
𝐵0𝑥+𝑡𝐵1𝑥+𝑡𝐴𝐵0𝑥 = 𝑆1(𝑡)𝑥−𝑡𝐵𝑥, 𝑡 ∈ (−𝜏, 𝜏), 𝑥 ∈ 𝐸 and that (𝑆1(𝑡))𝑡∈(−𝜏,𝜏) is a
[0,−𝐵, 0]-group with a subgenerator 𝐴. We will prove that 𝐵 = 𝐼. Suppose 𝜁, 𝜂 ∈
𝒟(−𝜏/4,𝜏/4) and (𝜌𝑛) is a regularizing sequence. We know [23] that supp 𝐼𝜁(𝜙) ⊆[︀

min(−𝜏/4, inf(supp𝜙)),max(𝜏/4, sup(supp𝜙))
]︀

and that there exists 𝑘 ∈ N such
that supp 𝐼𝜁(𝜌𝑛)∪ supp 𝐼𝜂(𝜌𝑛) ⊆ [−𝜏/4, 𝜏/4], 𝑛 > 𝑘. Fix an 𝑥 ∈ 𝐸. By (𝐷𝐺)1 (see
also the equation (4.21) given below), one gets that, for every 𝜙,𝜓 ∈ 𝒟(−𝜏/4,𝜏/4):

(4.13)
∞∫︁
−∞

𝜙′(𝑡)
∞∫︁
−∞

𝜓′(𝑠)𝑆1(𝑡)𝑆1(𝑠)𝑥 𝑑𝑠 𝑑𝑡 = −
∞∫︁
−∞

𝜙′(𝑡)
∞∫︁
−∞

𝜓(𝑠)𝑆1(𝑡+ 𝑠)𝑥 𝑑𝑠 𝑑𝑡.

Put 𝜙 = 𝐼𝜁(𝜌𝑛), 𝑛 > 𝑘 in (4.13). Then one obtains, for every 𝜙, 𝜓 ∈ 𝒟(−𝜏/4,𝜏/4):
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∞∫︁
−∞

[︀
𝜌𝑛(𝑡)− 𝜁(𝑡)

]︀ ∞∫︁
−∞

𝜓′(𝑠)𝑆1(𝑡)𝑆1(𝑠)𝑥 𝑑𝑠 𝑑𝑡

= −
∞∫︁
−∞

[︀
𝜌𝑛(𝑡)− 𝜁(𝑡)

]︀ ∞∫︁
−∞

𝜓(𝑠)𝑆1(𝑡+ 𝑠)𝑥 𝑑𝑠 𝑑𝑡.

Letting 𝑛→∞ and applying the partial integration, one concludes that, for every
𝜓 ∈ 𝒟(−𝜏/4,𝜏/4):

(4.14) −
∞∫︁
−∞

𝜁(𝑡)
∞∫︁
−∞

𝜓′(𝑠)𝑆1(𝑡)𝑆1(𝑠)𝑥 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

𝜓′(𝑠)
𝑠∫︁

0

𝑆1(𝑣)𝑥 𝑑𝑣 𝑑𝑠−
∞∫︁
−∞

𝜁(𝑡)
∞∫︁
−∞

𝜓′(𝑠)
𝑠∫︁

0

𝑆1(𝑡+ 𝑣)𝑥 𝑑𝑣 𝑑𝑠 𝑑𝑡.

Plug 𝜓 = 𝐼𝜂(𝜌𝑛), 𝑛 > 𝑘 into (4.14). We get, for every 𝜓 ∈ 𝒟(−𝜏/4,𝜏/4):

−
∞∫︁
−∞

𝜁(𝑡)
∞∫︁
−∞

[︀
𝜌𝑛(𝑠)− 𝜂(𝑠)

]︀
𝑆1(𝑡)𝑆1(𝑠)𝑥 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

[︀
𝜌𝑛(𝑠)−𝜂(𝑠)

]︀ 𝑠∫︁
0

𝑆1(𝑣)𝑥 𝑑𝑣 𝑑𝑠−
∞∫︁
−∞

𝜁(𝑡)
∞∫︁
−∞

[︀
𝜌𝑛(𝑠)−𝜂(𝑠)

]︀ 𝑠∫︁
0

𝑆1(𝑡+𝑣)𝑥 𝑑𝑣 𝑑𝑡 𝑑𝑠.

The standard limit procedure leads us to the next equality:

(4.15)
∞∫︁
−∞

𝜁(𝑡) 𝜂(𝑠)𝑆1(𝑡)𝑆1(𝑠)𝑥 𝑑𝑠 𝑑𝑡

= −
∞∫︁
−∞

𝜂(𝑠)
𝑠∫︁

0

𝑆1(𝑣)𝑥 𝑑𝑣 𝑑𝑠+
∞∫︁
−∞

𝜁(𝑡) 𝜂(𝑠)
𝑠∫︁

0

𝑆1(𝑡+ 𝑣)𝑥 𝑑𝑣 𝑑𝑡 𝑑𝑠.

Let 𝑡, 𝑠 ∈ (−𝜏/4, 𝜏/4) be fixed and let (𝜁𝑛)𝑛∈N and (𝜂𝑛)𝑛∈N be sequences in
𝒟(−𝜏/4,𝜏/4) satisfying

∫︀∞
−∞ 𝜁𝑛(𝑡) 𝑑𝑡 = 1,

∫︀∞
−∞ 𝜂𝑛(𝑡) 𝑑𝑡 = 1, 𝑛 ∈ N, lim𝑛→∞ 𝜁𝑛 = 𝛿𝑡

and lim𝑛→∞ 𝜂𝑛 = 𝛿𝑠, in the sense of distributions. By virtue of (4.15), we have:

(4.16) 𝑆1(𝑡)𝑆1(𝑠)𝑥 =
[︂ 𝑡+𝑠∫︁

0

−
𝑡∫︁

0

−
𝑠∫︁

0

]︂
𝑆1(𝑟)𝑥 𝑑𝑟.

Notice that (4.16) implies

𝑆1(𝑡)
(︁ 𝑑
𝑑𝑟
𝑆1(𝑟)𝑥

)︁
|𝑟=𝑠

= 𝑆1(𝑡+ 𝑠)𝑥− 𝑆1(𝑠)𝑥,

𝑆1(𝑡)[𝐴𝑆1(𝑠)𝑥+𝐵𝑥] = 𝑆1(𝑡+ 𝑠)𝑥− 𝑆1(𝑠)𝑥.
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Since 𝑆1(𝑡)𝐴 ⊆ 𝐴𝑆1(𝑡), 𝑡 ∈ (−𝜏, 𝜏), one yields:

𝐴

[︂ 𝑡+𝑠∫︁
0

−
𝑡∫︁

0

−
𝑠∫︁

0

]︂
𝑆1(𝑟)𝑥 𝑑𝑟 + 𝑆1(𝑡)𝐵𝑥 = 𝑆1(𝑡+ 𝑠)𝑥− 𝑆1(𝑠)𝑥, i.e.,

𝑆1(𝑡+ 𝑠)𝑥− (𝑡+ 𝑠)𝐵𝑥− 𝑆1(𝑡)𝑥+ 𝑡𝐵𝑥− 𝑆1(𝑠)𝑥+ 𝑠𝐵𝑥+ 𝑆1(𝑡)𝐵𝑥
= 𝑆1(𝑡+ 𝑠)𝑥− 𝑆1(𝑠)𝑥.

So, 𝑆1(𝑣)[𝐵𝑥 − 𝑥] = 0, 𝑣 ∈ (−𝜏/4, 𝜏/4). Since 𝐺(𝜙) = −
∫︀∞
−∞ 𝜙′(𝑣)𝑆1(𝑣)𝑥 𝑑𝑣,

𝜙 ∈ 𝒟(−𝜏/4,𝜏/4), one can easily conclude that (𝑆1(𝑡))𝑡∈(−𝜏/4,𝜏/4) is a non-degenerate
operator family. Hence, 𝐵 = 𝐼 and (𝑆1(𝑡))𝑡∈[0,𝜏) is a once integrated semigroup
generated by 𝐴. Analogously, (−𝑆(−𝑡)−𝐵0)𝑡∈[0,𝜏) is a once integrated semigroup
generated by −𝐴 and one can repeat literally the arguments given in the proof of
Theorem 4.1(b2) in order to see that 𝐴 generates a 𝐶0-group. Suppose now 𝑛0 = 2
and denote 𝐴1 = 𝐴ℛ(𝐺). We will only prove that 𝐴1 is the c.i.g of (𝑆1

+(𝑡))𝑡∈[0,𝜏).
Evidently, 𝐴𝐵0 +𝐵1 ∈ 𝐿(𝐸), 𝐺(𝜙)𝑥 =

∫︀∞
−∞ 𝜙′′(𝑡)[𝑆(𝑡)𝑥+𝐵0𝑥+ 𝑡(𝐴𝐵0 +𝐵1)𝑥]𝑑𝑡,

𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸 and the mapping 𝑡 ↦→ 𝑆(𝑡)𝑥 + 𝐵0𝑥 + 𝑡(𝐴𝐵0 + 𝐵1)𝑥, 𝑡 ∈ [0, 𝜏)
is continuously differentiable with

𝑑

𝑑𝑡
[𝑆(𝑡)𝑥+𝐵0𝑥+ 𝑡(𝐴𝐵0 +𝐵1)𝑥] = 𝐴𝑆(𝑡)𝑥−𝐵1𝑥− 2𝑡𝐵2𝑥+ (𝐴𝐵0 +𝐵1)𝑥,

𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸. Therefore,

(4.17) 𝐺(𝜙)𝑥 = −
∞∫︁
−∞

𝜙′(𝑡)𝑆1
+(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟[0,𝜏), 𝑥 ∈ 𝐸.

Suppose 𝑥 ∈ 𝐸, 𝜙,𝜓 ∈ 𝒟[0,𝜏) and supp𝜙+ supp𝜓 ⊆ [0, 𝜏). Since 𝐺 satisfies (𝐷𝐺)1
(see also (4.21)), we obtain

∞∫︁
−∞

𝜙′(𝑡)
∞∫︁
−∞

𝜓′(𝑠)𝑆1
+(𝑡)𝑆1

+(𝑠)𝑥 𝑑𝑡 𝑑𝑠 = −
∞∫︁
−∞

𝜙′(𝑡)
∞∫︁
−∞

𝜓(𝑠)𝑆1
+(𝑡+ 𝑠)𝑥 𝑑𝑡 𝑑𝑠.

Arguing as in the case 𝑛0 = 1, one gets, for every 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 < 𝜏 :

𝑆1
+(𝑡)𝑆1

+(𝑠)𝑥 =
[︂ 𝑡+𝑠∫︁

0

−
𝑡∫︁

0

−
𝑠∫︁

0

]︂
𝑆1

+(𝑟)𝑥 𝑑𝑟.

Further on, 𝑆1
+(0) = 0 and the mapping 𝑡 ↦→ 𝑆1

+(𝑡)𝑥, 𝑡 ∈ [0, 𝜏) is continuous. It
can be simply verified that (𝑆1

+(𝑡))𝑡∈[0,𝜏) is a non-degenerate operator family, and
consequently, (𝑆1

+(𝑡))𝑡∈[0,𝜏) is a local once integrated semigroup in the sense of (M).
Suppose 𝑥 ∈ 𝐷(𝐴0). Then there exists 𝜎 ∈ (0, 𝜏 ] such that the mapping 𝑡 ↦→ 𝑆1

+(𝑡)𝑥,
𝑡 ∈ [0, 𝜎) is continuously differentiable and that 𝐴0𝑥 = lim𝑡→0+

(︀
𝑑
𝑑𝑡 (𝑆

1
+(𝑡)𝑥)−𝑥

)︀
/𝑡.

The partial integration and (4.17) yield:

(4.18) 𝐺(𝜙)𝑥 =
∞∫︁
−∞

𝜙(𝑡)
(︁ 𝑑
𝑑𝑡
𝑆1

+(𝑡)𝑥
)︁
𝑡, 𝜙 ∈ 𝒟[0,𝜎).
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Owing to (4.18) and Theorem 4.1(b3), we get lim𝑛→∞𝐺(𝜌𝑛)𝑥 = 𝑥 ∈ ℛ(𝐺),
𝑆2

+(𝑡)𝑥 = 𝑆(𝑡)𝑥+𝐵0𝑥+ 𝑡(𝐴𝐵0 +𝐵1)𝑥 ∈ ℛ(𝐺), 𝑡 ∈ [0, 𝜏) and ℛ(𝐺) ∋ 𝑑𝑑𝑡𝑆
2
+(𝑡)𝑥 =

𝐴𝑆(𝑡)𝑥−𝐵1𝑥−2𝑡𝐵2𝑥+(𝐴𝐵0+𝐵1)𝑥 = 𝑆1
+(𝑡)𝑥, 𝑡 ∈ [0, 𝜏). Consequently, 𝑑𝑑𝑡𝑆

1
+(𝑡)𝑥 ∈

ℛ(𝐺), 𝑡 ∈ [0, 𝜎), 𝐴0𝑥 = lim𝑡→0+
(︀
𝑑
𝑑𝑡 (𝑆

1
+(𝑡)𝑥)− 𝑥

)︀
/𝑡 ∈ ℛ(𝐺) and:

(4.19) {𝑥,𝐴0𝑥} ⊆ ℛ(𝐺).
Further, 𝑑𝑑𝑡𝑆(𝑡)𝑥 = 𝐴𝑆(𝑡)𝑥−𝐵1𝑥− 2𝑡𝐵2𝑥, 𝑡 ∈ [0, 𝜏),

𝑑

𝑑𝑡
𝑆1

+(𝑡)𝑥+ 2𝐵2𝑥 = lim
ℎ→0

𝐴[𝑆(𝑡+ ℎ)𝑥− 𝑆(0)𝑥]−𝐴[𝑆(𝑡)𝑥− 𝑆(0)𝑥]
ℎ

= lim
ℎ→0

𝐴
𝑆(𝑡+ ℎ)𝑥− 𝑆(𝑡)𝑥

ℎ
, 𝑡 ∈ [0, 𝜎)

and
lim
ℎ→0

𝑆(𝑡+ ℎ)𝑥− 𝑆(𝑡)𝑥
ℎ

= 𝐴𝑆(𝑡)𝑥−𝐵1𝑥− 2𝑡𝐵2𝑥, 𝑡 ∈ [0, 𝜏).

The closedness of 𝐴 gives 𝐴𝑆(𝑡)𝑥−𝐵1𝑥−2𝑡𝐵2𝑥 ∈ 𝐷(𝐴), 𝑡 ∈ [0, 𝜎) and 𝐴[𝐴𝑆(𝑡)𝑥−
𝐵1𝑥− 2𝑡𝐵2𝑥] = 𝑑

𝑑𝑡𝑆
1
+(𝑡)𝑥+ 2𝐵2𝑥, 𝑡 ∈ [0, 𝜎). Put 𝑡 = 0 in the previous equality to

obtain 𝐴(𝐴𝐵0 +𝐵1)𝑥 = −𝑥− 2𝐵2𝑥. Hence,

𝐴0𝑥 = lim
𝑡→0+

𝑑
𝑑𝑡 (𝑆

1
+(𝑡)𝑥)− 𝑥
𝑡

= lim
𝑡→0+

𝐴[𝐴𝑆(𝑡)𝑥−𝐵1𝑥− 2𝑡𝐵2𝑥]− 2𝐵2𝑥− 𝑥
𝑡

= lim
𝑡→0+

𝐴[𝐴𝑆(𝑡)𝑥−𝐵1𝑥− 2𝑡𝐵2𝑥] +𝐴(𝐴𝐵0 +𝐵1)𝑥
𝑡

= lim
𝑡→0+

𝐴
𝐴[𝑆(𝑡)𝑥− 𝑆(0)𝑥]− 2𝑡𝐵2𝑥

𝑡
.

On the other hand,

lim
𝑡→0+

𝐴[𝑆(𝑡)𝑥− 𝑆(0)𝑥]− 2𝑡𝐵2𝑥

𝑡
= lim
𝑡→0+

𝑆1
+(𝑡)𝑥− 𝑆1

+(0)𝑥
𝑡

=
(︁ 𝑑
𝑑𝑡
𝑆1

+(𝑡)𝑥
)︁
𝑡=0

= 𝑥.

Therefore, 𝑥 ∈ 𝐷(𝐴), 𝐴0𝑥 = 𝐴𝑥, 𝐴0 ⊆ 𝐴 and (4.19) enables one to see that
𝐴0 ⊆ 𝐴1 and that 𝐴0 ⊆ 𝐴1. Furthermore, Theorem 4.1(b3) shows that 𝐴1 is
the generator of a once integrated semigroup

(︀
𝑑
𝑑𝑡𝑆

2
+(𝑡)
)︀
𝑡∈[0,𝜏) ⊆ 𝐿(ℛ(𝐺)) in the

sense of Definition 2.3. Accordingly,
(︀
𝑑
𝑑𝑡𝑆

2
+(𝑡)
)︀
𝑡∈[0,𝜏) ⊆ 𝐿

(︀
ℛ(𝐺)

)︀
is a local once

integrated semigroup in the sense of (M) and it can be easily proved that the c.i.g
of
(︀
𝑑
𝑑𝑡𝑆

2
+(𝑡)
)︀
𝑡∈[0,𝜏) is 𝐴1. But, the c.i.g of

(︀
𝑆1

+(𝑡)
)︀
𝑡∈[0,𝜏) is an extension of the c.i.g of(︀

𝑑
𝑑𝑡𝑆

2
+(𝑡)
)︀
𝑡∈[0,𝜏). Hence, 𝐴1 ⊆ 𝐴0 and 𝐴1 = 𝐴0. Further on, it is straightforward to

see that 𝑑𝑑𝑡𝑆
1
+(𝑡)𝑥 = 𝐴𝑆(𝑡)𝐴𝑥−𝐵1𝐴𝑥−2𝑡𝐵2𝐴𝑥−(2𝐵2−𝐶1)𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐷(𝐴).

Due to [40, Lemma 4.3(b)], we obtain that 𝑥 =
(︀
𝑑
𝑑𝑡𝑆

1
+(𝑡)𝑥

)︀
𝑡=0, 𝑥 ∈ 𝐷(𝐴) and an

immediate consequence of this equality and (4.18) is lim𝑛→∞𝐺(𝜌𝑛)𝑥 = 𝑥, 𝑥 ∈
𝐷(𝐴). By Theorem 4.1(b3), we have 𝐷(𝐴) ⊆ ℛ(𝐺) ⊆

⋂︀2
𝑖=0 𝐷(𝑌𝑖) and 𝑌2𝑥 = −𝑥,

𝑥 ∈ 𝐷(𝐴). Suppose 𝑥 ∈ 𝐷(𝐴). By Proposition 3.2(iv), 𝐴𝑥 ∈ 𝐷(𝑌1), 𝐶1𝑥+𝐴𝑌1𝑥 =
𝑌1𝐴𝑥 and, because of that, 2𝐵2𝑥 + 𝑌1𝐴𝑥 = 𝐶1𝑥 + 𝑌2𝑥 = 𝐶1𝑥 − 𝑥. Now an
application of Proposition 3.2(i) shows that 𝑌1𝐴𝑥 = −(2𝐵2𝑥−𝐶1𝑥)−𝑥 ∈ 𝐷(𝐴) and
that 𝐴𝑌1𝐴𝑥 = −2𝐵2𝐴𝑥−𝐴𝑥. In other words, 𝐴𝑥 ∈

⋂︀2
𝑖=0 𝐷(𝑌𝑖) and 𝑌2𝐴𝑥 = −𝐴𝑥.



DISTRIBUTION GROUPS 95

Let us prove (c). First of all, suppose 𝜆 ∈ C and 𝜆 − 𝐴 is surjective. Assume
𝑥 = (𝜆 − 𝐴)𝑦, for some 𝑦 ∈ 𝐷(𝐴). We obtain 𝐸 =

⋂︀2
𝑖=0 𝐷(𝑌𝑖) ∋ 𝑥 and 𝑌2𝑥 =

𝑌2(𝜆𝑦 − 𝐴𝑦) = −𝜆𝑦 + 𝐴𝑦 = −𝑥. Proceeding as in the proof of (b3) of Theorem
4.1, one gets that

𝐴

𝑡∫︁
0

𝑆2
+(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥+𝐵0𝑥+ 𝑡𝐵1𝑥+ 𝑡2𝐵2𝑥+ 𝑡𝐴𝐵0𝑥+ 𝑡2

2 𝐴(𝐴𝐵0𝑥+𝐵1𝑥)

= 𝑆2
+(𝑡)𝑥− 𝑡2

2 𝑥, 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏).

This implies
∫︀ 𝑡

0 𝑆
1
+(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴), 𝑡 ∈ [0, 𝜏) and 𝐴

∫︀ 𝑡
0 𝑆

1
+(𝑠)𝑥 𝑑𝑠 = 𝑆1

+(𝑡)𝑥 − 𝑡𝑥,
𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜏). Assume 𝑥 ∈ 𝐷(𝐴). Due to Proposition 3.2(i), we get 𝑆1

+(𝑡)𝑥 =
(𝑆(𝑡) − 𝑆(0))𝐴𝑥 − 𝑡(2𝐵2𝑥 − 𝐶1𝑥) ∈ 𝐷(𝐴), 𝑡 ∈ [0, 𝜏) and 𝐴𝑆1

+(𝑡)𝑥 = 𝐴(𝑆(𝑡) −
𝑆(0))𝐴𝑥 − 2𝑡𝐵2𝐴𝑥 = 𝑆1

+(𝑡)𝐴𝑥, 𝑡 ∈ [0, 𝜏). Suppose now that 𝐴 is densely defined.
Since 𝐷(𝐴) ⊆ ℛ(𝐺), we automatically obtain that ℛ(𝐺) = 𝐸 and that 𝐴 is the
c.i.g of (𝑆1

+(𝑡))𝑡∈[0,𝜏). Due to [40, Proposition 4.5], (𝑆1
+(𝑡))𝑡∈[0,𝜏) is a local once

integrated semigroup in the sense of Definition 2.3. To prove (i), suppose 𝑥 ∈ 𝐸,
𝜙,𝜓 ∈ 𝒟(−𝜏,𝜏) and supp𝜙+ supp𝜓 ⊆ (−𝜏, 𝜏). Note that:

𝐺(𝜙)𝐺(𝜓)𝑥 =
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0)(𝑠)𝑆(𝑡)𝑆(𝑠)𝑥 𝑑𝑠 𝑑𝑡

= −
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)𝑆(𝑡)
𝑠∫︁

0

𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑠 𝑑𝑡.

Repeating literally the arguments given in the proof of Proposition 3.3, one obtains
(3.7) and the last equality implies:

𝐺(𝜙)𝐺(𝜓)𝑥 = −
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
[︂
−
𝑛0−1∑︁
𝑗=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
𝑟∫︁

0

𝐶𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟

+
𝑛0∑︁
𝑗=1

𝑗

𝑠∫︁
0

(𝑡+𝑠−𝑟)𝑗−1
𝑟∫︁

0

𝐵𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 −
𝑛0∑︁
𝑗=0

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+𝑠−𝑟)𝐵𝑗𝑥 𝑑𝑟
]︂
𝑑𝑠 𝑑𝑡.

Noticing that
∫︀∞
−∞ 𝜙(𝑛)(𝑡)𝑡𝑗 𝑑𝑡 = 0, 𝑛 ∈ N, 𝑗 ∈ N0, 𝑛 > 𝑗, one can deduce that:

𝐼1 :=
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑛0−1∑︁
𝑗=0

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗
𝑟∫︁

0

𝐶𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 𝑑𝑠 𝑑𝑡 = 0.

As a matter of fact,

𝐼1 =
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)×
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×
𝑛0−1∑︁
𝑗=0

𝑠∫︁
0

∑︁
(𝑘1,𝑘2,𝑘3)∈N3

0
𝑘1+𝑘2+𝑘3=𝑗

𝑗!
𝑘1!𝑘2!𝑘3! 𝑡

𝑘1𝑠𝑘2(−𝑟)𝑘3

𝑟∫︁
0

𝐶𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 𝑑𝑠 𝑑𝑡.

Suppose 𝑗 ∈ {0, . . . , 𝑛0 − 1}, (𝑘1, 𝑘2, 𝑘3) ∈ N3
0 and 𝑘1 + 𝑘2 + 𝑘3 = 𝑗. One gets:

∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑠∫︁

0

𝑗!
𝑘1!𝑘2!𝑘3! 𝑡

𝑘1𝑠𝑘2(−𝑟)𝑘3

𝑟∫︁
0

𝐶𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝑡𝑘1𝑑𝑡

∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑠∫︁

0

𝑗!
𝑘1!𝑘2!𝑘3!𝑠

𝑘2(−𝑟)𝑘3

𝑟∫︁
0

𝐶𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 𝑑𝑠 = 0.

Hence, 𝐼1 = 0. Analogically,
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑛0∑︁
𝑗=1

𝑗

𝑠∫︁
0

(𝑡+ 𝑠− 𝑟)𝑗−1
𝑟∫︁

0

𝐵𝑗𝑆(𝑣)𝑥 𝑑𝑣 𝑑𝑟 𝑑𝑠 𝑑𝑡 = 0

and we obtain:

𝐺(𝜙)𝐺(𝜓)𝑥 =
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑛0∑︁
𝑗=0

𝑠∫︁
0

𝑟𝑗𝑆(𝑡+ 𝑠− 𝑟)𝐵𝑗𝑥 𝑑𝑟 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑛0+1)(𝑠)
𝑛0∑︁
𝑗=0

𝑡+𝑠∫︁
𝑡

(𝑡+ 𝑠− 𝑟)𝑗𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟 𝑑𝑠 𝑑𝑡.(4.20)

Put, for every 𝑡 ∈ (−𝜏, 𝜏) and 𝑗 ∈ {1, . . . , 𝑛0 + 1}:

𝑔𝑗,𝑡(𝑠) :=
𝑡+𝑠∫︁
𝑡

(𝑡+ 𝑠− 𝑟)𝑗−1𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟, 𝑠 ∈ (−𝜏 − 𝑡, 𝜏 − 𝑡).

It is straightforward to check that 𝑑𝑑𝑠𝑔𝑗,𝑡(𝑠) = (𝑗− 1)
∫︀ 𝑡+𝑠
𝑡

(𝑡+ 𝑠− 𝑟)𝑗−2𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟,
𝑗 > 1, 𝑠 ∈ (−𝜏 − 𝑡, 𝜏 − 𝑡) and that 𝑑𝑑𝑠𝑔1,𝑡(𝑠) = 𝑆(𝑡+ 𝑠)𝐵1𝑥, 𝑠 ∈ (−𝜏 − 𝑡, 𝜏 − 𝑡). The
partial integration and (4.20) imply:

𝐺(𝜙)𝐺(𝜓)𝑥 = −
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝜓(𝑛0)(𝑠)
𝑛0∑︁
𝑗=1

𝑡+𝑠∫︁
𝑡

𝑗(𝑡+ 𝑠− 𝑟)𝑗−1𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟 𝑑𝑠 𝑑𝑡

−
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝜓(𝑛0)(𝑠)𝑆(𝑡+ 𝑠)𝐵0𝑥 𝑑𝑠 𝑑𝑡.

Apply again the partial integration in order to see that:

𝐺(𝜙)𝐺(𝜓)𝑥 = −
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝜓(𝑛0)(𝑠)𝑆(𝑡+ 𝑠)𝐵0𝑥 𝑑𝑠 𝑑𝑡
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+
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝜓(𝑛0−1)(𝑠)𝑆(𝑡+ 𝑠)𝐵1𝑥 𝑑𝑠 𝑑𝑡

+
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑛0)(𝑡)𝜓(𝑛0−1)(𝑠)
𝑛0∑︁
𝑗=2

𝑗(𝑗 − 1)
𝑡+𝑠∫︁
𝑡

(𝑡+ 𝑠− 𝑟)𝑗−2𝑆(𝑟)𝐵𝑗𝑥 𝑑𝑟 𝑑𝑠 𝑑𝑡.

Continuing this procedure, we finally obtain (4.12).
To prove (ii), suppose 𝜙, 𝜓 ∈ 𝒟(−𝜏,𝜏) and supp𝜙+supp𝜓 ⊆ (−𝜏, 𝜏). Evidently,

𝐺(𝜙 * 𝜓)𝑥 = (−1)𝑛0

∞∫︁
−∞

(𝜙 * 𝜓)(𝑛0)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡 = (−1)𝑛0

∞∫︁
−∞

(𝜙(𝑛0) * 𝜓)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡

= (−1)𝑛0

∞∫︁
−∞

[︂ ∞∫︁
−∞

𝜙(𝑛0)(𝑡− 𝑠)𝜓(𝑠) 𝑑𝑠
]︂
𝑆(𝑡)𝑥 𝑑𝑡(4.21)

= (−1)𝑛0

∞∫︁
−∞

𝜙(𝑛0)(𝑡)
∞∫︁
−∞

𝜓(𝑠)𝑆(𝑡+ 𝑠)𝑥 𝑑𝑠 𝑑𝑡, 𝑥 ∈ 𝐸.

Due to (4.21), we have:

(4.22) 𝐺(𝜓)𝑥 = lim
𝑛→∞

𝐺(𝜓*𝜌𝑛)𝑥 = lim
𝑛→∞

(−1)𝑛0

∞∫︁
−∞

𝜌(𝑛0)
𝑛 (𝑡)

∞∫︁
−∞

𝜓(𝑠)𝑆(𝑡+𝑠)𝑥 𝑑𝑠 𝑑𝑡,

𝑥 ∈ 𝐸. Combining (𝐷𝐺)1, (4.12) and (4.22) gives:

(4.23) (−1)𝑛0𝐺(𝜓)𝑥 =
𝑛0∑︁
𝑖=0

(−1)𝑖+1𝑖!𝐺(𝜓(𝑛0−𝑖))𝐵𝑖𝑥, 𝑥 ∈ 𝐸.

Suppose now 𝑥 ∈
⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖). A consequence of the definition of 𝑌𝑛0 and (1.2) is

𝑛0!𝐺(𝜓)𝐵𝑛0𝑥+𝐴𝐺(𝜓)𝑌𝑛0−1𝑥 = 𝑛0!𝐺(𝜓)𝐵𝑛0𝑥−𝐺(𝜓′)𝑌𝑛0−1𝑥 = 𝐺(𝜓)𝑌𝑛0𝑥. If 𝑛0 >
2, then we obtain 𝑛0!𝐺(𝜓)𝐵𝑛0𝑥−𝐺(𝜓′)(𝐴𝑌𝑛0−2𝑥+ (𝑛0 − 1)!𝐵𝑛0−1𝑥) = 𝐺(𝜓)𝑌𝑛0𝑥
and 𝑛0!𝐺(𝜓)𝐵𝑛0𝑥 − (𝑛0 − 1)!𝐺(𝜓′)𝐵𝑛0−1𝑥 + 𝐺(𝜓′′)𝑌𝑛0−2𝑥 = 𝐺(𝜓)𝑌𝑛0𝑥. By the
definition of 𝑌𝑖 and (1.2), one concludes inductively:

(4.24)
𝑛0∑︁
𝑖=0

(−1)𝑛0+𝑖𝑖!𝐺(𝜓(𝑛0−𝑖))𝐵𝑖𝑥 = 𝐺(𝜓)𝑌𝑛0𝑥.

This equality and (4.23) imply 𝐺(𝜓)(𝑌𝑛0𝑥 + 𝑥) = 0; a simple consequence is
𝐺(𝜂)(𝑌𝑛0𝑥+ 𝑥) = 0, 𝜂 ∈ 𝒟 and the proof of (ii) finishes an application of (𝐷𝐺)2.

To prove (iii), one can argue as in the proof of (b5) of Theorem 4.1. We
sketch the proof for the sake of completeness. Fix an 𝑥 ∈ 𝐷(𝐴𝑛0−1). Since
𝑆 : (−𝜏, 𝜏) → 𝐿(𝐸, [𝐷(𝐴)]) is continuous, one can argue as in the proof of Propo-
sition 3.2 in order to see that the mapping 𝑡 ↦→ 𝑆(𝑡)𝑥, 𝑡 ∈ (−𝜏, 𝜏) is 𝑛0-times
continuously differentiable and that there exists a function 𝑀 : (−𝜏, 𝜏) → (0,∞)
satisfying

⃦⃦
𝑑𝑛0

𝑑𝑡𝑛0 𝑆(𝑡)𝑥
⃦⃦
6 𝑀(𝑡)‖𝑥‖𝑛0−1, 𝑡 ∈ (−𝜏, 𝜏). Furthermore, (3.3) holds
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for every 𝑙 ∈ {0, . . . , 𝑛0 − 1} and one obtains inductively 𝑌𝑘𝑥 = −
(︀
𝑑𝑘

𝑑𝑡𝑘
𝑆(𝑡)𝑥

)︀
𝑡=0,

𝑘 ∈ {0, . . . , 𝑛}. Denote 𝑢(𝑡;𝑥) = 𝑑𝑛0

𝑑𝑡𝑛0 𝑆(𝑡)𝑥, 𝑡 ∈ (−𝜏, 𝜏); then the partial integration
shows 𝐺(𝜙)𝑥 =

∫︀∞
−∞ 𝜙(𝑡)𝑢(𝑡;𝑥)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟(−𝜏,𝜏). The previous equality and (ii)

imply lim
𝑛→∞

𝐺(𝜌𝑛)𝑥 = 𝑢(0;𝑥) = −𝑌𝑛0𝑥 = 𝑥 ∈ ℛ(𝐺). Therefore, 𝐷(𝐴𝑛0−1) ⊆ ℛ(𝐺).
Further on, Proposition 3.2(iv) implies

𝐶𝑛0−1𝑥+ 1
(𝑛0 − 1)!𝐴𝑌𝑛0−1𝑥 = 1

(𝑛0 − 1)!𝑌𝑛0−1(𝐴𝑥), i.e.,

𝐶𝑛0−1𝑥+ 1
(𝑛0 − 1)! [−𝑥− 𝑛0!𝐵𝑛0𝑥] = 1

(𝑛0 − 1)!𝑌𝑛0−1(𝐴𝑥).

Due to Proposition 3.2(i), 𝑌𝑛0−1(𝐴𝑥) ∈ 𝐷(𝐴) and a simple computation gives
𝑌𝑛0𝐴𝑥 = −𝐴𝑥 which finishes the proof of (iii).

Further on, let us observe that (iii) implies 𝐷(𝐴𝑛) ⊆ 𝐷(𝐴𝑛0−1) ⊆ ℛ(𝐺) ⊆
𝐷∞(𝐴) ⊆ 𝐷(𝐴𝑛+1), for every 𝑛 ∈ N such that 𝑛 > 𝑛0 − 1. Hence, 𝐴 is stationary
dense and 𝑛(𝐴) 6 𝑛0 − 1.

To prove (v), suppose 𝜆 ∈ 𝜌(𝐴). We will prove that 𝐴 generates a local
(𝑛0−1)-times integrated group on (−𝜏, 𝜏). Repeating literally the arguments given
in the proof of Theorem 4.1, one gets 𝐴

∫︀ 𝑡
0 𝑢(𝑠;𝑥) 𝑑𝑠 = 𝑢(𝑡;𝑥) − 𝑥, 𝑡 ∈ (−𝜏, 𝜏),

𝑥 ∈ 𝐷(𝐴𝑛0−1) and 𝐴𝑢(𝑡;𝑥) = 𝑢(𝑡;𝐴𝑥), 𝑡 ∈ (−𝜏, 𝜏), 𝑥 ∈ 𝐷(𝐴𝑛0). Put 𝑆𝑛0−1(𝑡)𝑥 =
𝑢(𝑡;𝑅(𝜆 : 𝐴)𝑛0−1𝑥), 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸. Clearly, the mapping 𝑡 ↦→ 𝑆𝑛0−1(𝑡)𝑥,
𝑡 ∈ [0, 𝜏) is continuous for every 𝑥 ∈ 𝐸 and an induction argument shows that, for
every 𝑘 ∈ N0, there exists an appropriate constant 𝑀(𝑘, 𝜆) ∈ (0,∞) which fulfills
‖𝐴𝑘𝑅(𝜆 : 𝐴)𝑘𝑥‖ 6𝑀(𝑘, 𝜆)‖𝑥‖, 𝑥 ∈ 𝐸. This implies

‖𝑆𝑛0−1(𝑡)𝑥‖ = ‖𝑢(𝑡;𝑅(𝜆 : 𝐴)𝑛0−1𝑥)‖ 6𝑀(𝑡)‖𝑅(𝜆 : 𝐴)𝑛0−1𝑥‖𝑛0−1

6𝑀(𝑡)
𝑛0−1∑︁
𝑖=0

𝑀(𝑖, 𝜆)‖𝑅(𝜆 : 𝐴)‖𝑛0−1−𝑖‖𝑥‖,

𝑥 ∈ 𝐸 and 𝑆𝑛0−1(𝑡) ∈ 𝐿(𝐸), 𝑡 ∈ [0, 𝜏). In order to simplify the notation, denote
𝐶 = 𝑅(𝜆 : 𝐴)𝑛0−1. We have 𝐴

∫︀ 𝑡
0 𝑆
𝑛0−1(𝑠)𝑥 𝑑𝑠 = 𝐴

∫︀ 𝑡
0 𝑢(𝑠;𝐶𝑥) 𝑑𝑠 = 𝑢(𝑡;𝐶𝑥) −

𝐶𝑥 = 𝑆𝑛0−1(𝑡)𝑥 − 𝐶𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸. Since 𝐴𝑢(𝑡;𝑥) = 𝑢(𝑡;𝐴𝑥), 𝑡 ∈ (−𝜏, 𝜏),
𝑥 ∈ 𝐷(𝐴𝑛0), one easily obtains 𝑆𝑛0−1(𝑡)𝐴 ⊆ 𝐴𝑆𝑛0−1(𝑡), 𝑆𝑛0−1(𝑡)𝑅(𝜆 : 𝐴) =
𝑅(𝜆 : 𝐴)𝑆𝑛0−1(𝑡) and, by induction, 𝑆𝑛0−1(𝑡)𝐶 = 𝐶𝑆𝑛0−1(𝑡), 𝑡 ∈ [0, 𝜏). Now it is
straightforward to prove that the abstract Cauchy problem:⎧⎨⎩ 𝑣 ∈ 𝐶

(︀
[0, 𝜏) : [𝐷(𝐴)]

)︀
∩ 𝐶1([0, 𝜏) : 𝐸),

𝑣′(𝑡) = 𝐴𝑣(𝑡) + 𝐶𝑥, 𝑡 ∈ [0, 𝜏),
𝑣(0) = 0,

has a unique solution for every 𝑥 ∈ 𝐸, given by 𝑣(𝑡) =
∫︀ 𝑡

0 𝑆
𝑛0−1(𝑠)𝑥 𝑑𝑠, 𝑡 ∈ [0, 𝜏),

𝑥 ∈ 𝐸. By [44, Theorem 4.4], 𝐴 generates a local (𝑛0 − 1)-times integrated semi-
group on [0, 𝜏). Since −𝐴 generates a (DG) �̌�, we also obtain that −𝐴 generates
a local (𝑛0 − 1)-times integrated semigroup on [0, 𝜏) and Lemma 2.2(v) implies
that 𝐴 generates a local (𝑛0 − 1)-times integrated group on (−𝜏, 𝜏). Thus, (v) is a
consequence of Corollary 2.1(c).
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To prove (vi), notice that the assumptionℛ(𝐺) = 𝐸 andℛ(𝐺) ⊆ 𝐷∞(𝐴) imply
that 𝐷∞(𝐴) is dense in 𝐸. The converse statement is obvious since 𝐷∞(𝐴) ⊆
𝐷(𝐴𝑛0−1) ⊆ ℛ(𝐺) (cf. the proofs of (iii) and (iv)). In the case 𝜌(𝐴) ̸= ∅, the
denseness of 𝐷∞(𝐴) in 𝐸 is equivalent to the denseness of 𝐷(𝐴) in 𝐸 (see, for
example, [27]) and the proof of (vi) completes a routine argument.

It remains to be proved (vii). Suppose 𝐺(𝜙)𝑥 = 0, 𝜙 ∈ 𝒟0. This implies
(−1)𝑛0

∫︀∞
−∞ 𝜙𝑛0(𝑡)𝑆(𝑡)𝑥 𝑑𝑡 = 0, 𝜙 ∈ 𝒟[0,𝜏) and the existence of bounded linear op-

erators 𝐷0, . . . , 𝐷𝑛0−1 ∈ 𝐿(𝐸) satisfying 𝑆(𝑡)𝑥 =
∑︀𝑛0−1
𝑗=0 𝑡𝑗𝐷𝑗𝑥, 𝑡 ∈ [0, 𝜏). Hence,

(4.25) 𝐴

𝑛0−1∑︁
𝑗=0

𝑡𝑗+1

𝑗 + 1𝐷𝑗𝑥 =
𝑛0−1∑︁
𝑗=0

𝑡𝑗𝐷𝑗𝑥+
𝑛0∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑥, 𝑡 ∈ [0, 𝜏).

Substitute 𝑡 = 0 in (4.25) to obtain 𝐷0 = −𝐵0. Differentiating (4.25), it is straight-
forward to see that: 𝑥 ∈

⋂︀𝑛0
𝑖=0 𝐷(𝑌𝑖),

⋃︀𝑛0−1
𝑖=0 {𝐷𝑖𝑥} ⊆ 𝐷(𝐴), 𝐷𝑖𝑥 = (−1)

𝑖! 𝑌𝑖𝑥, 𝑖 =
1, . . . , 𝑛0−1 and 𝐴(𝐷𝑛0−1𝑥) = 𝑛0𝐵𝑛0𝑥. This implies

(︀
𝑛0𝐵𝑛0 + 1

(𝑛0−1)!𝐴𝑌𝑛0−1
)︀
𝑥 =

0, i.e., 𝑥 ∈ 𝑁(𝑌𝑛0). Due to (ii), 𝑥 = 0 and
⋂︀
𝜙∈𝒟0

𝑁(𝐺(𝜙)) = {0}. The second
equality in (vii) follows by passing to −𝐴 and �̌�. �

Example 4.1. Let 𝐸 := 𝐿∞(R) and let 𝐴 := 𝑑
𝑑𝑡 with maximal domain. Then

𝐴 is not densely defined and generates a once integrated group (𝑆1(𝑡))𝑡∈R given
by (𝑆1(𝑡)𝑓)(𝑠) :=

∫︀ 𝑡
0 𝑓(𝑟 + 𝑠) 𝑑𝑟, 𝑠 ∈ R, 𝑡 ∈ R (cf. also [12, Example 4.1]). Put

𝑆2(𝑡)𝑓 :=
∫︀ 𝑡

0 𝑆1(𝑠)𝑓 𝑑𝑠, 𝑡 > 0, 𝑓 ∈ 𝐸, 𝑆2(𝑡)𝑓 :=
∫︀ −𝑡

0 𝑆1(−𝑠)𝑓 𝑑𝑠, 𝑡 < 0, 𝑓 ∈ 𝐸 and
𝐺(𝜙)𝑓 :=

∫︀∞
−∞ 𝜙′′(𝑡)𝑆2(𝑡)𝑓 𝑑𝑡, 𝜙 ∈ 𝒟, 𝑓 ∈ 𝐸. Then (𝑆2(𝑡))𝑡∈R is a twice integrated

group generated by 𝐴, the mapping 𝑆2 : R → 𝐿(𝐸, [𝐷(𝐴)]) is continuous and 𝐺
is a non-dense (DG)vgenerated by 𝐴 (cf. Theorem 4.2 with 𝑛0 = 2). We would
like to point out that there exists 𝑓 ∈ 𝐷(𝐴) such that 𝐴𝑓 /∈ ℛ(𝐺). Suppose
contrarily that 𝑅(𝐴) ⊆ ℛ(𝐺). By Theorem 6.2, 𝐷(𝐴) ⊆ ℛ(𝐺) and we obtain
(𝜆 − 𝐴)𝑓 ∈ ℛ(𝐺), 𝜆 ∈ C, 𝑓 ∈ 𝐷(𝐴). Since C r 𝑖R ⊆ 𝜌(𝐴), one yields 𝐸 = ℛ(𝐺)
and the contradiction is obvious. Hence, Theorem 4.2 implies that (𝑆1(𝑡))𝑡>0 is a
once integrated semigroup generated by 𝐴 in the sense of Definition 2.3 and that
the c.i.g of (𝑆1(𝑡))𝑡∈R is 𝐴ℛ(𝐺) ( ̸= 𝐴). Furthermore, ℛ(𝐺)  

⋂︀2
𝑖=0 𝐷(𝑌𝑖) = 𝐸.

Proposition 4.1. Suppose 𝐺1 and 𝐺2 are distribution groups generated by 𝐴
and 𝜌(𝐴) ̸= ∅. Then 𝐺1 = 𝐺2.

Proof. Suppose 𝑥 ∈ 𝐸, 𝜆 ∈ 𝜌(𝐴) and 𝜙 ∈ 𝒟(−𝜏,𝜏), for some 𝜏 ∈ (0,∞).
We will prove that 𝐺1(𝜙)𝑥 = 𝐺2(𝜙)𝑥. Clearly, 𝐺𝑖 ∈ 𝒟′

(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
, 𝑖 = 1, 2

and an application of [32, Theorem 2.1.1] gives that there exist 𝑛1 ∈ N, 𝑛2 ∈ N
and continuous mappings 𝑆𝑖 : (−𝜏, 𝜏) → 𝐿

(︀
𝐸, [𝐷(𝐴)]

)︀
, 𝑖 = 1, 2 so that 𝐺𝑖(𝜓)𝑥 =

(−1)𝑛𝑖
∫︀∞
−∞ 𝜓(𝑛𝑖)(𝑡)𝑆𝑖(𝑡)𝑥 𝑑𝑡, 𝜓 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ 𝐸, 𝑖 = 1, 2. The proof of Theo-

rem 4.1 shows that there are bounded linear operators

𝐵0, . . . , 𝐵𝑛1 , 𝐵0, . . . , 𝐵𝑛2 , 𝐶0, . . . , 𝐶𝑛1−1, 𝐶0, . . . , 𝐶𝑛2−1
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such that (𝑆1(𝑡))𝑡∈(−𝜏,𝜏), resp., (𝑆2(𝑡))𝑡∈(−𝜏,𝜏) is a
[︀
𝐵0, . . . , 𝐵𝑛1 , 𝐶0, . . . , 𝐶𝑛1−1

]︀
-

group, resp.,
[︀
𝐵0, . . . , 𝐵𝑛2 , 𝐶0, . . . , 𝐶𝑛2−1

]︀
-group with a subgenerator 𝐴. With-

out loss of generality, we may assume 𝑛1 = 𝑛2. Further on, the proof of Theo-
rem 4.2 implies that

(︀
𝑑𝑛1

𝑑𝑡𝑛1 𝑆𝑖(𝑡)𝑅(𝜆 : 𝐴)𝑛1−1)︀
𝑡∈[0,𝜏), 𝑖 = 1, 2 are local 𝑅(𝜆 : 𝐴)𝑛1−1-

semigroups generated by 𝐴. Hence, there exist 𝑥0, . . . , 𝑥𝑛1−1 ∈ 𝐸 which satisfies
𝑆1(𝑡)𝑅(𝜆 : 𝐴)𝑛1−1𝑥 − 𝑆2(𝑡)𝑅(𝜆 : 𝐴)𝑛1−1𝑥 =

∑︀𝑛1−1
𝑖=0 𝑡𝑖𝑥𝑖, 𝑡 ∈ [0, 𝜏). An immediate

consequence is:
𝑅(𝜆 : 𝐴)𝑛1−1𝐺1(𝜙)𝑥−𝑅(𝜆 : 𝐴)𝑛1−1𝐺2(𝜙)𝑥

= 𝐺1(𝜙)𝑅(𝜆 : 𝐴)𝑛1−1𝑥−𝐺2(𝜙)𝑅(𝜆 : 𝐴)𝑛1−1𝑥

= (−1)𝑛1

∞∫︁
−∞

𝜙(𝑛1)(𝑡)
𝑛1−1∑︁
𝑖=0

𝑡𝑖𝑥𝑖 𝑑𝑡 = 0,

which clearly implies 𝐺1(𝜙)𝑥 = 𝐺2(𝜙)𝑥. �

Remark 4.1. (i) Suppose 𝐴 generates a (DG) 𝐺 and 𝜌(𝐴) ̸= ∅. Then there
exist 𝑎 > 0 and 𝑏 > 0 such that 𝐸(𝑎, 𝑏) ⊆ 𝜌(±𝐴) and that the next representation
formula holds for 𝐺:

𝐺(𝜙)𝑥 = 1
2𝜋𝑖

∫︁
Γ

∞∫︁
−∞

𝜙(𝑡)[𝑒𝜆𝑡𝑅(𝜆 : 𝐴)𝑥+ 𝑒−𝜆𝑡𝑅(𝜆 : −𝐴)𝑥]𝑑𝑡𝑑𝜆,

𝑥 ∈ 𝐸, 𝜙 ∈ 𝒟, where we assume that the curve Γ = 𝜕𝐸(𝑎, 𝑏) is oriented upwards.
(ii) Suppose 𝐺 ∈ 𝒟′(𝐿(𝐸)) is regular, 𝐴 is a closed linear operator so that (1.2)

holds and there are no non-trivial solutions of the abstract Cauchy problem:

(𝐴𝐶𝑃1) :

⎧⎨⎩ 𝑢 ∈ 𝐶
(︀
R : [𝐷(𝐴)]

)︀
∩ 𝐶1(R : 𝐸),

𝑢′(𝑡) = 𝐴𝑢(𝑡), 𝑡 ∈ R,
𝑢(0) = 𝑥,

when 𝑥 = 0 (cf. Theorem 4.1). Then 𝐺(𝜙*𝜓)𝑥 = 𝐺(𝜙)𝐺(𝜓)𝑥, 𝑥 ∈ ℛ(𝐺), 𝜙,𝜓 ∈ 𝒟.
To show this, let us point out that 𝐺(𝜙 * 𝜓)𝑥 =

∫︀∞
−∞
∫︀∞
−∞ 𝜙(𝑡)𝜓(𝑠)𝑢(𝑡+ 𝑠;𝑥) 𝑑𝑠 𝑑𝑡

and 𝐺(𝜓)𝐺(𝜙)𝑥=
∫︀∞
−∞ 𝜙(𝑡)𝐺(𝜓)𝑢(𝑡;𝑥) 𝑑𝑡, 𝑥 ∈ ℛ(𝐺), 𝜙,𝜓 ∈ 𝒟. Since 𝐺(·) ∈ 𝐿(𝐸),

the consideration is over if we prove that 𝐺(𝜓)𝑢(𝑡;𝑥) =
∫︀∞
−∞ 𝜓(𝑠)𝑢(𝑡 + 𝑠;𝑥) 𝑑𝑠,

𝜓 ∈ 𝒟, 𝑥 ∈ ℛ(𝐺), 𝑡 ∈ R. Put, for fixed 𝜓 ∈ 𝒟 and 𝑥 ∈ ℛ(𝐺), 𝑓(𝑡) := 𝐺(𝜓)𝑢(𝑡;𝑥)−∫︀∞
−∞ 𝜓(𝑠)𝑢(𝑡+ 𝑠;𝑥) 𝑑𝑠, 𝑡 ∈ R. Then

𝐴

𝑡∫︁
0

𝑓(𝑠) 𝑑𝑠 = 𝐺(𝜓)[𝑢(𝑡;𝑥)− 𝑥]−
∞∫︁
−∞

𝜓(𝑠)𝐴
𝑡+𝑠∫︁
𝑠

𝑢(𝑟;𝑥) 𝑑𝑟 𝑑𝑠

= 𝐺(𝜓)[𝑢(𝑡;𝑥)− 𝑥]−
∞∫︁
−∞

𝜓(𝑠)[𝑢(𝑡+ 𝑠;𝑥)− 𝑢(𝑠;𝑥)] 𝑑𝑠 = 𝑓(𝑡), 𝑡 ∈ R.

So, the function 𝑢(𝑡) =
∫︀ 𝑡

0 𝑓(𝑠)𝑑𝑠, 𝑡 ∈ R solves (𝐴𝐶𝑃1) and 𝑢(0) = 0. This proves
𝑓 ≡ 0.
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(iii) Suppose 𝐺 ∈ 𝒟′(𝐿(𝐸)) is regular, (1.2) holds for 𝐴 and 𝐺, 𝜏 ∈ (0,∞)
and 𝜌(𝐴) ̸= ∅. Set 𝐺1 := 𝐺|ℛ(𝐺). Then 𝐺1 is a dense (DG) in ℛ(𝐺) generated
by 𝐴1. To this end, we employ the same terminology as in the proof of Theorem
4.1(b5); without loss of generality, we can assume that 0 ∈ 𝜌(𝐴) so that 𝐴𝜆 = 𝐴,
𝑢𝜆 = 𝑢 and 𝐺𝜆 = 𝐺. Suppose (𝜌𝑛) is a regularizing sequence. Choose an arbitrary
𝜏 ∈ (0,∞) and notice that

𝐶2𝐺(𝜙 * 𝜓)𝑥 = 𝐶𝐺(𝜙 * 𝜓)𝐶𝑥 = 𝐶

∞∫︁
−∞

(𝜙 * 𝜓)(𝑡)𝑢(𝑡;𝐶𝑥) 𝑑𝑡

= 𝐶

∞∫︁
−∞

(𝜙 * 𝜓)(𝑡)𝑇 (𝑡)𝑥 𝑑𝑡 = 𝐶

∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑡)𝜓(𝑠)𝑇 (𝑡+ 𝑠)𝑥 𝑑𝑠 𝑑𝑡

=
∞∫︁
−∞

∞∫︁
−∞

𝜙(𝑡)𝜓(𝑠)𝑇 (𝑡)𝑇 (𝑠)𝑥 𝑑𝑠 𝑑𝑡 = 𝐺(𝜙)𝐶𝐺(𝜓)𝐶𝑥 = 𝐶2𝐺(𝜙)𝐺(𝜓)𝑥,

for every 𝑥 ∈ ℛ(𝐺) and 𝜙,𝜓 ∈ 𝒟[0,𝜏) with supp𝜙+ supp𝜓 ⊆ [0, 𝜏). The injective-
ness of 𝐶 combining with the argumentation used in the proof of Theorem 4.1(b1)
enables one to deduce that 𝐺(𝜙 *𝜓)𝑥 = 𝐺(𝜙)𝐺(𝜓)𝑥, 𝜙,𝜓 ∈ 𝒟, 𝑥 ∈ ℛ(𝐺) and that
𝐺1 ∈ 𝒟′(𝐿(ℛ(𝐺))) satisfies (𝐷𝐺)1. The assumption 𝐺1(𝜙)𝑥 = 0, 𝜙 ∈ 𝒟 implies
𝐺1(𝜙)𝐶𝑥 =

∫︀∞
−∞ 𝜙(𝑡)𝑢(𝑡;𝐶𝑥) 𝑑𝑡 =

∫︀∞
−∞ 𝜙(𝑡)𝑇 (𝑡)𝑥 𝑑𝑡 = 0, for every 𝜙 ∈ 𝒟[0,𝜏) and

𝐶𝑥 = 𝑇 (0)𝑥 = lim𝑛→∞𝐺1(𝜌𝑛)𝐶𝑥 = 0. So, 𝑥 = 0 and 𝐺1 is a (DG) in ℛ(𝐺). It
can be easily seen that 𝐺1 is generated by 𝐴1.

(iv) Suppose 𝐺 and 𝐴 are as in (ii) and let 𝜆 ∈ 𝜌(𝐴). Then the [𝐵0, . . . , 𝐵𝑛0 ,
𝐶0, . . . , 𝐶𝑛0−1]-group (𝑆(𝑡))𝑡∈(−𝜏,𝜏), constructed in Theorem 4.1(a), satisfies (4.1),
(4.2) as well as 𝑌𝑛0𝑥 = −𝑥, 𝑥 ∈ ℛ(𝐺). Namely, (ii) shows that 𝐺1 = 𝐺|ℛ(𝐺) is a
(DG) in ℛ(𝐺) generated by 𝐴1. The proof of Theorem 4.1(b5) implies that 𝐴1 gen-
erates a local 𝑛0-times integrated group (𝑆𝑛0(𝑡))𝑡∈(−𝜏,𝜏) in 𝐿(ℛ(𝐺)) and it is not dif-
ficult to show that𝐺1(𝜙)𝑥 = (−1)𝑛0

∫︀∞
0 𝜙(𝑛0)(𝑡)𝑆𝑛0(𝑡)𝑥 𝑑𝑡+

∫︀ 0
−∞ 𝜙(𝑛0)(𝑡)𝑆𝑛0(𝑡)𝑥 𝑑𝑡,

𝜙 ∈ 𝒟(−𝜏,𝜏), 𝑥 ∈ ℛ(𝐺). Hence,
∫︀∞

0 𝜙(𝑛0)(𝑡)𝑆𝑛0(𝑡)𝑥 𝑑𝑡 =
∫︀∞

0 𝜙(𝑛0)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡,
𝜙 ∈ 𝒟[0,𝜏), 𝑥 ∈ ℛ(𝐺) and an application of [17, Theorem 8.1.1] gives the exis-
tence of operators 𝐷𝑖 ∈ 𝐿(ℛ(𝐺), 𝐸), 𝑖 = 0, . . . , 𝑛0− 1 satisfying 𝑆(𝑡)𝑥 = 𝑆𝑛0(𝑡)𝑥+∑︀𝑛0−1
𝑖=0 𝑡𝑖𝐷𝑖𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺). Since 𝐴

∫︀ 𝑡
0 𝑆(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥 +

∑︀𝑛0
𝑖=0 𝑡

𝑖𝐵𝑖𝑥,
𝑡 ∈ [0, 𝜏), 𝑥 ∈ 𝐸 one obtains

𝐴

𝑛0−1∑︁
𝑖=0

𝑡𝑖+1

𝑖+ 1𝐷𝑖𝑥 =
𝑛0−1∑︁
𝑖=0

𝑡𝑖(𝐷𝑖𝑥+𝐵𝑖𝑥) + 𝑡𝑛0𝐵𝑛0𝑥+ 𝑡𝑛0

𝑛0!𝑥, 𝑡 ∈ [0, 𝜏), 𝑥 ∈ ℛ(𝐺).

This implies ℛ(𝐺) ⊆ 𝐷(𝑌𝑛0), 𝐷𝑖𝑥 = (−1)
𝑖! 𝑌𝑖𝑥, 𝑖 = 1, . . . , 𝑛0 − 1, (4.1), (4.2) and

𝑌𝑛0𝑥 = −𝑥, 𝑥 ∈ ℛ(𝐺).
(iv) Suppose 𝐺 is a (DG) and 𝜙 ∈ 𝒟. Then 𝐺(𝜙) = 𝐺(𝜙+)+𝐺(𝜙−) if and only

if {𝐺(𝜙+), 𝐺(𝜙−)} ⊆ 𝐿(𝐸) if and only if 𝐺(𝜙+) ∈ 𝐿(𝐸). Namely, the assumption
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𝐺(𝜙) = 𝐺(𝜙+) +𝐺(𝜙−) immediately implies 𝐷(𝐺(𝜙+)) = 𝐷(𝐺(𝜙−)) = 𝐸 and the
Closed Graph Theorem gives 𝐺(𝜙+) ∈ 𝐿(𝐸) and 𝐺(𝜙−) ∈ 𝐿(𝐸). Clearly, {𝐺(𝜙+),
𝐺(𝜙−)} ⊆ 𝐿(𝐸) implies𝐺(𝜙+) ∈ 𝐿(𝐸). Suppose now𝐺(𝜙+) ∈ 𝐿(𝐸). We will show
that 𝐺(𝜙−) ∈ 𝐿(𝐸) and that 𝐺(𝜙−) = 𝐺(𝜙)−𝐺(𝜙+). Fix an 𝑥 ∈ 𝐸 and notice that
𝐺(𝜙 * 𝜓)𝑥 = 𝐺(𝜓)𝐺(𝜙)𝑥, 𝜓 ∈ 𝒟 implies 𝐺(𝜙+ * 𝜓)𝑥+𝐺(𝜙− * 𝜓)𝑥 = 𝐺(𝜓)𝐺(𝜙)𝑥,
𝜓 ∈ 𝒟. Since 𝑥 ∈ 𝐷(𝐺(𝜙+)), we obtain 𝐺(𝜙− *𝜓)𝑥 = 𝐺(𝜓)[𝐺(𝜙)𝑥−𝐺(𝜙+)𝑥]. So,
𝑥 ∈ 𝐷(𝐺(𝜙−)) and 𝐺(𝜙−)𝑥 = 𝐺(𝜙)𝑥−𝐺(𝜙+)𝑥.

Proposition 4.2. Suppose 𝐺 is a (DG) and 𝐺(𝜙+) ∈ 𝐿(𝐸), 𝜙 ∈ 𝒟. Put
𝐺+(𝜙) := 𝐺(𝜙+) and 𝐺−(𝜙) := 𝐺((𝜙)−), 𝜙 ∈ 𝒟. Then ±𝐴 are generators of
distribution semigroups 𝐺±.

Proof. Owing to the previous remark, we have 𝐺±(𝜙) ∈ 𝐿(𝐸), 𝜙 ∈ 𝒟 and
𝐺(𝜙) = 𝐺+(𝜙) + 𝐺−(𝜙), 𝜙 ∈ 𝒟. Evidently, supp𝐺+ ∪ supp𝐺− ⊆ [0,∞), 𝐺± ∈
𝒟′0(𝐿(𝐸)) and Theorem 4.2(vii) implies

⋂︀
𝜙∈𝒟0

𝑁(𝐺±(𝜙)) = {0}. Since (𝜙*0𝜓)+ =
𝜙+ * 𝜓+, 𝜙,𝜓 ∈ 𝒟, Proposition 2.2 yields that 𝐺+ is a pre-(DSG). Analogously,
𝐺− is a pre-(DSG) and one obtains that 𝐺+, resp., 𝐺− is a (DSG). Designate by
𝐴+, resp., 𝐴−, the generator of 𝐺+, resp., 𝐺−. Then it is straightforward to verify
that 𝐴± are extensions of ±𝐴. The proof is completed if one shows:

𝐴+ ⊆ 𝐴 and 𝐴− ⊆ −𝐴.

We will first prove that 𝐴+ = −𝐴−. To see this, suppose 𝑥 ∈ 𝐸 and 𝜙, 𝜓 ∈ 𝒟.
Then one obtains: 𝐺(𝜙+ * 𝜓)𝑥 = 𝐺(𝜓)𝐺(𝜙+)𝑥, 𝐺+(𝜙+ * 𝜓)𝑥+𝐺−

(︀
(𝜙+ * 𝜓)̌

)︀
𝑥 =

(𝐺+(𝜓) +𝐺−(𝜓))𝐺+(𝜙)𝑥 and:

(4.26) 𝐺+(𝜙+ * 𝜓)𝑥+𝐺−
(︀
(𝜙+ * 𝜓)̌

)︀
𝑥 = 𝐺+(𝜙 *0 𝜓)𝑥+𝐺−(𝜓)𝐺+(𝜙)𝑥.

Further, notice that (𝜓 *𝜙+−𝜙 *𝜓−−𝜙 *0 𝜓)(𝑡) = 0, 𝑡 > 0. The last equality and
(4.26) give 𝐺+(𝜓 * 𝜙+)𝑥 = 𝐺+(𝜙 * 𝜓−)𝑥+𝐺+(𝜙 *0 𝜓)𝑥 and:

(4.27) 𝐺+(𝜙 * (𝜓)−)𝑥+𝐺−
(︀(︀
𝜙+ * 𝜓

)︀ )︀
𝑥 = 𝐺−(𝜓)𝐺+(𝜙)𝑥.

Suppose now (𝑥, 𝑦) ∈ 𝐷(𝐴+), 𝑎 > 0, 𝜓 ∈ 𝒟(𝑎,∞) and (𝜌𝑛) is a regularizing sequence
satisfying supp 𝜌𝑛 ⊆ [0, 1

𝑛 ], 𝑛 ∈ N. Since 𝐺+(−𝜙′)𝑥 = 𝐺+(𝜙)𝑦, 𝜙 ∈ 𝒟0, (4.27)
enables one to establish the following equalities:

(4.28) 𝐺+(𝜌𝑛 * (𝜓)−)𝑦 +𝐺−
(︀(︀
𝜌𝑛 * 𝜓

)︀ )︀
𝑦 = 𝐺−(𝜓)𝐺+(𝜌𝑛)𝑦

= 𝐺−(𝜓)𝐺+(−𝜌′𝑛)𝑥 = 𝐺+(−𝜌′𝑛 * (𝜓)−)𝑥+𝐺−
(︀(︀
− 𝜌′𝑛 * 𝜓

)︀ )︀
𝑥.

Clearly, supp(𝜌𝑛 * (𝜓)−) ∪ supp(−𝜌′𝑛 * (𝜓)−) ⊆ [0, 1
𝑛 ] + (−∞,−𝑎) ⊆ (−∞, 0],

𝑛 > 1
𝑎 and an application of (4.28) gives:

(4.29) 𝐺−
(︀(︀
𝜌𝑛 * 𝜓

)︀ )︀
𝑦 = 𝐺−

(︀(︀
− 𝜌𝑛 * (𝜓)′

)︀ )︀
𝑥.

Letting 𝑛→∞ in (4.29), one concludes that 𝐺−(𝜓)𝑦 = −𝐺−
(︀(︀

(𝜓)
′)︀ )︀

𝑥 = 𝐺−(𝜓′)𝑥
and, as a matter of routine, one can see that the previous equalities remain true for
every 𝜓 ∈ 𝒟0. In conclusion, one gets (𝑥,−𝑦) ∈ 𝐴− and 𝐴+ ⊆ −𝐴−; analogously,
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𝐴+ ⊃ −𝐴− and this finally gives 𝐴+ = −𝐴−. Taking into account [28, Lemma 3.6],
one can deduce the following:

𝐺(𝜙)𝐴+𝑥 = 𝐺+(𝜙)𝐴+𝑥+𝐺−(𝜙)𝐴+𝑥 = 𝐺+(−𝜙′)𝑥− 𝜙(0)𝑥−𝐴−𝐺−(𝜙)𝑥
= 𝐺+(−𝜙′)𝑥− 𝜙(0)𝑥− (𝐺−(−𝜙′)𝑥− 𝜙(0)𝑥)

= 𝐺+(−𝜙′)𝑥+𝐺−(−̌𝜙′)𝑥 = 𝐺(−𝜙′)𝑥, 𝜙 ∈ 𝒟.

Hence, (𝑥,𝐴+𝑥) ∈ 𝐴, 𝐴+ ⊆ 𝐴 and 𝐴+ = 𝐴. �

Remark 4.2. Suppose 𝐺 is a (DG) generated by 𝐴 and 𝜌(𝐴) ̸= ∅. Due to
Lemma 2.2 and Theorem 4.2, we have that 𝐴, resp., −𝐴, is the generator of a
(DSG) 𝐺1, resp., 𝐺2. Obviously, 𝐺(𝜙) = 𝐺1(𝜙)+𝐺2(𝜙), 𝜙 ∈ 𝒟 and 𝐺1(𝜙)𝐺2(𝜓) =
𝐺2(𝜓)𝐺1(𝜙), 𝜙,𝜓 ∈ 𝒟. Let 𝑥 ∈ 𝐸 and 𝜙 ∈ 𝒟 be fixed. We will prove that 𝐺+(𝜙) =
𝐺(𝜙+) = 𝐺1(𝜙). To this end, it is enough to show 𝐺(𝜓 * 𝜙+)𝑥 = 𝐺(𝜓)𝐺1(𝜙)𝑥,
𝜓 ∈ 𝒟, i.e.,

(4.30) 𝐺1(𝜓 * 𝜙+)𝑥+𝐺2
(︀
(𝜓 * 𝜙+)̌

)︀
𝑥 = 𝐺1(𝜙)𝐺2(𝜓)𝑥+𝐺1(𝜙)𝐺1(𝜓), 𝜓 ∈ 𝒟.

Notice that the proof of [33, Theorem 6] (see [33, (9), p. 61]) enables one to see
that 𝐺1(𝜙 * 𝜓−)𝑥 + 𝐺2

(︀
(𝜙+ * 𝜓)̌

)︀
𝑥 = 𝐺1(𝜙)𝐺2(𝜓)𝑥, 𝜓 ∈ 𝒟. As in the proof of

Proposition 4.2, one has (𝜓 * 𝜙+ − 𝜙 * 𝜓− − 𝜙 *0 𝜓)(𝑡) = 0, 𝑡 > 0, 𝜓 ∈ 𝒟, which
gives 𝐺1(𝜓 * 𝜙+)𝑥 = 𝐺1(𝜙 * 𝜓−)𝑥+𝐺1(𝜙 *0 𝜓)𝑥 = 𝐺1(𝜙 * 𝜓−)𝑥+𝐺1(𝜙)𝐺1(𝜓)𝑥,
𝜓 ∈ 𝒟. Hence,

𝐺1(𝜓 * 𝜙+)𝑥+𝐺2
(︀
(𝜓 * 𝜙+)̌

)︀
𝑥 = 𝐺1(𝜙 * 𝜓−)𝑥+𝐺1(𝜙)𝐺1(𝜓)𝑥+𝐺2

(︀
(𝜓 * 𝜙+)̌

)︀
𝑥

= 𝐺1(𝜙 * 𝜓−)𝑥+𝐺1(𝜙)𝐺1(𝜓)𝑥+𝐺1(𝜙)𝐺2(𝜓)𝑥−𝐺1(𝜙 * 𝜓−)𝑥

= 𝐺1(𝜙)𝐺2(𝜓)𝑥+𝐺1(𝜙)𝐺1(𝜓)𝑥, 𝜓 ∈ 𝒟

and this proves (4.30). Accordingly, 𝐴 is the generator of 𝐺+ = 𝐺1 and the previous
remark implies that 𝐺(𝜙−) = 𝐺2(𝜙) ∈ 𝐿(𝐸), 𝜙 ∈ 𝒟 and that 𝐺((̌·)−) is a (DSG)
generated by −𝐴.

Theorem 4.3. Suppose 𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1 ∈ 𝐿(𝐸) and 𝐴 is a subgen-
erator of a [𝐵0, . . . , 𝐵𝑛, 𝐶0, . . . , 𝐶𝑛−1]-group (𝑆(𝑡))𝑡∈R. Set

𝐺(𝜙)𝑥 := (−1)𝑛
∞∫︁
−∞

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸.

Then:
(a) (1.2) holds and (4.12) holds for every 𝜙 ∈ 𝒟 and 𝜓 ∈ 𝒟.
(b) 𝒩 (𝐺) ⊆ 𝑁(𝑌𝑛) and, in particular, the injectiveness of 𝑌𝑛 implies (𝐷𝐺)2

for 𝐺.
(c) For every 𝜙 ∈ 𝒟 and 𝜓 ∈ 𝒟, 𝑁(𝑌𝑛) ⊆ 𝑁(𝐺(𝜙)𝐺(𝜓)); especially, if 𝐺 is

regular, then 𝑁(𝑌𝑛) = 𝒩 (𝐺).
(d) Assume 𝐵0 = · · · = 𝐵𝑛−1 = 0 and 𝐵𝑛 = − 1

𝑛!𝐼. Then 𝐺 is a (DG)
generated by 𝐴.
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Proof. To prove (a), notice that 𝐺 ∈ 𝒟′(𝐿(𝐸)). Suppose 𝑥 ∈ 𝐸 and 𝜙 ∈ 𝒟.
Then 𝐴𝐺(𝜙)𝑥 = 𝐺(−𝜙′)𝑥; indeed,

𝐺(𝜙)𝑥 = (−1)𝑛
∞∫︁
−∞

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡 = (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)
𝑡∫︁

0

𝑆(𝑠)𝑥 𝑑𝑠 𝑑𝑡 ∈ 𝐷(𝐴)

and

𝐴𝐺(𝜙)𝑥 = (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)
[︂
𝑆(𝑡)𝑥+

𝑛∑︁
𝑗=0

𝑡𝑗𝐵𝑗𝑥

]︂
𝑑𝑡

= (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡 = 𝐺(−𝜙′)𝑥.

Further,

𝐺(𝜙)𝐴𝑥 = (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)
𝑡∫︁

0

𝑆(𝑠)𝐴𝑥𝑑𝑠 𝑑𝑡

= (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)
𝑡∫︁

0

[︂
𝐴𝑆(𝑠)𝑥−

𝑛−1∑︁
𝑗=0

𝑠𝑗𝐶𝑗𝑥

]︂
𝑑𝑠 𝑑𝑡

= (−1)𝑛+1
∞∫︁
−∞

𝜙(𝑛+1)(𝑡)𝐴
𝑡∫︁

0

𝑆(𝑠)𝑥 𝑑𝑠 𝑑𝑡 = 𝐴𝐺(𝜙)𝑥, 𝑥 ∈ 𝐷(𝐴).

Hence, 𝐺(𝜙)𝐴 ⊆ 𝐴𝐺(𝜙) and (1.2) holds. The proofs of (4.12) and (b) are contained
in those of Theorem 4.2. Let 𝜙 ∈ 𝒟, 𝜓 ∈ 𝒟 and let 𝑥 ∈ 𝑁(𝑌𝑛) be fixed. Arguing
as in the proof of Theorem 4.2, one gets the validity of (4.24). Hence,

0 =
𝑛∑︁
𝑖=0

(−1)𝑖+1𝑖!𝐺
(︀
(𝜙(𝑛) * 𝜓)(𝑛−𝑖))︀𝐵𝑖𝑥 =

𝑛∑︁
𝑖=0

(−1)𝑖+1𝑖!𝐺
(︀
𝜙(𝑛) * 𝜓(𝑛−𝑖))︀𝐵𝑖𝑥

=
𝑛∑︁
𝑖=0

(−1)𝑖+1𝑖!(−1)𝑛
∞∫︁
−∞

𝜙(𝑛)(𝑡)
∞∫︁
−∞

𝜓(𝑛−𝑖)(𝑠)𝑆(𝑡+ 𝑠)𝐵𝑖𝑥 𝑑𝑠 𝑑𝑡.

Owing to (4.12), 𝐺(𝜙)𝐺(𝜓)𝑥 = 0 and 𝑁(𝑌𝑛) ⊆ 𝑁(𝐺(𝜙)𝐺(𝜓)). Let (𝜌𝑘) be a
regularizing sequence and 𝐺 be regular. Then 𝐺(𝜓)𝑥 = lim𝑘→∞𝐺(𝜌𝑘)𝐺(𝜓)𝑥 = 0
and 𝑥 ∈ 𝒩 (𝐺). This proves 𝑁(𝑌𝑛) ⊆ 𝒩 (𝐺), and due to (b), we have 𝒩 (𝐺) ⊆
𝑁(𝑌𝑛). The proof of (c) is completed.

To prove (d), notice that the proof of Theorem 4.2 implies (4.21) for 𝐺. Since
𝐵0 = · · · = 𝐵𝑛−1 = 0 and 𝐵𝑛 = − 1

𝑛!𝐼, we immediately obtain (𝐷𝐺)1 from (4.12).
Clearly, 𝑌𝑛 = 𝑛!𝐵𝑛 = −𝐼 and (𝐷𝐺)2 follows from an application of (b). Hence,
𝐺 is a (DG). Put now 𝑆(𝑡) := 𝑆(𝑡), 𝑡 > 0 and 𝑆(𝑡) := (−1)𝑛𝑆(𝑡), 𝑡 < 0. It is
straightforward to verify that (𝑆(𝑡))𝑡∈R is an 𝑛-times integrated group generated
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by 𝐴. Furthermore, it is evident that

𝐺(𝜙)𝑥 = (−1)𝑛
∞∫︁

0

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡+
0∫︁

−∞

𝜙(𝑛)(𝑡)𝑆(𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒟, 𝑥 ∈ 𝐸.

By the proof of Theorem 2.1, we have that 𝐺 is generated by 𝐴. �
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