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ON A COMBINATORIAL GAME

Vladica Andrejić

Communicated by Rade Živaljević

Abstract. We introduce a new Nim-like two-player combinatorial game and
present a complete winning strategy for the winning side.

1. Introduction

In this paper we develop a winning strategy for a new variation of well known
combinatorial game of Nim [1]. The basic work in this topic are series of books,
Winning ways by Berlekamp, Conway, and Guy [2] which gives strategy and math-
ematics of popular games, and describes a number of new games. Further develop-
ments are given in the two volumes Games of no chance [3] and More games of no
chance [4] which are collections of articles about all aspects of combinatorial game
theory. We shall consider the following two-player game of perfect knowledge (no
chance).

The Game: There is a pile containing 𝑛 chips. Two players alternate taking
at least one, but no more than 10 chips. The game ends when all the chips are
taken, i.e., when 𝑎+𝑏 = 𝑛, where 𝑎 and 𝑏 are the numbers of chips taken by players
𝐴 and 𝐵 respectively. Player 𝐴 begins the game and he becomes the winner if
numbers 𝑎 and 𝑏 are co-prime, otherwise 𝐵 is the winner.

Variations of Nim have been played since ancient times, and our aim is to solve
our new variation, and prove the following theorem.

Theorem 1.1. The player 𝐵 has the winning strategy if and only if 𝑛 is an
even number greater than or equal to 12 which is not an integer power of 2, or if
𝑛 = 15, or if 𝑛 is divisible by 105, 165, 195, 231, 255, 273, or 285.

At the beginning the author considered 𝑛 which is not divisible by 2, 3, and 5.
Let us suppose that player 𝐴 follows the following strategy: 𝐴 takes 5 chips on the
first move; in each next move 𝐴 takes, if he can, the same amount of chips taken by
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𝐵 in his previous move; if 𝐵 took in his last move more chips than there are left,
𝐴 takes all the chips left. It is obvious that before 𝐵’s last move 𝑎 − 𝑏 = 5 holds.
As till the end of the game 𝐴 will not take more chips than 𝐵, must be 𝑎− 𝑏 6 5,
and as 𝐵 can take at most 10 chips, 𝑏− 𝑎 6 5 also holds. Thus it arises |𝑎− 𝑏| 6 5,
and since (𝑎, 𝑏) divides |𝑎− 𝑏|, we obtain (𝑎, 𝑏) 6 5. Since (𝑎, 𝑏) divides 𝑎+ 𝑏 = 𝑛,
and all factors of 𝑛 are greater than 5, it must be (𝑎, 𝑏) = 1, and 𝐴 wins. It is
interesting that if 𝑛 is a prime, then 𝐴 wins regardless of his play. Now we should
generalize the result for all integers 𝑛.

There are generalizations of this game. We can say that the players take at
least one, but no more than 𝑓(𝑛) chips, for some function 𝑓 . We shall consider
such game conditions in a future paper, in particular the case when 𝑓 is constant.

2. The Proof

Let us suppose that 𝑛 is even and 𝑛 > 12 (𝐴 can win in obvious manner for
𝑛 < 12). Let us look at the following table that helps us resolve the problem.

- A has even A has odd
Remaining A moves B moves A moves B moves

0 B B A A
1 A 1 B 1 B ♠ A ♠
2 A 1 B 2 A 2 B 1
3 A 3 B 3 A 2 B 2
4 A 3 B 4 A 4 B 3
5 A 5 B 5 A 4 B 4
6 A 5 B 6 A 6 B 5
7 A 7 B 7 A 6 B 6
8 A 7 B 8 A 8 B 7
9 A 9 B 9 A 8 B 8
10 A 9 B 10 A 10 B 9
11 B ♠ A ♠ A 10 B 10
12 B ♠ B 1 A 1 A ♠
13 A 1,2 B 1,2 B ♠ A ♠
14 A 1 B 2,3 A 2,3 B 1
15 A 3,4 B 3,4 A 2 B 2
16 A 3 B 4,5 A 4,5 B 3
17 A 5,6 B 5,6 A 4 B 4
18 A 5 B 6,7 A 6,7 B 5
19 A 7,8 B 7,8 A 6 B 6
20 A 7 B 8,9 A 8,9 B 7
21 A 9,10 B 9,10 A 8 B 8
22 A 9 B 10 A 10 B 9
23 B ♠ A ♠ A 10 B 10
24 B ♠ B 1 A 1 A ♠
25 A 1,2 B 1,2 B ♠ A ♠



ON A COMBINATORIAL GAME 23

The first column stands for the number of remaining chips of the pile. The
remaining four columns show the possibilities that depend on two things: which
player is on the move and whether the number that 𝐴 took is even or odd. The
value in the particular cell tells us which player wins and how many chips he should
take in order to win. ♠ in the cell means that the player on the move loses no matter
how many chips he takes. We can obtain this table first by filling in the 0-th row
with obvious letters. Then using previous ten rows (because player can take at
most 10 chips) we fill in the next row. When we make the table, we can notice that
winners in rows 1–12 are exactly the same as in the rows 13–24 which gives us that
rows will repeat with the period of twelve. Since 𝑛 is even, 𝐴 has to play according
to the table in order not to take even number of chips.

From the table we can see that 𝐵 can make 𝑎 to be even (and won the game)
only if 𝑛 is 12𝑘 − 1 or 12𝑘 for an integer 𝑘. This is not the case if 𝑛 is a power of
2, so 𝐴 should play according to the table, and at the end 𝑎 will be odd. But 2 is
the only prime involved in 𝑛, so 𝐴 wins.

Let 𝑛 = 2𝑚, for odd 𝑚 > 5. Player 𝐵 wishes to make 𝐴 take exactly 𝑚 chips
which will bring 𝐵 to the victory. 𝑛 ≡ 2 (mod 4), so 𝑛 ≡ 2, 6 or 10 (mod 12).
According to row 14, 18, or 22, 𝐴 must take 1, 5, or 9 chips respectively to reach
the rightmost cell of the row 25. If 𝐵 now takes 6 chips, 𝐴 will have to take also
6 chips (row 19) and head back to the row 25. 𝐵 is going to play this way until
there are 13 chips left with him on the move. Then he will take 7, 9, or 10 chips,
depending on starting position, and 𝐴 must follow with 6, 4, or 2. It is now easy
to see that this will lead to 𝑎 = 𝑏 = 𝑚, giving 𝐵 the victory.

Let 𝑛 = 2𝛼 · 𝑚, where 𝛼 > 2, and 𝑚 > 1 odd integer. Since 𝐴 has to play
according to the table again, the aim of the player 𝐵 will be to collect 𝑚(2𝛼−1− 1)
chips, leaving 𝐴 with 𝑚(2𝛼−1 + 1) chips, and winning the game. If 3|𝑚 then 12|𝑛,
so 𝐵 wins. We are left now with 𝑚 ≡ ±1 (mod 3), from where 𝑛 ≡ ±4 (mod 12).
Now 𝐴 must take 3 (or 7) chips and go to row 25. From the table we can see that
if after that 𝐵 takes 2𝑡 chips, 𝐴 must take 12−2𝑡 and return to the row 25. In this
manner player 𝐵 can increase the difference 𝑎 − 𝑏 by 0, 4 or 8 on every 12 chips.
Since at the end, there is only one chip left, it will be taken by 𝐵 and depending
on the starting position 𝑎− 𝑏 is 2 (or 6). This value can be increased for 4𝑘, where
𝑘 is at most 2 · ⌊ 𝑛12⌋. Therefore, 𝐵 wishes to increase the final value of 𝑎 − 𝑏 for
2𝑚− 2 (or 2𝑚− 6). It is now clear that 𝐵 wins if
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This becomes 4(2𝛼−2 ·𝑚− 2) > 3(𝑚− 1), and hence (2𝛼− 3)𝑚 > 5. Since 𝑚 ≡ ±1
(mod 3), odd, and greater than 1, then it is at least 5, so the inequality above holds
for 𝛼 > 2. This completes the proof in the case of even 𝑛.

If we suppose that 𝑛 = 𝑎+𝑏 is odd, then (𝑎, 𝑏) = 1 if and only if (|𝑎−𝑏|, 𝑛) = 1,
so some values of |𝑎 − 𝑏| are good for one, and the remaining values are good for
the other player. Let’s try to find the winning strategy for player 𝐵, for odd 𝑛, for
example divisible by 105. Values |𝑎−𝑏| which are good for him are 3, 5, 7, 9, 15, . . . ,
but we shall make stronger condition, and demand the victory with final |𝑎− 𝑏| ∈
𝑆 = {3, 5, 7, 9}. Denote position as triple:

(player on move, current value of 𝑎− 𝑏, remaining number of chips).
If we find for 𝐵 to win in positions (𝐴, 0, 𝑘) for odd 𝑘 and 𝑘0 6 𝑘 6 𝑘0 + 18, it will
be easy to prove 𝐵 to win for every odd 𝑘 > 𝑘0. In fact for 𝑘 > 𝑘0 + 20 after 𝐴
takes 𝑖 and (𝐵, 𝑖, 𝑘 − 𝑖), 𝐵 will take 𝑖 chips too, which returning to (𝐴, 0, 𝑘 − 2𝑖)
and 𝐵 won by induction. It is not hard to make a C-program which can prove that
𝐵 wins in our case for (𝐴, 0, 7), (𝐴, 0, 9), . . . , (𝐴, 0, 25) so this should be won by 𝐵
in all (𝐴, 0, 𝑘) for odd 𝑘 > 𝑘0 = 7. Of course 𝑛 > 105 > 7 = 𝑘0, so 𝐵 will win in
starting position (𝐴, 0, 𝑛).

This way we can solve other factorizations of 𝑛. In the table below we have
factorization of 𝑛 in which 𝐵 wins by returning to positions (𝐴, 0, 𝑘), for 𝑘 > 𝑘0
which makes it possible |𝑎− 𝑏| ∈ 𝑆, because of 𝑛 > 𝑘0.

3|𝑛, 5|𝑛, 7|𝑛 𝑆 = {3, 5, 7, 9} 𝑘0 = 7
3|𝑛, 5|𝑛, 11|𝑛 𝑆 = {3, 5, 9, 11} 𝑘0 = 11
3|𝑛, 5|𝑛, 13|𝑛 𝑆 = {3, 5, 9, 13, 15} 𝑘0 = 11
3|𝑛, 5|𝑛, 17|𝑛 𝑆 = {3, 5, 9, 15, 17, 21} 𝑘0 = 27
3|𝑛, 5|𝑛, 19|𝑛 𝑆 = {3, 5, 9, 15, 19, 21, 25, 27} 𝑘0 = 31
3|𝑛, 7|𝑛, 11|𝑛 𝑆 = {3, 7, 9, 11, 15, 21} 𝑘0 = 11
3|𝑛, 7|𝑛, 13|𝑛 𝑆 = {3, 7, 9, 13, 15, 21} 𝑘0 = 19

Now we shall find the winning strategy for player 𝐴 and odd 𝑛. 𝐴 plays first
and takes 𝑎0 chips, so we should look at positions (𝐵, 𝑎0, 𝑘) with odd 𝑎0 +𝑘. Using
the C-program we can solve remaining factorizations of 𝑛:

3 - 𝑛 𝑆 = {1, 3, 9} 𝑎0 = 6 𝑘0 = 7
3|𝑛 and 5, 7 - 𝑛 𝑆 = {1, 5, 7} 𝑎0 = 4 𝑘0 = 11

3, 7|𝑛 and 5, 11, 13 - 𝑛 𝑆 = {1, 5, 11, 13} 𝑎0 = 4 𝑘0 = 23
3, 5|𝑛 and 7, 11, 13, 17, 19 - 𝑛 𝑆 = {1, 7, 11, 13, 17, 19} 𝑎0 = 5 𝑘0 = 32

We see now that this completes the factorizations of odd 𝑛, but we should check
possible counterexamples. For this to happen it should be 𝑛 < 𝑎0 + 𝑘0 6 37, and
after a simple check (using computer), we find only one counterexample 𝑛 = 15
where 𝐵 should win. So we have completed the values of 𝑛, which proves the
theorem.
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