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ABSTRACT. We define normal curves in Minkowski space-time E%. In partic-
ular, we characterize the spacelike normal curves in Eil whose Frenet frame
contains only non-null vector fields, as well as the timelike normal curves in
E%, in terms of their curvature functions. Moreover, we obtain an explicit
equation of such normal curves with constant curvatures.

1. Introduction

In the Euclidean space E3, it is well known that to each unit speed curve
a: I C R — E3, whose successive derivatives o’(s), o/(s) and o”(s) are lin-
early independent vectors, one can associate the moving orthonormal Frenet frame
{T, N, B}, consisting of the tangent, the principal normal and the binormal vector
field respectively. Moreover, the planes spanned by {T, N}, {T, B} and {N, B} are
respectively known as the osculating, the rectifying and the normal plane. The
rectifying curve in E? is defined in [2] as a curve whose position vector always lies
in its rectifying plane. In analogy with the FEuclidean case, the normal curve in
Minkowski 3-space E$ is defined in [4] as a curve whose position vector always lies
in its normal plane. Some characterizations of spacelike, timelike and null normal
curves, lying fully in the Minkowski 3-space, are given in [3,4].

In this paper, we firstly define the normal space of an arbitrary curve in the
Minkowski space-time Ef, and then we define the normal curve in Ef as a curve
whose the position vector always lies in its normal space. We restrict our investiga-
tion of normal curves in Ef to timelike normal curves, as well as to spacelike normal
curves whose Frenet frame {T, N, By, By} contains only non-null vector fields. We
characterize such normal curves in terms of their curvature functions and find the
necessary and the sufficient conditions for such curves to be the normal curves. Fur-
thermore, we prove that every timelike W-curve or spacelike W-curve with non-null
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vector fields IV, By and Bs, is a normal curve and obtain the explicit equation of
such normal curves in Ef.

2. Preliminaries

The Minkowski space-time Ef is the Euclidean 4-space E* equipped with the
indefinite flat metric given by g = —da? + dx3 + d2% + dx3, where (71,22, T3, 74)
is a rectangular coordinate system of Ef. Recall that an arbitrary vector v €
E$~{0} can be spacelike, timelike or null (lightlike), if respectively holds g(v, v) >0,
g(v,v) < 0 or g(v,v) = 0. In particular, the vector v = 0 is spacelike. The norm
of a vector v is given by ||v| = /|g(v,v)|, and two vectors v and w are said
to be orthogonal, if g(v,w) = 0. An arbitrary curve a(s) in E{, can be locally
spacelike, timelike or null (lightlike), if all its velocity vectors o (s) are respectively
spacelike, timelike or null. A spacelike or timelike curve «a(s) has a unit speed,
if g(a/(s),a’(s)) = £1. Recall that the pseudosphere, the pseudohyperbolic space
and the lightcone are hyperquadrics in Ef, respectively defined by

S%(m#):{erf: g(m—m,x—m):ﬁ})
H§(m,r) :{:E€E4-g(xfmvggfm):7742}7
C3(m {xEE4:g(m—77173;_m):()}7

where 7 > 0 is the radius and m € Ef is the center (or vertex) of hyperquadric.
Let {T,N, By, Bo} be the moving Frenet frame along a unit speed non-null
curve o in Ef, consisting of the tangent, the principal normal, the first binormal
and the second binormal vector field, respectively. If « is a spacelike curve, let us
assume that its Frenet frame contains only non-null vector fields. On the other
hand, if « is a timelike curve, its Frenet frame contains only non-null vector fields.
Therefore, {T, N, B1, B} is an orthonormal frame. Accordingly, let us put

(2.1) g(T,T)=e€1, g(N,N)=ce€, ¢g(B1,B1)=¢€3, ¢(Ba, Ba)= ey,

whereby €1, €2,€3,e4 € {—1,1}. Moreover, when ¢; = —1, then ¢; = 1 for all
j#i(i,5 €{1,2,3,4}), and consequently ejeze3e4 = —1. Recall that with respect
to the orthonormal frame {T, N, By, Ba}, the vector fields 77, N’, B}, B}, have the
following decompositions [6]:

= e19( ( (T

= eag(N',T)T + eag(N', N)N + e3g(N', B1) B1 + €ag(N', B2) Ba,
B1 = e19(By, T)T + e29(By, N)N + e39(By, B1)B1 + €49(By, B2) Bo,
By = €19(B5, T)T + e2g9(Bs, N)N + e39(B3, B1)B1 + 649(32a 2) B2

T/7T)T +€29 TI, )N + €39 7Bl>Bl + 64g(T ,BQ)BQ,
(

Since the curvature functions x1(s), k2(s) and k3(s) of a can be defined by

/11(8) :g(T/(S)7N(S))a ’%2(8) :g(N/(S)aBl<s))7 HS(S) 29(31(8)732(8))7
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the Frenet equations read (see [5])

T’ 0 K1€2 0 0 T

(2 2) N/ _ —K1€1 0 KRo€3 0 N
’ Bi O —K9o€9 0 —HK3€1€2€3 B1 ’

Bé 0 0 —KR3€3 0 BQ

where the following conditions are satisfied
9(T',N) = g(T', B1) = g(T, B2) = g(N, B1) = g(N, Bz) = g(B1, B2) = 0.

The curve « lies fully in Ef, if x3(s) # 0 for each s.

Let a be an arbitrary (non-null or null) curve in Ef. We define the normal
space of « as the orthogonal complement T of its tangent vector field 7. Hence
the normal space is given by 7+ = {w € E{ | g(w,T) = 0}. Next, we define
a normal curve in E} as a curve whose position vector always lies in its normal
space. In particular, if « is a spacelike curve with Frenet frame containing non-null
vector fields, the normal space T of « is the timelike hyperplane of Ef, spanned
by {N,Bi,Bz}. On the other hand, if « is a timelike curve, the normal space
T+ is the spacelike hyperplane of Ef, spanned by {N, By, Bo}. Consequently, the
position vector of timelike normal curve or spacelike normal curve with non-null
vector fields N, By, and Bsy, satisfies the equation

(2.3) a(s) = A(s)N(s) + p(s)Bi(s) + v(s)Ba(s),

for some differentiable functions A(s), u(s) and v(s) in arclength function s.

3. Some characterizations of non-null normal curves in E}

Timelike normal curves as well as spacelike normal curves (with non-null vector
fields N, By, B2) in E{, with the third curvature r3(s) = 0, lie fully in the Minkowski
3-space and their characterization is given in [3,4]. It can be easily proved that
timelike and spacelike normal curves with the second curvature ka(s) = 0 (and
non-null vector fields N, By, Bs) are circles lying in a timelike or spacelike plane
of Ef.

In this section, we characterize the timelike and the spacelike normal curves
with non-null vector fields N, By, By and the third curvature k3(s) # 0 for each s.

Let a(s) be a unit speed timelike or spacelike normal curve with non-null
vector fields N, By and Bs, lying fully in E{. Then its position vector satisfies the
equation (2.3). By taking the derivative of (2.3) with respect to s and using the
Frenet equations (2.2), we obtain

T = —k161XT + (N — koeapt) N + (kaes\ + i/ — kaesv) By + (V) — k3ereaesp) Ba,
and therefore
(3.1) —rietA =1, N — kaoeopt = 0, Koez A+’ — kzesv =0, V' — kzereaezp = 0.

From the first three equations we find
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€1

€162 1y
e "= neGEe)
€1 Ka(s) Ly Ly
v(s) = ~ ka(s) Lﬂ(s) +€263((/‘€1(5)> ’i2(3)) ] .

Substituting relation (3.2) into (2.3), we get that the position vector of the
normal curve « is given by

0(s) = 15 Vo) = 225 (=) Buto)
1

K1(8) 2(s)
€ TN
”3(15) [ <(m(s ) li2(8)> ] B (s)-

Then we have the following theorem.

A(s) =
(3.2)

(3.3)

THEOREM 3.1. Let a(s) be a unit speed timelike or spacelike curve with non-
null vector fields N, By and Ba, lying fully in E}. Then « is congruent to a normal
curve if and only if

€3z /1Y 1 (& 1y 1\
(3.4 ars (LY [ ( +aa((=)2) )] .
Ko K1 K3 K1 K1 K2
PROOF. Let us first assume that « is congruent to a normal curve. Then
relations (3.1) and (3.2) imply that (3.4) holds.

Conversely, assume that relation (3.4) holds. Let us consider the vector m € Ef
given by

m(s) = a(s) + Kels N(s) + ;21(6;) </€11(8))/Bl(8)

€1 [ka(s) (( 1 )’ 1 )’}
¥ Feses((——) ——) | Bals).
o Lo oG ) | 20
Differentiating (3.5) with respect to s and by applying (2.2), we get
1y 1 1y 1\
m’:—%(—) Bg—f—el |: (’{2—}-6263(() 7) >:| BQ.
Ko \Kj K3 \ K1 K1/ K2

From relation (3.4) it follows that m is a constant vector, which means that a
is congruent to a normal curve. O

(3.5)

THEOREM 3.2. Let a(s) be a unit speed timelike or spacelike curve with non-
null vector fields N, By and Ba, lying fully in Et. If a is a normal curve, then the
following statements hold:

(i) the principal normal and the first binormal component of the position vector
a are respectively given by

€169 €1€2€3 ( 1/
glon N) = =2, gla, By) = 22 (=)
K1 K2 K1
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(ii) the first binormal and the second binormal component of the position vector
« are respectively given by

g(a, By) = flﬂ(i)’, oo, Ba) = {W+ ((1)1)] .

K2 K1 k3 K1 K17 K2

Conversely, if a(s) is a unit speed timelike or spacelike curve with non-null
vector fields N, By, Bao, lying fully in E{, and one of statements (i) or (ii) holds,
then « is a normal curve.

PRrOOF. If a(s) is a normal curve, it is easy to check that relation (3.3) implies
statements (i) and (ii).

Conversely, if statement (i) holds, differentiating equation g(a, N) = —ej€e2/k
with respect to s and by applying (2.2), we find g(«,T) = 0 which means that «
is a normal curve. If statement (ii) holds, in a similar way we conclude that « is a
normal curve. ]

In the next theorem, we obtain interesting geometric characterization of non-
null normal curves.

THEOREM 3.3. Let a(s) be a unit speed timelike or spacelike curve, lying fully
in B, with non-null vector fields N, By, and By. Then « is congruent to a normal
curve if and only if o lies in some hyperquadric in Ef.

PROOF. First assume that « is congruent to a normal curve. It follows, by
straightforward calculations using Theorem 3.1, that

2¢2 (i) 4 268 (L)((i)i)
K1 \R1 R2 \K1 K1/ R2
2 K ININT[ L [k 1y 1\
Srealfoa((2) ) |5 (2+aa((2)2))] -0
K3 K1 K1 K9 K3 K1 K1 Ko

On the other hand, the previous equation is differential of the equation

142 1yv17° 1\2 [k 1v/ 1117
(%)a()+qﬁ)]_qmﬁ)[2+ggq))]:n
K1 K1/ K2 K3 K1 K1/ K2

r € R.
By using (2.1) and (3.5), it is easy to check that

12 1y 172 1\2[ ko 1y 1417
gla—m,a—m) = 62(*) +e€3 (*) - —616263(*) —+ 6263((*) *) )
K1 K1/ Ko K3 K1 K1/ K2
which together with (3.6) gives g(a — m,a — m) = r. Consequently, « lies in some
hyperquadric in Ef.
Conversely, if « lies in some hyperquadric in Ef, then g(a — m,a — m) = r,
r € R, where m € E} is a constant vector. By taking the derivative of the previous

equation with respect to s, we easily obtain g(a — m,T) = 0 which proves the
theorem. (]
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Recall that arbitrary curve a in E{ is called a W-curve (or a helix), if it has
constant curvature functions (see [7]). The following theorem gives the characteri-
zation of non-null W-curves in E{, in terms of normal curves.

THEOREM 3.4. Every unit speed timelike or spacelike W -curve, with non-null
vector fields N, By, B, lying fully in E}, is congruent to a normal curve.

PROOF. By assumption we have k1(s) = c1, k2(8) = ca, k3(s) = c3, where
¢1,¢2,¢3 € Rp. Since the curvature functions obviously satisfy relation (3.4), ac-
cording to Theorem 3.1, « is congruent to a normal curve. O

Note that Theorem 3.4 allows us to find the explicit parametric equation of non-
null normal curve with constant curvature functions. Let «(s) be a unit speed curve
in B} with Frenet equations (2.2) and curvature functions x1(s) = ¢1, K2(s) = ca,
k3(s) = cs, whereby c1,ca,c3 € Ro. By using (2.2), we easily obtain differential
equation with constant coefficients

T//// —+ (61626% —+ 626363 - ElﬁQC%)T” - C%C%T =0.
The solution of the previous equation is given by
(3.7) T(s) = cosh(A1s)V] + sinh(A18)Va + cos(Aas) Vs + sin(Aes)Vy,

where Vi, V5, V3,V € Ei‘ are constant vectors and
1 1
M\ = 5(7K+ \/K2+4C%C§), A= §<K+\/K2+4C%c§),
K= 6162(0? — Cg) + 62636%.

Integrating (3.7), we get that the normal curve « has the parametric equation of
the form

1 1
a(s) = A—l(sinh()\ls)Vl + cosh(A\1s)Va) + )\—Q(Sin()\gs)vg — cos(A25)Vy).

Moreover, by using equations g(7,T) = ¢; and g(T’,T") = esc?, we may chose
constant vectors V1,V5,V3 and V} in the following way

Vi = (\/\61/\5 —e2cf| /(A + A%),O,o,o), Vo = (0, \/|el>\§ — exc|/ (N2 + Ag),o,o),

Vs = (07 0, \/(61)\3 +e2cd) /(A + A3), 0)7 Vi= (0707 0, \/(61/\3 +ecd) /(A + )\3))~

The next lemma is direct consequence of Theorem 3.1.

LEMMA 3.1. A unit speed timelike or spacelike curve a(s), with non-null vector
fields N, By, Ba, lying fully in Ef, is congruent to a normal curve if and only if
there exists a differentiable function f(s) such that

(3.8) f(s)ks(s) = ng + €e2¢3 ((ml(s))@l(s)) f'(s) = W(ml(s))/'

By using the similar methods as in [1] and [8], as well as Lemma 3.1, we obtain
the following two theorems which give the necessary and the sufficient conditions
for non-null curves in E} to be the normal curves.
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THEOREM 3.5. Let a(s) be a unit speed spacelike curve in Ef, with spacelike
principal normal N. Then a is congruent to a normal curve if and only if there
exist constants ag, by € R such that

#&)(%@)' - (a0+/:ig sinh 6(s) ds) sinh 6(s)
(

- (b0+ / :i é; cosh 6(s) ds) cosh 6(s),

(3.9)

where 0(s) = [ k3(s)ds.

PRrOOF. If a(s) is congruent to a normal curve, according to Lemma 3.1 there
exists a differentiable function f(s) such that relation (3.8) holds, whereby ¢; =
ea = 1. Let us define differentiable functions 6(s), a(s) and b(s) by

006) = [ rale) ds,

(3.10) a(s) = _/126?5) (ml(s))lsmh 0(s) + f(s)coshO(s) — / ngz; sinh 6(s) ds,
€ 1\ . Ka(s)
bls) = — ?s) (m (S)) cosh 8(s) + f(s) sinh 6(s) — / (o) COShO(5) s
By using (3.8), we easily find 0'(s) = k3(s), a’(s) =0, /(s) = 0 and thus
(3.11) a(s) = ag, b(s) =by, ap,bo €R.

Multiplying the second and the third equations in (3.10), respectively with sinh 6(s)
and — cosh 0(s), adding the obtained equations and using (3.11), we conclude that
relation (3.9) holds.

Conversely, assume that there exist constants ag,by € R such that relation
(3.9) holds. By taking the derivative of (3.9) with respect to s, we find

(3.12) 28 tes (/{21(8) (/{11(3) ),>/
= k3(s) KaoJr/ZEi; sinh 0(s) ds) cosh 0(s)— <b0+/:jg; cosh 6(s) ds> sinh 0(5)] .
Let us define the differentiable function f(s) by

(3.13) 1s) = Iﬁ:gl(S) [238 + 63((/111(5)),&21(5))/] ’
Next, relations (3.12) and (3.13) imply

f(s) = (ao—|— / £2(5) oo (s) ds) coshe(s)—(bo+ / 72(5) st o(s) ds) sinh 8(s).

r1(s) k1(s)
By using this and (3.9), we obtain f'(s) = (esrs(s)/k2(s))(1/k1(s))’. Finally,
Lemma 3.1 implies that « is congruent to a normal curve. O

For timelike curves and spacelike curves with timelike principal normal we
obtain the following theorem, which can be proved in a similar way as Theorem 3.5.
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THEOREM 3.6. Let a(s) be a unit speed timelike curve or spacelike curve with
timelike principal normal N in E{. Then « is congruent to a normal curve if and
only if there exist constants ag, by € R such that

% (/ﬁll(s))/ = (ag - / ngg sin 0(s) ds) sin 0(s)

— (bo +/ :?Ez; cos 0(s) ds) cos 6(s),

where 0(s) = [ k3(s)ds.
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