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BOUNDEDNESS OF THE BERGMAN PROJECTIONS
ON 𝐿𝑝 SPACES WITH RADIAL WEIGHTS

Milutin Dostanić

Communicated by Stevan Pilipović

Abstract. Necessary as well as sufficient conditions are given for the Bergman
projections to be bounded operators on 𝐿𝑝 spaces on the unit disc.

Let 𝑤 be a continuous positive function on [0, 1) such that lim𝑟→1−0 𝑤(𝑟) = 0.
Denote by 𝑑𝜇(𝑧) the measure 𝑑𝜇(𝑧) = 𝑤(|𝑧|) 𝑑𝐴(𝑧), where 𝑑𝐴(𝑧) is Lebesgue’s
measure (𝑑𝐴(𝑧) = 𝑑𝑥 𝑑𝑦, 𝑧 = 𝑥+ 𝑖 𝑦) on the unit disc 𝐷. Denote by 𝐿𝑝(𝐷, 𝑑𝜇) (or
𝐿𝑝(𝐷) for short), 1 6 𝑝 < ∞ the set of all complex measurable functions 𝑓 for
which ‖𝑓‖𝑝 =

(︀ ∫︀
𝐷
|𝑓(𝑧)|𝑝𝑑𝜇(𝑧)

)︀1/𝑝
< ∞ and by 𝐿𝑝𝑎(𝐷, 𝑑𝜇) (or 𝐿𝑝𝑎(𝐷) for short)

the subspace of the space 𝐿𝑝(𝐷) comprising the functions that are analytic on 𝐷.
If 𝑝 = 2, 𝐿2

𝑎(𝐷) is a Hilbert subspace of 𝐿2(𝐷) and it is called Bergman space.
Let 𝑃 denote the orthogonal projector of 𝐿2(𝐷) on 𝐿2

𝑎(𝐷) (Bergman projection).
Let {𝛿𝑛}∞𝑛=0 be defined by 𝛿𝑛 =

(︀
2𝜋
∫︀ 1

0 𝑟
2𝑛+1𝑤(𝑟) 𝑑𝑟

)︀1/2
. Then, the sequence of

functions {𝑧𝑛/𝛿𝑛}∞𝑛=0 is an orthonormal basis of 𝐿2
𝑎(𝐷) and so the corresponding

Bergman reproducing kernel is given by 𝐾(𝑧, 𝜉) =
∑︀∞
𝑛=0 𝑧

𝑛𝜉
𝑛
/𝛿2𝑛 (𝑧, 𝜉 ∈ 𝐷). Let

𝐼𝑛𝑘 =
[︀
𝑘−1
𝑛 ,

𝑘
𝑛

]︀
(𝑘 = 1, 2, . . . , 𝑛), Φ(𝜆) =

∫︀ 1
0 𝑡

2𝜆+1 𝑤(𝑡) 𝑑𝑡 (𝜆 ∈ (0,+∞)), 𝐺(𝜆) =
Φ(𝜆+1)

Φ(𝜆) and

𝐻𝑛𝑘𝜈(𝜆) =
∫︁

𝐼𝑛
𝑘
×𝐼𝑛𝜈

(𝑥𝑦)𝜆(𝑥𝑦 −𝐺(𝜆))(𝑥𝑤(𝑥))1/𝑝(𝑦 𝑤(𝑦))1/𝑞𝑑𝑥 𝑑𝑦

(︂
𝑝 > 1, 1

𝑝
+ 1
𝑞

= 1
)︂
.

Operator 𝑃 : 𝐿2(𝐷) −→ 𝐿2
𝑎(𝐷) acts in the following way:

𝑃𝑓(𝑧) =
∫︁
𝐷

𝐾(𝑧, 𝜉) 𝑓(𝜉) 𝑑𝜇(𝜉), 𝑧 ∈ 𝐷.

We will use the same notation: 𝑓 ∈ 𝐿𝑝(𝐷), 𝑃𝑓 =
∫︀
𝐷
𝐾(·, 𝜉)𝑓(𝜉) 𝑑𝜇(𝜉), 1 < 𝑝 <∞.

The same notation, 𝑃 , will be used for this mapping.
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6 DOSTANIĆ

In this paper we consider conditions for 𝑤 so that 𝑃 is a bounded operator on
𝐿𝑝(𝐷) (1 < 𝑝 <∞).

The boundedness of the Bergman projection is a fact of fundamental impor-
tance. In the case of the unit disc, boundedness of the Beergman projection was
studied in [3], [8] and it immediately gives the duality between the Bergman spaces.
Also, the boundedness of the Bergman projection is used to establish correspond-
ing theorems that concern duality and interpolation of analytic Besov spaces [8,
Th. 5.3.6, Th. 5.3.8, pp. 94–97]

1. The Main Result

Let 𝑤 ∈ 𝐶[0, 1), 𝑤 > 0 in [0, 1), lim𝑟→1−0 𝑤(𝑟) = 0 and let the function
𝑇 : [0, 1) → R be defined by 𝑇 (𝑟) = sup𝑚>0 𝑟

𝑚/𝛿2𝑚, 𝑟 ∈ [0, 1). Assume that for
some 𝑐0 ∈ (0, 1) all the functions 𝐻𝑛𝑘𝜈 have uniformly bounded number of zeroes
on the interval (1,+∞) for all 𝐼𝑛𝑘 , 𝐼𝑛𝜈 ⊂ [𝑐0, 1]. The main result is given by the
following Theorem:

Theorem 1.1. (a) The necessary condition for operator 𝑃 to be bounded on
𝐿𝑝(𝐷) (1 < 𝑝 <∞) is:

(1.1) sup
𝑚>0

1
𝛿2𝑚

(︃ 1∫︁
0

𝑥𝑚𝑝+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑝(︃ 1∫︁

0

𝑥𝑚𝑞+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑞

<∞, 1
𝑝

+ 1
𝑞

= 1.

(b) If condition (1.1) holds, then the condition

(1.2)

⎧⎪⎪⎨⎪⎪⎩
sup

06𝑥<1
𝑤(𝑥)1/𝑝

1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑦)1/𝑞 𝑑𝑦 < +∞

sup
06𝑥<1

𝑤(𝑥)1/𝑞
1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑦)1/𝑝 𝑑𝑦 < +∞

is sufficient for the Bergman projection 𝑃 to be a bounded operator on 𝐿𝑝(𝐷)
(1 < 𝑝 <∞).

Remark 1.1. From condition (1.1) it follows that ∀𝑟 ∈ [0, 1) and ∀𝑚 > 0:

1
𝛿2𝑚

(︃ 1∫︁
√
𝑟

𝑟(𝑚𝑝+1)/2𝑤(𝑥) 𝑑𝑥
)︃1/𝑝

·

(︃ 1∫︁
√
𝑟

𝑟(𝑚𝑞+1)/2𝑤(𝑥) 𝑑𝑥
)︃1/𝑞

6
1
𝛿2𝑚

(︃ 1∫︁
√
𝑟

𝑥𝑚𝑝+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑝

·

(︃ 1∫︁
√
𝑟

𝑥𝑚𝑞+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑞

6𝑀0 (< +∞)

i.e., 𝑇 (𝑟) ·
√
𝑟
∫︀ 1√
𝑟
𝑤(𝑥) 𝑑𝑥 6𝑀0 and so

(1.3) 𝑇 (𝑟) = 𝑂

⎛⎜⎝(︃ 1∫︁
√
𝑟

𝑤(𝑥) 𝑑𝑥
)︃−1

⎞⎟⎠ as 𝑟 → 1− .
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Therefore if condition (1.1) holds, then the sufficient condition (1.2) can be
replaced (keeping in mind (1.3)) by more operative condition:

(1.2′)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
06𝑥<1

𝑤(𝑥)1/𝑝
1∫︀
0

𝑤(𝑦)1/𝑞

1∫︀
√
𝑥𝑦

𝑤(𝑡) 𝑑𝑡
𝑑𝑦 < +∞

sup
06𝑥<1

𝑤(𝑥)1/𝑞
1∫︀
0

𝑤(𝑦)1/𝑝

1∫︀
√
𝑥𝑦

𝑤(𝑡) 𝑑𝑡
𝑑𝑦 < +∞

Example 1.1. Let 𝑤(𝑟) = (1 − 𝑟2)𝛼𝐿
(︀ 1

1−𝑟2

)︀
, 𝛼 > 0, where 𝐿 is a slowly

varying nondecreasing 𝐶1 function. In a similar way as in [1] we can show that for
the function 𝐾(𝜆) =

∫︀ 1
0 𝑥
𝜆𝑤(𝑥) 𝑑𝑥, 𝜆 > 0, there holds 𝐾(𝜆) ≍ 𝐿(𝜆)

𝜆𝛼+1 , 𝜆→ +∞ i.e.,
there exists constants 𝐶1, 𝐶2 > 0 independent of 𝜆 such that 𝐶1 6 𝐾(𝜆)𝜆

𝛼+1

𝐿(𝜆) 6 𝐶2
for 𝜆 > 𝜆0. From that it follows directly that the weight 𝑤 satisfies the necessary
condition of Theorem 1. Let us prove that 𝑤 satisfies the sufficient conditions of
Theorem 1. It is enough to check the conditions in (1.2′). We want to prove that

(1.4) sup
06𝑥<1

𝑤1/𝑝(𝑥)
1∫︁

0

𝑤1/𝑞(𝑦)
(︃ 1∫︁
√
𝑥𝑦

𝑤(𝑡) 𝑑𝑡
)︃−1

𝑑𝑦 <∞.

In a similar way we can prove that

sup
06𝑥<1

𝑤1/𝑞(𝑥)
1∫︁

0

𝑤1/𝑝(𝑦)
(︃ 1∫︁
√
𝑥𝑦

𝑤(𝑡) 𝑑𝑡
)︃−1

𝑑𝑦 <∞.

Since
1∫︁
𝑟

𝑤(𝑡) 𝑑𝑡 ∼ 1
2

1∫︁
𝑟2

(1− 𝑡)𝛼𝐿
(︁ 1

1− 𝑡

)︁
𝑑𝑡

= 1
2

+∞∫︁
1/(1−𝑟2)

𝐿(𝑢)
𝑢𝛼+2 𝑑𝑢 ∼

1
2(𝛼+ 1)

(︀
1− 𝑟2

)︀𝛼+1
𝐿
(︁ 1

1− 𝑟2
)︁
, 𝑟 → 1−

(here we used the asymptotic formula
∫︀∞
𝑥
𝐿(𝑢)
𝑢𝛼+2 𝑑𝑢 ∼ 𝐿(𝑥)

(𝛼+1)𝑥𝛼+1 ), we conclude that
(1.4) is true if

(1.5) sup
06𝑥<1

𝑤(𝑥)1/𝑝
1∫︁

0

𝑤(𝑦)1/𝑞𝑑𝑦

(1− 𝑥𝑦)𝛼+1
𝐿(1/(1− 𝑥𝑦))

<∞

is true. After the change of variables 𝑥 = 𝑒−𝑢, 𝑦 = 𝑒−𝑣 in (1.5) we obtain

(1.6) sup
𝑢>0
𝑤
(︀
𝑒−𝑢

)︀1/𝑝
+∞∫︁
0

𝑤 (𝑒−𝑣) 𝑒−𝑣(︀
1− 𝑒−(𝑢+𝑣)

)︀𝛼+1
𝐿
(︀
1/(1− 𝑒−(𝑢+𝑣))

)︀𝑑𝑣 <∞.
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Since 𝐿 is a slowly varying function, we have

lim
𝑢→0+

𝐿
(︀
1/(1− 𝑒−2𝑢)

)︀
·
(︀
1− 𝑒−2𝑢)︀𝛼

(2𝑢)𝛼 𝐿(1/𝑢)
= 1

lim
𝑢→0+

𝐿 (1/(1− 𝑒−𝑢)) · (1− 𝑒−𝑢)𝛼+1

𝑢𝛼+1𝐿(1/𝑢) = 1

and so, inequality (1.6) is satisfied if

(1.7) sup
0<𝑢61

(𝑢𝛼𝐿(1/𝑢))1/𝑝
1∫︁

0

(︀
𝑣𝛼𝐿

(︀ 1
𝑣

)︀)︀1/𝑞

(𝑢+ 𝑣)𝛼+1
𝐿
(︁

1
𝑢+𝑣

)︁𝑑𝑣 <∞
is true. Let

𝒜(𝑢) = (𝑢𝛼𝐿(1/𝑢))1/𝑝
1∫︁

0

(︀
𝑣𝛼𝐿

(︀ 1
𝑣

)︀)︀1/𝑞

(𝑢+ 𝑣)𝛼+1
𝐿
(︁

1
𝑢+𝑣

)︁𝑑𝑣.
It is clear that inequality (1.7) is true if the function𝒜 is bounded in a neighborhood
of the point 𝑢 = 0. After changing variables 𝑣 = 𝑢 · 𝑡, 𝑡 ∈ (0, 1

𝑢 ) we obtain

𝒜(𝑢) =
1/𝑢∫︁
0

𝑡𝛼/𝑞

(1 + 𝑡)𝛼+1

(︀
𝐿
(︀ 1
𝑢

)︀)︀1/𝑝 ·
(︀
𝐿
(︀ 1
𝑢 ·

1
𝑡

)︀)︀1/𝑞

𝐿
(︀ 1
𝑢 ·

1
𝑡+1
)︀ 𝑑𝑡.

Let 1
𝑢 = 𝜆. Then the boundedness of function 𝒜 in a neighborhood of the point

𝑢 = 0 is equivalent to the boundedness of function 𝜆 ↦→ 𝒜
(︀ 1
𝜆

)︀
in a neighborhood

of 𝜆 = +∞.
If 𝑡 = 1

𝑠 , we get

𝒜
(︁ 1
𝜆

)︁
=

+∞∫︁
1/𝜆

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1
(𝐿(𝜆))1/𝑝 · (𝐿(𝜆𝑠))1/𝑞

𝐿
(︀
𝜆 · 𝑠𝑠+1

)︀ 𝑑𝑠 =
1∫︁

1
𝜆

(·) 𝑑𝑠+
+∞∫︁
1

(·) 𝑑𝑠

= 𝐻1(𝜆) +𝐻2(𝜆).

Now, we prove that 𝐻1 and 𝐻2 are bounded functions in a neighborhood of 𝜆 =
+∞. From 𝑠 6 1 it follows 𝑠𝜆 6 𝜆 and we have 𝐿(𝜆𝑠) 6 𝐿(𝜆) (𝐿 non-decreases)
and

𝐻1(𝜆) 6 𝐿(𝜆)
1∫︁

1/𝜆

𝑡𝛼/𝑝−1

(1 + 𝑡)𝛼+1
𝑑𝑠

𝐿
(︀
𝜆 · 𝑠𝑠+1

)︀ .
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After changing variables 𝑡 = 𝑠
𝑠+1 , we obtain from the previous inequality

𝐻1(𝜆) 6 𝐿(𝜆)
1/2∫︁

𝜆/(𝜆+1)

𝑡𝛼/𝑝−1(1− 𝑡)𝛼/𝑞 𝑑𝑡
𝐿(𝜆𝑡)

6 𝐿(𝜆)
1/2∫︁

𝜆/(𝜆+1)

𝑡𝛼/𝑝−1 𝑑𝑡

𝐿(𝜆𝑡) (change 𝜆𝑡 = 𝜉)

= 𝐿(𝜆)
𝜆𝛼/𝑝

𝜆
2∫︁

𝜆/(𝜆+1)

𝜉𝛼/𝑝−1 𝑑𝜉

𝐿(𝜉)

= 𝐿(𝜆)
𝜆𝛼/𝑝

1∫︁
𝜆/(𝜆+1)

𝜉𝛼/𝑝−1

𝐿(𝜉) 𝑑𝜉 + 𝐿(𝜆)
𝜆𝛼/𝑝

𝜆/2∫︁
1

𝜉𝛼/𝑝−1

𝐿(𝜉) 𝑑𝜉 = 𝑅1(𝜆) +𝑅2(𝜆).

It is clear that lim𝜆→+∞𝑅1(𝜆) = 0 and it follows that 𝑅1 is a bounded function in
a neighborhood of 𝜆 = +∞. Since 𝐿 is a slowly varying function we have

lim
𝜆→+∞

𝜆𝐿′(𝜆)
𝐿(𝜆) = 0

and hence

lim
𝑥→+∞

𝐿(𝑥)
𝑥𝛼/𝑝

𝑥∫︁
1

𝑡𝛼/𝑝−1

𝐿(𝑡) 𝑑𝑡 = 𝑝
𝜆

From the previous equality follows that there exists lim𝜆→+∞𝑅2(𝜆) and is finite.
So, 𝐻1 is a bounded function in a neighborhood of 𝜆 = +∞.

If 1 6 𝑠 <∞, then 1
2 6

𝑠
𝑠+1 < 1 and we have 𝐿

(︀
𝜆
2
)︀
6 𝐿

(︀
𝜆 𝑠𝑠+1

)︀
and

𝐻2(𝜆) 6 (𝐿(𝜆))1/𝑝

𝐿(𝜆/2)

+∞∫︁
1

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1 (𝐿(𝜆𝑠))1/𝑞𝑑𝑠.

Having in mind that lim𝜆→∞ 𝐿(𝜆)
𝐿(𝜆/2) = 1 and

lim
𝜆→∞

+∞∫︁
1

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1

(︂
𝐿 (𝜆𝑠)
𝐿(𝜆)

)︂1/𝑞
𝑑𝑠 =

+∞∫︁
1

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1 𝑑𝑠

[5, Th. 2.6, pp. 63–64], we obtain

lim
𝜆→∞

(𝐿(𝜆))1/𝑝

𝐿(𝜆/2)

+∞∫︁
1

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1 (𝐿(𝜆𝑠))1/𝑞𝑑𝑠 =
+∞∫︁
1

𝑠𝛼/𝑝−1

(1 + 𝑠)𝛼+1 𝑑𝑠 <∞.

So, 𝐻2 is also a bounded function in a neighborhood of 𝜆 = +∞. (In the case
𝐿(𝜆) ≡ 1 the corresponding result is derived in [3, p. 10].)
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If, for instance 𝐿(𝑥) = (ln 𝑥)𝛽 (𝛽 > 0, 𝑥 > 1), then the functions 𝐻𝑛𝑘𝜈
(︀
which

correspond to the weights 𝑤(𝑥) =
(︀
1− 𝑥2)︀𝛼 (ln(1/(1−𝑥2)))𝛽

)︀
satisfy the condition

on uniform boundedness of the number of zeroes on (1,+∞). (This follows from
[2, Theorem 1.7, pp. 76–78].)

Example 1.2. Let 𝑤(𝑟) = (1−𝑟2)𝐴 exp
(︀
−𝐵/(1− 𝑟2)𝛼

)︀
, 𝐴 ∈ R, 𝐵 > 0, 𝛼 > 0.

In [1] it was demonstrated that for the function Φ(𝜆) =
∫︀ 1

0 𝑟
𝜆𝑤(𝑟) 𝑑𝑟 the following

asymptotic formula holds:

(1.8) Φ(𝜆) ∼ 𝐶 · 𝜆𝐷 exp
(︀
−𝐸 · 𝜆𝛼/(𝛼+1))︀, 𝜆→∞.

(𝐶,𝐷,𝐸 are constants that depend only on 𝐴,𝐵 and 𝛼; 𝐸 > 0).

From (1.8) it follows that the necessary condition (1.1) is not satisfied (except
𝑝 = 𝑞 = 2). This means that the corresponding Bergman projection is not bounded
on 𝐿𝑝(𝐷) for any 𝑝 ̸= 2.

Corollary 1.1. If function 𝑤 satisfies conditions (1.1) and (1.2) (i.e., (1.1)
and (1.2′)), then the dual of the space 𝐿𝑝𝑎(𝐷), (1 < 𝑝 < ∞) is the space 𝐿𝑞𝑎(𝐷),
under the integral pairing

⟨𝑓, 𝑔⟩ =
∫︁
𝐷

𝑓(𝑧) 𝑔(𝑧) 𝑑𝜇(𝑧), 𝑓 ∈ 𝐿𝑝𝑎(𝐷), 𝑔 ∈ 𝐿𝑞𝑎(𝐷),
(︁1
𝑝

+ 1
𝑞

= 1
)︁

Note that the identification isomorphism (𝐿𝑝𝑎(𝐷))* = 𝐿𝑞𝑎(𝐷) need not be iso-
metric for 𝑝 ̸= 2.

2. Proof

In the proof of the main result we use the following two Theorems:

Theorem 2.1 (Marcinkiewicz’s Theorem [7, pp. 346–348]). Let 𝜆0, 𝜆1 . . . be a
sequence such that for a constant 𝑀 holds:

∑︀2𝜈+1−1
𝑗=2𝜈 |𝜆𝑗−𝜆𝑗+1| 6𝑀 and |𝜆𝜈 | 6𝑀

for all 𝜈 = 0, 1, 2, . . .. Then for any 𝑝 > 1⃦⃦⃦⃦∑︁
𝜈>0
𝜆𝜈 𝑐𝜈 𝑒

𝑖𝜈𝑥

⃦⃦⃦⃦
𝑝

6𝑀 ·𝐴(𝑝)
⃦⃦⃦⃦∑︁
𝜈>0
𝑐𝜈 𝑒
𝑖𝜈𝑥

⃦⃦⃦⃦
𝑝

.

Here 𝐴(𝑝) is a constant that depends only on 𝑝 and ‖ ·‖𝑝 is a norm in the space
𝐿𝑝(0, 2𝜋).

Theorem 2.2 (Schur’s test [3, p. 9]). Denote by R𝑛𝑝 (𝑝 > 1) the space R𝑛 with
the norm ‖𝑥‖𝑝 = 𝑝

√︀∑︀𝑛
𝑖=1 |𝑥𝑖𝑡|

𝑝, 𝑥 = (𝑥1, . . . , 𝑥𝑛) and let

𝐶𝑛 =

⎛⎜⎜⎝
𝑐

(𝑛)
11 𝑐

(𝑛)
12 · · · 𝑐(𝑛)

1𝑛
...

...
. . .

...
𝑐

(𝑛)
𝑛1 𝑐

(𝑛)
𝑛2 · · · 𝑐(𝑛)

𝑛𝑛

⎞⎟⎟⎠ : R𝑛𝑝 → R𝑛𝑝 .
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If there exists a constant 𝜆 (𝜆 <∞) which does not depend on 𝑛 such that

max
16𝑘6𝑛

𝑛∑︁
𝜈=1

⃒⃒
𝑐

(𝑛)
𝑘𝜈

⃒⃒
6 𝜆, max

16𝜈6𝑛

𝑛∑︁
𝑘=1

⃒⃒
𝑐

(𝑛)
𝑘𝜈

⃒⃒
6 𝜆

then for any 𝑛 ∈ N and any 𝑥 ∈ R𝑛𝑝 holds ‖𝐶𝑛𝑥‖𝑝 6 𝜆 ‖𝑥‖𝑝 .

Lemma 2.1. Let {𝑗𝑚𝑛}∞𝑛=1 be the positive zeroes of the Bessel function of the
first kind 𝐽𝑚 (𝑚 = 0,±1,±2, . . .). Then, for any 𝑚 ∈ Z and 𝛼, 𝛽 > 0, the system
of functions

{︀
𝐽𝑚(𝑗𝑚𝑛𝑟) · 𝑟𝛼 · 𝑤(𝑟)𝛽

}︀∞
𝑛=1 is complete in 𝐿𝑝(0, 1), (1 6 𝑝 <∞).

Proof. It is sufficient to prove the lemma for 𝑚 > 0 since (−1)𝑚𝐽−𝑚 = 𝐽𝑚
for all𝑚 ∈ Z. Suppose that𝑚 > 0 and that the system

{︀
𝐽𝑚(𝑗𝑚𝑛𝑟) · 𝑟𝛼 · 𝑤(𝑟)𝛽

}︀∞
𝑛=1

is not complete in 𝐿𝑝(0, 1). This would mean that there exists function 𝑔 ∈ 𝐿𝑞(0, 1)(︀ 1
𝑝 + 1

𝑞 = 1
)︀

such that

(2.1)
1∫︁

0

𝑔(𝑟) 𝑟𝛼𝑤(𝑟)𝛽𝐽𝑚(𝑗𝑚𝑛𝑟) 𝑑𝑟 = 0

for all 𝑛 = 1, 2, 3, . . . and 𝑔 ̸= 0 in 𝐿𝑞(0, 1). Let us show that 𝑔 = 0 almost
everywhere on [0, 1] (i.e., 𝑔 = 0 in 𝐿𝑞(0, 1)). Define the function

𝐺𝑚(𝜆) = 1
𝐽𝑚(𝜆)

1∫︁
0

𝑔(𝑟) 𝑟𝛼𝑤(𝑟)𝛽𝐽𝑚(𝜆𝑟) 𝑑𝑟, 𝜆 ∈ C.

As all the zeros of the function 𝜆 ↦→ 𝐽𝑚(𝜆)/𝜆𝑚 are real and simple, from (2.1)
it follows that 𝐺𝑚 is an entire function. Furthermore, its order of growth is not
bigger than 1. From the asymptotic formula (see [6])

𝐽𝑚(𝑧) = 1√
𝜋𝑧

[︁
cos
(︁
𝑧 − 𝑚𝜋2 −

𝜋

4

)︁
+𝑂

(︁1
𝑧

)︁]︁
, |𝑧| → ∞, | arg 𝑧| 6 𝜋 − 𝜀

it follows that
(2.2) lim

𝑟→±∞
𝐺𝑚
(︀
𝑟𝑒± 𝑖𝜋/4

)︀
= 0.

From (2.2), by the Phragmen–Lindelöf and Liouville Theorem, it follows that
𝐺𝑚(𝜆) ≡ 0 i.e.,

1∫︁
0

𝑔(𝑟) 𝑟𝛼𝑤(𝑟)𝛽𝐽𝑚(𝜆𝑟) 𝑑𝑟 ≡ 0.

Now by representing function 𝐽𝑚 by the power series and applying the Müntz–Szasz
theorem, we get 𝑔(𝑟) = 0 almost everywhere on [0, 1]. �

Lemma 2.2. Let 𝑧 = 𝑟𝑒𝑖𝜃 and 𝑓𝑚𝑛(𝑧) = 𝐽𝑚(𝑗𝑚𝑛𝑟)𝑒𝑖𝑚𝜃 (𝑚 ∈ Z, 𝑛 ∈ N). For
any 1 < 𝑝 <∞ the system of functions {𝑓𝑚𝑛}𝑚∈Z, 𝑛∈N is complete in 𝐿𝑝(𝐷).

Proof. It follows by the standard method, from Lemma 1 and the complete-
ness of the system

{︀
𝑒𝑖𝑚𝑥

}︀
𝑚∈Z in 𝐿𝑞(0, 2𝜋). �
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Let 𝐴𝑚 : 𝐿𝑝(0, 1)→ 𝐿𝑝(0, 1), (𝑚 > 0, 1<𝑝<∞) be linear operators defined by

𝐴𝑚𝑓(𝑥) = 2𝜋
𝛿2𝑚
𝑥𝑚+1/𝑝𝑤(𝑥)1/𝑝

1∫︁
0

𝑦𝑚+1/𝑞𝑤(𝑦)1/𝑞𝑓(𝑦) 𝑑𝑦
(︁1
𝑝

+ 1
𝑞

= 1
)︁
.

Lemma 2.3. The Bergman projection 𝑃 is a bounded operator on 𝐿𝑝(𝐷)
(1 < 𝑝 < ∞) if and only if there exists a constant 𝑐𝑝 (depending only on 𝑝) such
that

(2.3)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝑥𝐴𝑚Φ𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦 6 𝑐𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝑥Φ𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦

for any (finite) choice of functions Φ𝑚 ∈ 𝐿𝑝(0, 1).

Proof. By the direct evaluation one gets

(2.4) (𝑃𝑓𝑚𝑛)(𝑧) =

⎧⎪⎨⎪⎩
0, 𝑚 < 0
2𝜋
𝛿2𝑚
𝑧𝑚

1∫︀
0
𝑟𝑚+1𝑤(𝑟) 𝐽𝑚(𝑗𝑚𝑛) 𝑑𝑟, 𝑚 > 0.

Let

(2.5) 𝑓 =
∑︁
𝑚,𝑛

𝑐𝑚𝑛𝑓𝑚𝑛

be a finite sum. Since, according to Lemma 2, the system {𝑓𝑚𝑛}𝑚∈Z, 𝑛∈N is complete
in 𝐿𝑝(𝐷), it follows that 𝑃 is a bounded operator if and only if there exists a
constant 𝐵(𝑝) (which depends only on 𝑝) such that the inequality

(2.6) ‖𝑃𝑓‖𝑝 6 𝐵(𝑝) ‖𝑓‖𝑝
holds for any choice of function 𝑓 of type (2.5). Expanding (2.6) (keeping in mind
(2.4) and (2.5)) we get

(2.7)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑛

∑︁
𝑚>0

2𝜋𝑐𝑚𝑛
𝑟𝑚𝑒𝑖𝑚𝜃

𝛿2𝑚
𝑤(𝑟)1/𝑝 𝑟1/𝑝

1∫︁
0

𝑦𝑚+1𝑤(𝑦) 𝐽𝑚(𝑗𝑚𝑛𝑦) 𝑑𝑦
⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃

6 𝐵(𝑝)𝑝
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚

𝑒𝑖𝑚𝜃
∑︁
𝑛

𝑐𝑚𝑛𝐽𝑚(𝑗𝑚𝑛𝑟) 𝑟1/𝑝𝑤(𝑟)1/𝑝
⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃.

Letting

(2.8) Φ𝑚(𝑟) =
∑︁
𝑛

𝑐𝑚𝑛 𝑟
1/𝑝𝑤(𝑟)1/𝑝𝐽𝑚(𝑗𝑚𝑛𝑟),

we get

∑︁
𝑛

2𝜋𝑐𝑚𝑛
𝑟𝑚

𝛿2𝑚
𝑤(𝑟)1/𝑝 𝑟1/𝑝

1∫︁
0

𝑦𝑚+1 𝑤(𝑦) 𝐽𝑚(𝑗𝑚𝑛𝑦) 𝑑𝑦 = 𝐴𝑚Φ𝑚(𝑟)
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and hence, the inequality (2.7) becomes

(2.9)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝜃𝐴𝑚Φ𝑚(𝑟)

⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃 6 𝐵(𝑝)𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚

𝑒𝑖𝑚𝜃 Φ𝑚(𝑟)
⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃.

Since the system of functions
{︀
𝑟1/𝑝𝑤(𝑟)1/𝑝𝐽𝑚(𝑗𝑚𝑛𝑟)

}︀∞
𝑛=1 is complete in 𝐿𝑝(0, 1) for

every 𝑚 ∈ Z (Lemma 1), then (2.6) implies (2.9) not only for functions of type (2.8)
but also for arbitrary Φ𝑚 ∈ 𝐿𝑝(0, 1) (because all the operators 𝐴𝑚 are bounded
and the sums in (2.9) are finite).

Conversely, if (2.9) holds for arbitrary (finite) choice of Φ𝑚 ∈ 𝐿𝑝(0, 1), then
by choosing Φ𝑚 as in (2.8) we get that (2.6) holds for functions 𝑓 of type (2.5).
Since the system {𝑓𝑚𝑛}𝑚∈Z, 𝑛∈N is complete in 𝐿𝑝(𝐷), (by Lemma 2) (2.6) holds
for every 𝑓 ∈ 𝐿𝑝(𝐷) and, hence, 𝑃 is a bounded operator. Therefore, 𝑃 is bounded
on 𝐿𝑝(𝐷) if and only if (2.9) holds for any (finite) choice of Φ𝑚 ∈ 𝐿𝑝(0, 1). Let us
now show that (2.9) is equivalent with the following inequality:

(2.10)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝜃𝐴𝑚Φ𝑚(𝑟)

⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃 6 𝑐𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝜃Φ𝑚(𝑟)

⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃.

for any (finite) choice of Φ𝑚 ∈ 𝐿𝑝(0, 1) (where 𝑐𝑝 depends only on 𝑝). By letting
Φ𝑚 = 0 for 𝑚 < 0 in (2.9), we obtain (2.10) with 𝑐𝑝 = 𝐵(𝑝).

Conversely, suppose that (2.10) holds. By the Riesz Theorem [7], the following
inequality holds

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝜃Φ𝑚(𝑟)

⃒⃒⃒⃒𝑝
𝑑𝜃 6 𝐾1(𝑝)𝑝

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚

𝑒𝑖𝑚𝜃 Φ𝑚(𝑟)
⃒⃒⃒⃒𝑝
𝑑𝜃

(one may put 𝐾1(𝑝) = 1/ sin(𝜋/𝑝) based on Hollenbeck–Verbitsky result [4]), then
by integrating (over 𝑟) the previous inequality we obtain

(2.11)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚>0
𝑒𝑖𝑚𝜃Φ𝑚(𝑟)

⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃 6 𝐾1(𝑝)𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒∑︁
𝑚

𝑒𝑖𝑚𝜃Φ𝑚(𝑟)
⃒⃒⃒⃒𝑝
𝑑𝑟 𝑑𝜃.

So, from (2.10) and (2.11) it follows that (2.9) holds with 𝐵(𝑝) = 𝑐𝑝 ·𝐾1(𝑝) Thus,
Lemma 3 is proven. �

Lemma 2.4. The sequence (𝜃𝑛𝜈𝑚𝑘)
∞
𝑚=0 (𝑛 ∈ N, 𝑚 > 0, 𝜈, 𝑘 ∈ {1, 2, . . . , 𝑛}) has

a uniformly bounded number of the intervals of monotonicity.

Proof. Since

𝜃𝑛𝜈𝑚+1,𝑘 − 𝜃𝑛𝜈𝑚,𝑘 = 𝑛
(︃ 1∫︁

0

𝑥2𝑚+3𝑤(𝑥) 𝑑𝑥
1∫︁

0

𝑥2𝑚+1𝑤(𝑥) 𝑑𝑥
)︃−1

· Φ(𝑚) ·𝐻𝑛𝑘𝜈(𝑚)

we have, by the hypothesis on zeroes of the functions 𝐻𝑛𝑘𝜈 , that the sequence
(𝜃𝑛𝜈𝑚𝑘)

∞
𝑚=0 has uniformly bounded number of the intervals of monotonicity, for all
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𝑛, 𝑘, 𝜈 such that 𝐼𝑛𝑘 , 𝐼𝑛𝜈 ⊂ [𝑐0, 1]. If at least one of the intervals 𝐼𝑛𝑘 , 𝐼𝑛𝜈 is contained
in [0, 𝑐0], then

𝐻𝑛𝑘𝜈(𝜆) 6 (𝑐0 −𝐺(𝜆))
∫︁

𝐼𝑛
𝑘
×𝐼𝑛𝜈

(𝑥𝑦)𝜆(𝑥𝑤(𝑥))1/𝑝(𝑦 𝑤(𝑦))1/𝑞𝑑𝑥 𝑑𝑦.

Having in mind that the function 𝜆 ↦→ 𝐺(𝜆) is increasing and that lim𝜆→+∞𝐺(𝜆) =
1, we have 𝐻𝑛𝑘𝜈(𝜆) < 0 for all 𝜆 > 𝜆0 = 𝜆0(𝑐0). Hence, the sequence (𝜃𝑛𝜈𝑚𝑘)

∞
𝑚=0

decreases for 𝑚 > [𝜆0] + 1 and so it has uniformly bounded number of the intervals
of monotonicity �

Lemma 2.5. Let

𝜃𝑛𝜈𝑚𝑘 = 2𝜋
𝛿2𝑚
· 𝑛 ·

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑥𝑚+1/𝑝𝑤(𝑥)1/𝑝𝑑𝑥 ·
𝜈/𝑛∫︁

(𝜈−1)/𝑛

𝑦𝑚+1/𝑞𝑤(𝑦)1/𝑞𝑑𝑦

(𝑛 ∈ N, 𝑚 > 0, 𝜈, 𝑘 ∈ {1, 2, . . . , 𝑛}). Then⃦⃦⃦⃦∑︁
𝑚>0
𝜃𝑛𝜈𝑚𝑘 𝑎𝑚 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

6 𝑐(𝑛)
𝑘𝜈

⃦⃦⃦⃦∑︁
𝑚>0
𝑎𝑚 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

(𝑝 > 1),

where

𝑐
(𝑛)
𝑘𝜈 = 4𝑁0𝜋𝑛 ·𝐴(𝑝) ·

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑥

𝜈/𝑛∫︁
(𝜈−1)/𝑛

𝑇𝑡(𝑥𝑦)𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞 𝑑𝑦

and 𝐴(𝑝) is the constant from Theorem 2 (𝑁0 does not depend on 𝑛, 𝑘, 𝜈).

Proof. It is sufficient to show that the sequence {𝜃𝑛𝜈𝑚𝑘}
∞
𝑚=0 satisfies the condi-

tions of Theorem 2. By Lemma 4, there is a positive number 𝑁0 such that sequence
{𝜃𝑛𝜈𝑚𝑘}

∞
𝑚=0, has the number of the intervals of monotonicity not greater than 𝑁0 for

𝑛 ∈ N and every 𝑘, 𝜈 ∈ {1, 2, . . . , 𝑛}.
Let 𝑠 ∈ N. Then the following holds

2𝑠+1−1∑︁
𝑗=2𝑠

⃒⃒
𝜃𝑛𝜈𝑗𝑘 − 𝜃𝑛𝜈𝑗+1,𝑘

⃒⃒
6 2𝑁0 sup

𝑚>0
|𝜃𝑛𝜈𝑚𝑘|

= sup
𝑚>0

4𝑁0𝜋𝑛

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑥

𝜈/𝑛∫︁
(𝜈−1)/𝑛

(𝑥𝑦)𝑚

𝛿2𝑚
𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞𝑥1/𝑝𝑦1/𝑞𝑑𝑦

6 4𝑁0𝜋𝑛

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑥

𝜈/𝑛∫︁
(𝜈−1)/𝑛

𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞𝑑𝑦.
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The proof of the Lemma is completed by applying Theorem 2 with

𝑀 = 4𝑁0𝜋𝑛

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑥

𝜈/𝑛∫︁
(𝜈−1)/𝑛

𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞𝑑𝑦. �

Lemma 2.6. Let
{︀
𝑎

(𝑛)
𝑚𝑘

}︀
be complex numbers (0 6 𝑚 6 𝑁, 1 6 𝑘 6 𝑛). If the

condition (1.2) is satisfied, then there exists a constant 𝐵𝑝 (which depends only on
𝑝) such that

(2.12)
𝑛∑︁
𝑘=1

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑛∑︁
𝜈=1

(︂ 𝑁∑︁
𝑚=0
𝜃𝑛𝜈𝑚𝑘 𝑎

(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

)︂⃒⃒⃒⃒𝑝
𝑑𝑥 6 𝐵𝑝𝑝

𝑛∑︁
𝜈=1

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑎(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃒⃒⃒⃒𝑝
𝑑𝑥.

Proof. According to Lemma 5, the following holds

(2.13)
⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝜃𝑛𝜈𝑚𝑘 𝑎

(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

6 𝑐(𝑛)
𝑘𝜈

⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝑎(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

,

(𝑛 ∈ N, 𝜈, 𝑘 ∈ {1, 2, . . . , 𝑛}) and so we obtain

(2.14)

𝑛∑︁
𝑘=1

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑛∑︁
𝜈=1

(︂ 𝑁∑︁
𝑚=0
𝜃𝑛𝜈𝑚𝑘 𝑎

(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

)︂⃒⃒⃒⃒𝑝
𝑑𝑥 =

𝑛∑︁
𝑘=1

⃦⃦⃦⃦ 𝑛∑︁
𝜈=1

(︂ 𝑁∑︁
𝑚=0
𝜃𝑛𝜈𝑚𝑘 𝑎

(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

)︂⃦⃦⃦⃦𝑝
𝑝

according to Minkowski inequality

6
𝑛∑︁
𝑘=1

(︂ 𝑛∑︁
𝜈=1

⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝜃𝑛𝜈𝑚𝑘 𝑎

(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

)︂𝑝
6
𝑛∑︁
𝑘=1

(︂ 𝑛∑︁
𝜈=1
𝑐

(𝑛)
𝑘𝜈

⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝑎(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

)︂𝑝
according to (2.13).

According to Theorem 3, putting 𝑥𝜈 =
⃦⃦∑︀𝑁

𝑚=0 𝑎
(𝑛)
𝑚𝜈 𝑒𝑖𝑚𝑥

⃦⃦
𝑝

(𝜈 = 1, 2, . . . , 𝑛),
one gets

(2.15)
𝑛∑︁
𝑘=1

(︂ 𝑛∑︁
𝜈=1
𝑐

(𝑛)
𝑘𝜈

⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝑎(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦
𝑝

)︂𝑝
6 𝜆𝑝

𝑛∑︁
𝜈=1

⃦⃦⃦⃦ 𝑁∑︁
𝑚=0
𝑎(𝑛)
𝑚𝜈 𝑒

𝑖𝑚𝑥

⃦⃦⃦⃦𝑝
𝑝

,

where

𝜆 = sup
𝑛>1

max
{︂

max
16𝑘6𝑛

𝑛∑︁
𝜈=1
𝑐

(𝑛)
𝑘𝜈 , max

16𝜈6𝑛

𝑛∑︁
𝑘=1
𝑐

(𝑛)
𝑘𝜈

}︂
.

Let us estimate 𝜆. Since

𝑛∑︁
𝑘=1
𝑐

(𝑛)
𝑘𝜈 = 4𝑁0𝜋𝐴(𝑝)𝑛

𝜈/𝑛∫︁
(𝜈−1)/𝑛

𝑑𝑦

1∫︁
0

𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞 𝑑𝑥,
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by the Mean Value Theorem (for integrals), we get

𝜈/𝑛∫︁
(𝜈−1)/𝑛

𝑑𝑦

1∫︁
0

𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑤(𝑦)1/𝑞𝑑𝑥 = 1
𝑛

1∫︁
0

𝑇 (𝑥𝜃𝑛)𝑤(𝑥)1/𝑝𝑤(𝜃𝑛)1/𝑞𝑑𝑥,

where 𝜈−1
𝑛 6 𝜃𝑛 6

𝜈
𝑛 , and hence, it follows

𝑛∑︁
𝑘=1
𝑐

(𝑛)
𝑘𝜈 = 4𝑁0𝜋𝐴(𝑝)𝑤(𝜃𝑛)1/𝑞

1∫︁
0

𝑇 (𝑥𝜃𝑛)𝑤(𝑥)1/𝑝𝑑𝑥

6 4𝑁0𝜋𝐴(𝑝) sup
06𝑦<1

𝑤(𝑦)1/𝑞
1∫︁

0

𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑑𝑥.

Similarly, we obtain

𝑛∑︁
𝜈=1
𝑐

(𝑛)
𝑘𝜈 6 4𝑁0𝜋𝐴(𝑝) sup

06𝑥<1
𝑤(𝑥)1/𝑝

1∫︁
0

𝑇 (𝑥𝑦)𝑤(𝑦)1/𝑞𝑑𝑦.

Therefore,

𝜆 6 𝐵𝑝 = 4𝑁0𝜋𝐴(𝑝) max

⎧⎪⎪⎨⎪⎪⎩
sup
𝑥<1
𝑤(𝑥)1/𝑝

1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑦)1/𝑞𝑑𝑦

sup
𝑦<1
𝑤(𝑦)1/𝑞

1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑑𝑥

⎫⎪⎪⎬⎪⎪⎭
From (2.14) and (2.15) it follows that (2.12) holds with the constant

𝐵𝑝 = 4𝑁0𝜋𝐴(𝑝) max

⎧⎪⎪⎨⎪⎪⎩
sup
𝑥<1
𝑤(𝑥)1/𝑝

1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑦)1/𝑞𝑑𝑦

sup
𝑦<1
𝑤(𝑦)1/𝑞

1∫︀
0
𝑇 (𝑥𝑦)𝑤(𝑥)1/𝑝𝑑𝑥

⎫⎪⎪⎬⎪⎪⎭ �

3. Proof of Theorem 1

Necessity. If 𝑃 : 𝐿𝑝(𝐷) → 𝐿𝑝(𝐷) (1 < 𝑝 < ∞) is a bounded operator,
according to Lemma 3 inequality (2.3) holds for any (finite) choice of Φ𝑚 ∈ 𝐿𝑝(0, 1).
Letting in (2.3) all the functions Φ𝑚, except one, to be zero, one gets

1∫︁
0

2𝜋∫︁
0

⃒⃒
𝑒𝑖𝑘𝑥𝐴𝑘Φ𝑘(𝑦)

⃒⃒𝑝
𝑑𝑥 𝑑𝑦 6 𝑐𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒
𝑒𝑖𝑘𝑥Φ𝑘(𝑦)

⃒⃒𝑝
𝑑𝑥 𝑑𝑦

i.e., ‖𝐴𝑘Φ𝑘‖𝑝 6 𝑐𝑝 ‖Φ𝑘‖𝑝 for each Φ𝑘 ∈ 𝐿𝑝(0, 1) (𝑘 = 0, 1, . . .). From this we obtain

(3.1) ‖𝐴𝑘‖𝑝 6 𝑐𝑝
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for each 𝑘 = 0, 1, . . . (Here ‖𝑆‖𝑝 denotes the norm of operator 𝑆 on space 𝐿𝑝(0, 1)).
Since

‖𝐴𝑘‖𝑝 = 2𝜋
𝛿2𝑘

(︃ 1∫︁
0

𝑥𝑘𝑝+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑝

·

(︃ 1∫︁
0

𝑥𝑘𝑞+1𝑤(𝑥) 𝑑𝑥
)︃1/𝑞

from (3.1), the necessary condition of Theorem 1 follows (i.e., inequality (1.1)).
Sufficiency. Let conditions (1.1) and (1.2) of Theorem 1 hold. To establish the

boundedness of operator 𝑃 it is sufficient to prove inequality (2.3) in the case when
functions Φ𝑚 are continuous on [0, 1]. (If (2.3) holds when Φ𝑚 are continuous,
then it will also hold for Φ𝑚, ∈ 𝐿𝑝(0, 1) because operators 𝐴𝑚 are bounded and
the space 𝐶[0, 1] is dense in 𝐿𝑝(0, 1).).

Consider functions 𝐺𝑚 ∈ 𝐶[0, 1], 𝑚 = 0, 1, . . . 𝑁 and let

𝛼 = max
06𝑚6𝑁

max
06𝑥61

|𝐺𝑚(𝑥)|.

Let 𝑎(𝑛)
𝑚𝑘

def= 𝐺𝑚( 𝑘𝑛 ) and

Φ(𝑛)
𝑚 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎
(𝑛)
𝑚1, 0 6 𝑥 < 1

𝑛

𝑎
(𝑛)
𝑚2,

1
𝑛 6 𝑥 <

2
𝑛

...
𝑎

(𝑛)
𝑚𝑘,

𝑘−1
𝑛 6 𝑥 <

𝑘
𝑛

...
𝑎

(𝑛)
𝑚𝑛,

𝑛−1
𝑛 6 𝑥 6

𝑛
𝑛

It is clear that the sequence of functions
{︀

Φ(𝑛)
𝑚 (𝑥)

}︀∞
𝑛=1 converges uniformly

on [0, 1] towards 𝐺𝑚(𝑥). Note that max06𝑥61
⃒⃒
Φ(𝑛)
𝑚 (𝑥)

⃒⃒
6 𝛼 for 𝑛 > 1 and 𝑚 ∈

{0, 1, . . . , 𝑁}. Let

𝑉
(𝑛)
𝑚𝑘 = 2𝜋

𝛿2𝑚
𝑛

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑥𝑚+1/𝑝𝑤(𝑥)1/𝑝 𝑑𝑥

1∫︁
0

𝑦𝑚+1/𝑞𝑤(𝑦)1/𝑞 Φ(𝑛)
𝑚 (𝑦) 𝑑𝑦.

Then the inequality (2.12) (Lemma 6) can be written as

(3.2)
𝑛∑︁
𝑘=1

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥 𝑉

(𝑛)
𝑚𝑘

⃒⃒⃒⃒𝑝
𝑑𝑥 6 𝐵𝑝𝑝

𝑛∑︁
𝑘=1

2𝜋∫︁
0

⃒⃒⃒⃒(︂ 𝑁∑︁
𝑚=0
𝑎

(𝑛)
𝑚𝑘 𝑒

𝑖𝑚𝑥

)︂⃒⃒⃒⃒𝑝
𝑑𝑥.

Since
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦 =

𝑛∑︁
𝑘=1

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑦

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥
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and since the continuity of function 𝑦 ↦→
∫︀ 2𝜋

0
⃒⃒∑︀𝑁
𝑚=0 𝑒

𝑖𝑚𝑥𝐴𝑚Φ(𝑛)
𝑚 (𝑦)

⃒⃒𝑝
𝑑𝑥 (on [0, 1])

implies that there exist points 𝜉𝑛𝑘 such that 𝑘−1
𝑛 6 𝜉𝑛𝑘 6

𝑘
𝑛 (𝑘 = 1, 2, . . . , 𝑛) and

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑑𝑦

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 = 1

𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥,

we obtain

(3.3)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦 =

𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥.

Functions 𝑥 ↦→ 𝑥𝑚+1/𝑝𝑤(𝑥)1/𝑝/𝛿2𝑚 are continuous [0, 1] (and even uniformly con-
tinuous; we define 𝑤 at 𝑥 = 1 as 𝑤(1) = 0 for each 𝑚 = 0, 1, . . . , 𝑁 , and so, for a
given 𝜀 > 0 there exists a natural number 𝑛0 such that for 𝑛 > 𝑛0
(3.4)⃒⃒⃒⃒
⃒𝜉
𝑚+ 1

𝑝

𝑛𝑘 𝑤 (𝜉𝑛𝑘)1/𝑝

𝛿2𝑚
− 𝑛
𝛿2𝑚

𝑘/𝑛∫︁
(𝑘−1)/𝑛

𝑥𝑚+1/𝑝𝑤(𝑥)1/𝑝𝑑𝑥

⃒⃒⃒⃒
⃒ < 𝜀

(︃
2𝜋𝛼 ·

1∫︁
0

𝑦1/𝑞𝑤(𝑦)1/𝑞𝑑𝑦

)︃−1

for each 𝑚 = 0, 1, . . . , 𝑁 and each 𝑘 ∈ {1, 2, . . . , 𝑛}.
Since

𝐴𝑚Φ(𝑛)
𝑚 (𝜉𝑛𝑘) = 2𝜋

𝛿2𝑚
· 𝜉𝑚+1/𝑝
𝑛𝑘 · 𝑤 (𝜉𝑛𝑘)1/𝑝

1∫︁
0

𝑦𝑚+1/𝑞𝑤(𝑦)1/𝑞Φ(𝑛)
𝑚 (𝑦) 𝑑𝑦

from (3.4) we get

(3.5)
⃒⃒
𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)− 𝑉 (𝑛)
𝑚𝑘

⃒⃒
< 𝜀

for 𝑛 > 𝑛0, 𝑚 ∈ {0, 1, . . . , 𝑁} and 𝑘 ∈ {1, 2, . . . , 𝑛}.
Let 𝑛 > 𝑛0. From

𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥

=
𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝑉

(𝑛)
𝑚𝑘 +

𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥

(︁
𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)− 𝑉 (𝑛)
𝑚𝑘

)︁⃒⃒⃒⃒𝑝
𝑑𝑥,
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using the inequality (|𝑎|+ |𝑏|)𝑝 6 2𝑝−1(|𝑎|𝑝 + |𝑏|𝑝), 𝑝 > 1, we get

𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥

6 2𝑝−1

[︃
𝑛∑︁
𝑘=1

1
𝑛

(︃ 2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝑉

(𝑛)
𝑚𝑘

⃒⃒⃒⃒𝑝
𝑑𝑥+

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥

(︁
𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)− 𝑉 (𝑛)
𝑚𝑘

)︁⃒⃒⃒⃒𝑝
𝑑𝑥

)︃]︃

6 2𝑝−1
𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝑉

(𝑛)
𝑚𝑘

⃒⃒⃒⃒𝑝
𝑑𝑥+ (𝑁 + 1)𝑝𝜀𝑝 · 2𝜋 · 2𝑝−1

(using the inequality (3.5) in the last line).
Therefore, for 𝑛 > 𝑛0 we have:

(3.6)
𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥

6 2𝑝𝜋 𝜀𝑝 (𝑁 + 1)𝑝 + 2𝑝−1
𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝑉

(𝑛)
𝑚𝑘

⃒⃒⃒⃒𝑝
𝑑𝑥

From (3.2) and (3.6) we obtain (for 𝑛 > 𝑛0)

𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝜉𝑛𝑘)
⃒⃒⃒⃒𝑝
𝑑𝑥

6 2𝑝𝜋 𝜀𝑝 (𝑁 + 1)𝑝 + 2𝑝−1𝐵𝑝𝑝

𝑛∑︁
𝑘=1

1
𝑛

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝑎

(𝑛)
𝑚𝑘

⃒⃒⃒⃒𝑝
𝑑𝑥

= 2𝑝𝜋 𝜀𝑝 (𝑁 + 1)𝑝 + 2𝑝−1𝐵𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦.

If 𝑛 > 𝑛0, the previous inequality and (3.3) give

(3.7)
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦

6 2𝑝𝜋 𝜀𝑝 (𝑁 + 1)𝑝 + 2𝑝−1𝐵𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥Φ(𝑛)

𝑚 (𝑦)
⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦.

Since the sequence
{︀

Φ(𝑛)
𝑚

}︀∞
𝑛=1 converges uniformly towards 𝐺𝑚 on [0, 1], then, due

to the boundedness of the operators 𝐴𝑚, we get 𝐴𝑚Φ(𝑛)
𝑚 (𝑦)→ 𝐴𝑚𝐺𝑚(𝑦), 𝑛→∞,
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and so, taking the limit as 𝑛→∞ in (3.7) we obtain
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚𝐺𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦

6 2𝑝𝜋𝜀𝑝(𝑁 + 1)𝑝 + 2𝑝−1𝐵𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
, 𝑒𝑖𝑚𝑥𝐺𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦.

Keeping in mind that 𝜀 > 0 is arbitrary, then, as 𝜀→ 0+ we obtain
1∫︁

0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐴𝑚𝐺𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦 6 2𝑝−1𝐵𝑝𝑝

1∫︁
0

2𝜋∫︁
0

⃒⃒⃒⃒ 𝑁∑︁
𝑚=0
𝑒𝑖𝑚𝑥𝐺𝑚(𝑦)

⃒⃒⃒⃒𝑝
𝑑𝑥 𝑑𝑦.

Consequently inequality (2.3) holds (with 𝑐𝑝 = 21−1/𝑝 ·𝐵𝑝) if the functions Φ𝑚 are
continuous which proves Theorem 1. �

Remark 3.1. The necessary condition for the boundedness of the Bergman
projection 𝑃 on 𝐿𝑝(𝐷) can be expressed as sup𝑚>0 ‖Φ𝑚‖𝑝 · ‖Φ𝑚‖𝑞 < ∞ where
Φ𝑚(𝑧) = 𝑧𝑚/𝛿𝑚, and can be obtained if we apply operator 𝑃 to the functions
𝑓𝑚(𝑧) = |𝑧|𝑚/(𝑝−1)

𝑒𝑖𝑚𝜃, (𝑧 = 𝑟𝑒𝑖𝜃), 𝑚 = 0, 1, 2, . . ..

Remark 3.2. It would be interesting to find a weight 𝑤 that satisfies the
necessary but does not satisfy the sufficient condition of Theorem 1. Such a
weight should tend to 0 (when 𝑟 → 1−) faster then 𝑟 ↦→

(︀
1− 𝑟2

)︀𝐴 but slower
then

(︀
1− 𝑟2

)︀𝐴 exp
(︀
−𝐵

(︀
1− 𝑟2

)︀−𝛼)︀, 𝐴,𝐵, 𝛼 > 0. That is connected with non-
trivial analysis of the asymptotic behavior (when 𝜆 → +∞) of the function 𝜆 ↦→∫︀ 1

0 𝑟
𝜆𝑤(𝑟) 𝑑𝑟 which will be the subject of further investigations.
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