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Abstract. We define normal curves in Minkowski space-time 𝐸4
1 . In partic-

ular, we characterize the spacelike normal curves in 𝐸4
1 whose Frenet frame

contains only non-null vector fields, as well as the timelike normal curves in
𝐸4

1 , in terms of their curvature functions. Moreover, we obtain an explicit
equation of such normal curves with constant curvatures.

1. Introduction

In the Euclidean space 𝐸3, it is well known that to each unit speed curve
𝛼 : 𝐼 ⊂ 𝑅 → 𝐸3, whose successive derivatives 𝛼′(𝑠), 𝛼′′(𝑠) and 𝛼′′′(𝑠) are lin-
early independent vectors, one can associate the moving orthonormal Frenet frame
{𝑇,𝑁,𝐵}, consisting of the tangent, the principal normal and the binormal vector
field respectively. Moreover, the planes spanned by {𝑇,𝑁}, {𝑇,𝐵} and {𝑁,𝐵} are
respectively known as the osculating, the rectifying and the normal plane. The
rectifying curve in 𝐸3 is defined in [2] as a curve whose position vector always lies
in its rectifying plane. In analogy with the Euclidean case, the normal curve in
Minkowski 3-space 𝐸3

1 is defined in [4] as a curve whose position vector always lies
in its normal plane. Some characterizations of spacelike, timelike and null normal
curves, lying fully in the Minkowski 3-space, are given in [3,4].

In this paper, we firstly define the normal space of an arbitrary curve in the
Minkowski space-time 𝐸4

1 , and then we define the normal curve in 𝐸4
1 as a curve

whose the position vector always lies in its normal space. We restrict our investiga-
tion of normal curves in 𝐸4

1 to timelike normal curves, as well as to spacelike normal
curves whose Frenet frame {𝑇,𝑁,𝐵1, 𝐵2} contains only non-null vector fields. We
characterize such normal curves in terms of their curvature functions and find the
necessary and the sufficient conditions for such curves to be the normal curves. Fur-
thermore, we prove that every timelike𝑊 -curve or spacelike𝑊 -curve with non-null
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vector fields 𝑁 , 𝐵1 and 𝐵2, is a normal curve and obtain the explicit equation of
such normal curves in 𝐸4

1 .

2. Preliminaries

The Minkowski space-time 𝐸4
1 is the Euclidean 4-space 𝐸4 equipped with the

indefinite flat metric given by 𝑔 = −𝑑𝑥2
1 + 𝑑𝑥2

2 + 𝑑𝑥2
3 + 𝑑𝑥2

4, where (𝑥1, 𝑥2, 𝑥3, 𝑥4)
is a rectangular coordinate system of 𝐸4

1 . Recall that an arbitrary vector 𝑣 ∈
𝐸4

1 r{0} can be spacelike, timelike or null (lightlike), if respectively holds 𝑔(𝑣, 𝑣)>0,
𝑔(𝑣, 𝑣) < 0 or 𝑔(𝑣, 𝑣) = 0. In particular, the vector 𝑣 = 0 is spacelike. The norm
of a vector 𝑣 is given by ‖𝑣‖ =

√︀
|𝑔(𝑣, 𝑣)|, and two vectors 𝑣 and 𝑤 are said

to be orthogonal, if 𝑔(𝑣, 𝑤) = 0. An arbitrary curve 𝛼(𝑠) in 𝐸4
1 , can be locally

spacelike, timelike or null (lightlike), if all its velocity vectors 𝛼′(𝑠) are respectively
spacelike, timelike or null. A spacelike or timelike curve 𝛼(𝑠) has a unit speed,
if 𝑔(𝛼′(𝑠), 𝛼′(𝑠)) = ±1. Recall that the pseudosphere, the pseudohyperbolic space
and the lightcone are hyperquadrics in 𝐸4

1 , respectively defined by

𝑆3
1(𝑚, 𝑟) =

{︀
𝑥 ∈ 𝐸4

1 : 𝑔(𝑥−𝑚,𝑥−𝑚) = 𝑟2
}︀
,

𝐻3
0 (𝑚, 𝑟) =

{︀
𝑥 ∈ 𝐸4

1 : 𝑔(𝑥−𝑚,𝑥−𝑚) = −𝑟2
}︀
,

𝐶3(𝑚) =
{︀
𝑥 ∈ 𝐸4

1 : 𝑔(𝑥−𝑚,𝑥−𝑚) = 0
}︀
,

where 𝑟 > 0 is the radius and 𝑚 ∈ 𝐸4
1 is the center (or vertex) of hyperquadric.

Let {𝑇,𝑁,𝐵1, 𝐵2} be the moving Frenet frame along a unit speed non-null
curve 𝛼 in 𝐸4

1 , consisting of the tangent, the principal normal, the first binormal
and the second binormal vector field, respectively. If 𝛼 is a spacelike curve, let us
assume that its Frenet frame contains only non-null vector fields. On the other
hand, if 𝛼 is a timelike curve, its Frenet frame contains only non-null vector fields.
Therefore, {𝑇,𝑁,𝐵1, 𝐵2} is an orthonormal frame. Accordingly, let us put

(2.1) 𝑔(𝑇, 𝑇 ) = 𝜖1, 𝑔(𝑁,𝑁) = 𝜖2, 𝑔(𝐵1, 𝐵1) = 𝜖3, 𝑔(𝐵2, 𝐵2) = 𝜖4,

whereby 𝜖1, 𝜖2, 𝜖3, 𝜖4 ∈ {−1, 1}. Moreover, when 𝜖𝑖 = −1, then 𝜖𝑗 = 1 for all
𝑗 ̸= 𝑖 (𝑖, 𝑗 ∈ {1, 2, 3, 4}), and consequently 𝜖1𝜖2𝜖3𝜖4 = −1. Recall that with respect
to the orthonormal frame {𝑇,𝑁,𝐵1, 𝐵2}, the vector fields 𝑇 ′, 𝑁 ′, 𝐵′1, 𝐵′2 have the
following decompositions [6]:

𝑇 ′ = 𝜖1𝑔(𝑇 ′, 𝑇 )𝑇 + 𝜖2𝑔(𝑇 ′, 𝑁)𝑁 + 𝜖3𝑔(𝑇 ′, 𝐵1)𝐵1 + 𝜖4𝑔(𝑇 ′, 𝐵2)𝐵2,

𝑁 ′ = 𝜖1𝑔(𝑁 ′, 𝑇 )𝑇 + 𝜖2𝑔(𝑁 ′, 𝑁)𝑁 + 𝜖3𝑔(𝑁 ′, 𝐵1)𝐵1 + 𝜖4𝑔(𝑁 ′, 𝐵2)𝐵2,

𝐵′1 = 𝜖1𝑔(𝐵′1, 𝑇 )𝑇 + 𝜖2𝑔(𝐵′1, 𝑁)𝑁 + 𝜖3𝑔(𝐵′1, 𝐵1)𝐵1 + 𝜖4𝑔(𝐵′1, 𝐵2)𝐵2,

𝐵′2 = 𝜖1𝑔(𝐵′2, 𝑇 )𝑇 + 𝜖2𝑔(𝐵′2, 𝑁)𝑁 + 𝜖3𝑔(𝐵′2, 𝐵1)𝐵1 + 𝜖4𝑔(𝐵′2, 𝐵2)𝐵2.

Since the curvature functions 𝜅1(𝑠), 𝜅2(𝑠) and 𝜅3(𝑠) of 𝛼 can be defined by

𝜅1(𝑠) = 𝑔
(︀
𝑇 ′(𝑠), 𝑁(𝑠)

)︀
, 𝜅2(𝑠) = 𝑔

(︀
𝑁 ′(𝑠), 𝐵1(𝑠)

)︀
, 𝜅3(𝑠) = 𝑔

(︀
𝐵′1(𝑠), 𝐵2(𝑠)

)︀
,
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the Frenet equations read (see [5])

(2.2)

⎡⎢⎢⎣
𝑇 ′

𝑁 ′

𝐵′1
𝐵′2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 𝜅1𝜖2 0 0
−𝜅1𝜖1 0 𝜅2𝜖3 0

0 −𝜅2𝜖2 0 −𝜅3𝜖1𝜖2𝜖3
0 0 −𝜅3𝜖3 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑇
𝑁
𝐵1
𝐵2

⎤⎥⎥⎦ ,
where the following conditions are satisfied

𝑔(𝑇,𝑁) = 𝑔(𝑇,𝐵1) = 𝑔(𝑇,𝐵2) = 𝑔(𝑁,𝐵1) = 𝑔(𝑁,𝐵2) = 𝑔(𝐵1, 𝐵2) = 0.

The curve 𝛼 lies fully in 𝐸4
1 , if 𝜅3(𝑠) ̸= 0 for each 𝑠.

Let 𝛼 be an arbitrary (non-null or null) curve in 𝐸4
1 . We define the normal

space of 𝛼 as the orthogonal complement 𝑇⊥ of its tangent vector field 𝑇 . Hence
the normal space is given by 𝑇⊥ =

{︀
𝑤 ∈ 𝐸4

1 | 𝑔(𝑤, 𝑇 ) = 0
}︀
. Next, we define

a normal curve in 𝐸4
1 as a curve whose position vector always lies in its normal

space. In particular, if 𝛼 is a spacelike curve with Frenet frame containing non-null
vector fields, the normal space 𝑇⊥ of 𝛼 is the timelike hyperplane of 𝐸4

1 , spanned
by {𝑁,𝐵1, 𝐵2}. On the other hand, if 𝛼 is a timelike curve, the normal space
𝑇⊥ is the spacelike hyperplane of 𝐸4

1 , spanned by {𝑁,𝐵1, 𝐵2}. Consequently, the
position vector of timelike normal curve or spacelike normal curve with non-null
vector fields 𝑁 , 𝐵1, and 𝐵2, satisfies the equation

(2.3) 𝛼(𝑠) = 𝜆(𝑠)𝑁(𝑠) + 𝜇(𝑠)𝐵1(𝑠) + 𝜈(𝑠)𝐵2(𝑠),

for some differentiable functions 𝜆(𝑠), 𝜇(𝑠) and 𝜈(𝑠) in arclength function 𝑠.

3. Some characterizations of non-null normal curves in E4
1

Timelike normal curves as well as spacelike normal curves (with non-null vector
fields𝑁,𝐵1, 𝐵2) in 𝐸4

1 , with the third curvature 𝜅3(𝑠) = 0, lie fully in the Minkowski
3-space and their characterization is given in [3, 4]. It can be easily proved that
timelike and spacelike normal curves with the second curvature 𝜅2(𝑠) = 0 (and
non-null vector fields 𝑁,𝐵1, 𝐵2) are circles lying in a timelike or spacelike plane
of 𝐸4

1 .
In this section, we characterize the timelike and the spacelike normal curves

with non-null vector fields 𝑁 , 𝐵1, 𝐵2 and the third curvature 𝜅3(𝑠) ̸= 0 for each 𝑠.
Let 𝛼(𝑠) be a unit speed timelike or spacelike normal curve with non-null

vector fields 𝑁 , 𝐵1 and 𝐵2, lying fully in 𝐸4
1 . Then its position vector satisfies the

equation (2.3). By taking the derivative of (2.3) with respect to 𝑠 and using the
Frenet equations (2.2), we obtain

𝑇 = −𝜅1𝜖1𝜆𝑇 + (𝜆′ − 𝜅2𝜖2𝜇)𝑁 + (𝜅2𝜖3𝜆+ 𝜇′ − 𝜅3𝜖3𝜈)𝐵1 + (𝜈′ − 𝜅3𝜖1𝜖2𝜖3𝜇)𝐵2,

and therefore

(3.1) −𝜅1𝜖1𝜆 = 1, 𝜆′ − 𝜅2𝜖2𝜇 = 0, 𝜅2𝜖3𝜆+ 𝜇′ − 𝜅3𝜖3𝜈 = 0, 𝜈′ − 𝜅3𝜖1𝜖2𝜖3𝜇 = 0.

From the first three equations we find
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(3.2)
𝜆(𝑠) = − 𝜖1

𝜅1(𝑠) , 𝜇(𝑠) = − 𝜖1𝜖2
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
,

𝜈(𝑠) = − 𝜖1
𝜅3(𝑠)

[︂
𝜅2(𝑠)
𝜅1(𝑠) + 𝜖2𝜖3

(︁(︁ 1
𝜅1(𝑠)

)︁′ 1
𝜅2(𝑠)

)︁′]︂
.

Substituting relation (3.2) into (2.3), we get that the position vector of the
normal curve 𝛼 is given by

(3.3)
𝛼(𝑠) = − 𝜖1

𝜅1(𝑠) 𝑁(𝑠)− 𝜖1𝜖2
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
𝐵1(𝑠)

− 𝜖1
𝜅3(𝑠)

[︂
𝜅2(𝑠)
𝜅1(𝑠) + 𝜖2𝜖3

(︁(︁ 1
𝜅1(𝑠)

)︁′ 1
𝜅2(𝑠)

)︁′]︂
𝐵2(𝑠).

Then we have the following theorem.

Theorem 3.1. Let 𝛼(𝑠) be a unit speed timelike or spacelike curve with non-
null vector fields 𝑁 , 𝐵1 and 𝐵2, lying fully in 𝐸4

1 . Then 𝛼 is congruent to a normal
curve if and only if

(3.4) 𝜖3𝜅3

𝜅2

(︁ 1
𝜅1

)︁′
= 𝜖1
[︂

1
𝜅3

(︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′)︂]︂′
.

Proof. Let us first assume that 𝛼 is congruent to a normal curve. Then
relations (3.1) and (3.2) imply that (3.4) holds.

Conversely, assume that relation (3.4) holds. Let us consider the vector𝑚 ∈ 𝐸4
1

given by

(3.5)
𝑚(𝑠) = 𝛼(𝑠) + 𝜖1

𝜅1(𝑠) 𝑁(𝑠) + 𝜖1𝜖2
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
𝐵1(𝑠)

+ 𝜖1
𝜅3(𝑠)

[︂
𝜅2(𝑠)
𝜅1(𝑠) + 𝜖2𝜖3

(︁(︁ 1
𝜅1(𝑠)

)︁′ 1
𝜅2(𝑠)

)︁′]︂
𝐵2(𝑠).

Differentiating (3.5) with respect to 𝑠 and by applying (2.2), we get

𝑚′ = −𝜖3𝜅3

𝜅2

(︁ 1
𝜅1

)︁′
𝐵2 + 𝜖1

[︂
1
𝜅3

(︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′)︂]︂′
𝐵2.

From relation (3.4) it follows that 𝑚 is a constant vector, which means that 𝛼
is congruent to a normal curve. �

Theorem 3.2. Let 𝛼(𝑠) be a unit speed timelike or spacelike curve with non-
null vector fields 𝑁 , 𝐵1 and 𝐵2, lying fully in 𝐸4

1 . If 𝛼 is a normal curve, then the
following statements hold:

(i) the principal normal and the first binormal component of the position vector
𝛼 are respectively given by

𝑔(𝛼,𝑁) = −𝜖1𝜖2
𝜅1
, 𝑔(𝛼,𝐵1) = −𝜖1𝜖2𝜖3

𝜅2

(︁ 1
𝜅1

)︁′
;
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(ii) the first binormal and the second binormal component of the position vector
𝛼 are respectively given by

𝑔(𝛼,𝐵1) = −𝜖1𝜖2𝜖3
𝜅2

(︁ 1
𝜅1

)︁′
, 𝑔(𝛼,𝐵2) = 1

𝜅3

[︂
𝜖2𝜖3𝜅2

𝜅1
+
(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′]︂
.

Conversely, if 𝛼(𝑠) is a unit speed timelike or spacelike curve with non-null
vector fields 𝑁 , 𝐵1, 𝐵2, lying fully in 𝐸4

1 , and one of statements (i) or (ii) holds,
then 𝛼 is a normal curve.

Proof. If 𝛼(𝑠) is a normal curve, it is easy to check that relation (3.3) implies
statements (i) and (ii).

Conversely, if statement (i) holds, differentiating equation 𝑔(𝛼,𝑁) = −𝜖1𝜖2/𝜅1
with respect to 𝑠 and by applying (2.2), we find 𝑔(𝛼, 𝑇 ) = 0 which means that 𝛼
is a normal curve. If statement (ii) holds, in a similar way we conclude that 𝛼 is a
normal curve. �

In the next theorem, we obtain interesting geometric characterization of non-
null normal curves.

Theorem 3.3. Let 𝛼(𝑠) be a unit speed timelike or spacelike curve, lying fully
in 𝐸4

1 , with non-null vector fields 𝑁 , 𝐵1, and 𝐵2. Then 𝛼 is congruent to a normal
curve if and only if 𝛼 lies in some hyperquadric in 𝐸4

1 .

Proof. First assume that 𝛼 is congruent to a normal curve. It follows, by
straightforward calculations using Theorem 3.1, that

2𝜖2
𝜅1

(︁ 1
𝜅1

)︁′
+ 2𝜖3
𝜅2

(︁ 1
𝜅1

)︁′(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′
− 2𝜖1𝜖2𝜖3
𝜅3

[︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′]︂[︂ 1
𝜅3

(︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′)︂]︂′
= 0.

On the other hand, the previous equation is differential of the equation

(3.6) 𝜖2
(︁ 1
𝜅1

)︁2
+ 𝜖3
[︂(︁ 1
𝜅1

)︁′ 1
𝜅2

]︂2
− 𝜖1𝜖2𝜖3

(︁ 1
𝜅3

)︁2
[︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′]︂2
= 𝑟,

𝑟 ∈ 𝑅.

By using (2.1) and (3.5), it is easy to check that

𝑔(𝛼−𝑚,𝛼−𝑚) = 𝜖2
(︁ 1
𝜅1

)︁2
+𝜖3
[︂(︁ 1
𝜅1

)︁′ 1
𝜅2

]︂2
−𝜖1𝜖2𝜖3

(︁ 1
𝜅3

)︁2
[︂
𝜅2

𝜅1
+ 𝜖2𝜖3

(︁(︁ 1
𝜅1

)︁′ 1
𝜅2

)︁′]︂2
,

which together with (3.6) gives 𝑔(𝛼−𝑚,𝛼−𝑚) = 𝑟. Consequently, 𝛼 lies in some
hyperquadric in 𝐸4

1 .
Conversely, if 𝛼 lies in some hyperquadric in 𝐸4

1 , then 𝑔(𝛼 −𝑚,𝛼 −𝑚) = 𝑟,
𝑟 ∈ 𝑅, where 𝑚 ∈ 𝐸4

1 is a constant vector. By taking the derivative of the previous
equation with respect to 𝑠, we easily obtain 𝑔(𝛼 − 𝑚,𝑇 ) = 0 which proves the
theorem. �
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Recall that arbitrary curve 𝛼 in 𝐸4
1 is called a 𝑊 -curve (or a helix), if it has

constant curvature functions (see [7]). The following theorem gives the characteri-
zation of non-null 𝑊 -curves in 𝐸4

1 , in terms of normal curves.

Theorem 3.4. Every unit speed timelike or spacelike 𝑊 -curve, with non-null
vector fields 𝑁,𝐵1, 𝐵2, lying fully in 𝐸4

1 , is congruent to a normal curve.

Proof. By assumption we have 𝜅1(𝑠) = 𝑐1, 𝜅2(𝑠) = 𝑐2, 𝜅3(𝑠) = 𝑐3, where
𝑐1, 𝑐2, 𝑐3 ∈ 𝑅0. Since the curvature functions obviously satisfy relation (3.4), ac-
cording to Theorem 3.1, 𝛼 is congruent to a normal curve. �

Note that Theorem 3.4 allows us to find the explicit parametric equation of non-
null normal curve with constant curvature functions. Let 𝛼(𝑠) be a unit speed curve
in 𝐸4

1 with Frenet equations (2.2) and curvature functions 𝜅1(𝑠) = 𝑐1, 𝜅2(𝑠) = 𝑐2,
𝜅3(𝑠) = 𝑐3, whereby 𝑐1, 𝑐2, 𝑐3 ∈ 𝑅0. By using (2.2), we easily obtain differential
equation with constant coefficients

𝑇 ′′′′ + (𝜖1𝜖2𝑐21 + 𝜖2𝜖3𝑐22 − 𝜖1𝜖2𝑐23)𝑇 ′′ − 𝑐21𝑐23𝑇 = 0.
The solution of the previous equation is given by
(3.7) 𝑇 (𝑠) = cosh(𝜆1𝑠)𝑉1 + sinh(𝜆1𝑠)𝑉2 + cos(𝜆2𝑠)𝑉3 + sin(𝜆2𝑠)𝑉4,

where 𝑉1, 𝑉2, 𝑉3, 𝑉4 ∈ 𝐸4
1 are constant vectors and

𝜆2
1 = 1

2

(︁
−𝐾 +

√︁
𝐾2 + 4𝑐21𝑐23

)︁
, 𝜆2

2 = 1
2

(︁
𝐾 +
√︁
𝐾2 + 4𝑐21𝑐23

)︁
,

𝐾 = 𝜖1𝜖2(𝑐21 − 𝑐23) + 𝜖2𝜖3𝑐22.
Integrating (3.7), we get that the normal curve 𝛼 has the parametric equation of
the form

𝛼(𝑠) = 1
𝜆1

(︀
sinh(𝜆1𝑠)𝑉1 + cosh(𝜆1𝑠)𝑉2

)︀
+ 1
𝜆2

(︀
sin(𝜆2𝑠)𝑉3 − cos(𝜆2𝑠)𝑉4

)︀
.

Moreover, by using equations 𝑔(𝑇, 𝑇 ) = 𝜖1 and 𝑔(𝑇 ′, 𝑇 ′) = 𝜖2𝑐21, we may chose
constant vectors 𝑉1,𝑉2,𝑉3 and 𝑉4 in the following way

𝑉1 =
(︁√︁
|𝜖1𝜆2

2 − 𝜖2𝑐21|/(𝜆2
1 + 𝜆2

2), 0, 0, 0
)︁
, 𝑉2 =

(︁
0,
√︁
|𝜖1𝜆2

2 − 𝜖2𝑐21|/(𝜆2
1 + 𝜆2

2), 0, 0
)︁
,

𝑉3 =
(︁

0, 0,
√︁

(𝜖1𝜆2
2 + 𝜖2𝑐21)/(𝜆2

1 + 𝜆2
2), 0
)︁
, 𝑉4 =

(︁
0, 0, 0,

√︁
(𝜖1𝜆2

2 + 𝜖2𝑐21)/(𝜆2
1 + 𝜆2

2)
)︁
.

The next lemma is direct consequence of Theorem 3.1.

Lemma 3.1. A unit speed timelike or spacelike curve 𝛼(𝑠), with non-null vector
fields 𝑁 , 𝐵1, 𝐵2, lying fully in 𝐸4

1 , is congruent to a normal curve if and only if
there exists a differentiable function 𝑓(𝑠) such that

(3.8) 𝑓(𝑠)𝜅3(𝑠) = 𝜅2(𝑠)
𝜅1(𝑠) + 𝜖2𝜖3

(︂(︁ 1
𝜅1(𝑠)

)︁′ 1
𝜅2(𝑠)

)︂′
, 𝑓 ′(𝑠) = 𝜖1𝜖3𝜅3(𝑠)

𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
.

By using the similar methods as in [1] and [8], as well as Lemma 3.1, we obtain
the following two theorems which give the necessary and the sufficient conditions
for non-null curves in 𝐸4

1 to be the normal curves.



SPACELIKE AND TIMELIKE NORMAL CURVES IN MINKOWSKI SPACE-TIME 117

Theorem 3.5. Let 𝛼(𝑠) be a unit speed spacelike curve in 𝐸4
1 , with spacelike

principal normal 𝑁 . Then 𝛼 is congruent to a normal curve if and only if there
exist constants 𝑎0, 𝑏0 ∈ 𝑅 such that

(3.9)

𝜖3
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
=
(︂
𝑎0 +
∫︁
𝜅2(𝑠)
𝜅1(𝑠) sinh 𝜃(𝑠) 𝑑𝑠

)︂
sinh 𝜃(𝑠)

−
(︂
𝑏0 +
∫︁
𝜅2(𝑠)
𝜅1(𝑠) cosh 𝜃(𝑠) 𝑑𝑠

)︂
cosh 𝜃(𝑠),

where 𝜃(𝑠) =
∫︀ 𝑠

0 𝜅3(𝑠) 𝑑𝑠.

Proof. If 𝛼(𝑠) is congruent to a normal curve, according to Lemma 3.1 there
exists a differentiable function 𝑓(𝑠) such that relation (3.8) holds, whereby 𝜖1 =
𝜖2 = 1. Let us define differentiable functions 𝜃(𝑠), 𝑎(𝑠) and 𝑏(𝑠) by

𝜃(𝑠) =
∫︁ 𝑠

0
𝜅3(𝑠) 𝑑𝑠,

𝑎(𝑠) = − 𝜖3
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
sinh 𝜃(𝑠) + 𝑓(𝑠) cosh 𝜃(𝑠)−

∫︁
𝜅2(𝑠)
𝜅1(𝑠) sinh 𝜃(𝑠) 𝑑𝑠,(3.10)

𝑏(𝑠) = − 𝜖3
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′
cosh 𝜃(𝑠) + 𝑓(𝑠) sinh 𝜃(𝑠)−

∫︁
𝜅2(𝑠)
𝜅1(𝑠) cosh 𝜃(𝑠) 𝑑𝑠.

By using (3.8), we easily find 𝜃′(𝑠) = 𝜅3(𝑠), 𝑎′(𝑠) = 0, 𝑏′(𝑠) = 0 and thus
(3.11) 𝑎(𝑠) = 𝑎0, 𝑏(𝑠) = 𝑏0, 𝑎0, 𝑏0 ∈ 𝑅.
Multiplying the second and the third equations in (3.10), respectively with sinh 𝜃(𝑠)
and − cosh 𝜃(𝑠), adding the obtained equations and using (3.11), we conclude that
relation (3.9) holds.

Conversely, assume that there exist constants 𝑎0, 𝑏0 ∈ 𝑅 such that relation
(3.9) holds. By taking the derivative of (3.9) with respect to 𝑠, we find

(3.12) 𝜅2(𝑠)
𝜅1(𝑠) + 𝜖3

(︁ 1
𝜅2(𝑠)

(︁ 1
𝜅1(𝑠)

)︁′)︁′
= 𝜅3(𝑠)

[︂(︂
𝑎0+
∫︁
𝜅2(𝑠)
𝜅1(𝑠) sinh 𝜃(𝑠) 𝑑𝑠

)︂
cosh 𝜃(𝑠)−

(︂
𝑏0+
∫︁
𝜅2(𝑠)
𝜅1(𝑠) cosh 𝜃(𝑠) 𝑑𝑠

)︂
sinh 𝜃(𝑠)

]︂
.

Let us define the differentiable function 𝑓(𝑠) by

(3.13) 𝑓(𝑠) = 1
𝜅3(𝑠)

[︂
𝜅2(𝑠)
𝜅1(𝑠) + 𝜖3

(︁(︁ 1
𝜅1(𝑠)

)︁′ 1
𝜅2(𝑠)

)︁′]︂
.

Next, relations (3.12) and (3.13) imply

𝑓(𝑠) =
(︂
𝑎0+
∫︁
𝜅2(𝑠)
𝜅1(𝑠) sinh 𝜃(𝑠) 𝑑𝑠

)︂
cosh 𝜃(𝑠)−

(︂
𝑏0+
∫︁
𝜅2(𝑠)
𝜅1(𝑠) cosh 𝜃(𝑠) 𝑑𝑠

)︂
sinh 𝜃(𝑠).

By using this and (3.9), we obtain 𝑓 ′(𝑠) = (𝜖3𝜅3(𝑠)/𝜅2(𝑠))(1/𝜅1(𝑠))′. Finally,
Lemma 3.1 implies that 𝛼 is congruent to a normal curve. �

For timelike curves and spacelike curves with timelike principal normal we
obtain the following theorem, which can be proved in a similar way as Theorem 3.5.
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Theorem 3.6. Let 𝛼(𝑠) be a unit speed timelike curve or spacelike curve with
timelike principal normal 𝑁 in 𝐸4

1 . Then 𝛼 is congruent to a normal curve if and
only if there exist constants 𝑎0, 𝑏0 ∈ 𝑅 such that

𝜖2𝜖3
𝜅2

(︁ 1
𝜅1(𝑠)

)︁′
=
(︂
𝑎0 −
∫︁
𝜅2(𝑠)
𝜅1(𝑠) sin 𝜃(𝑠) 𝑑𝑠

)︂
sin 𝜃(𝑠)

−
(︂
𝑏0 +
∫︁
𝜅2(𝑠)
𝜅1(𝑠) cos 𝜃(𝑠) 𝑑𝑠

)︂
cos 𝜃(𝑠),

where 𝜃(𝑠) =
∫︀ 𝑠

0 𝜅3(𝑠)𝑑𝑠.
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