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A NOTE ON DIFFERENCES OF POWER MEANS
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Abstract. We give some new inequalities concerning the differences of power
means.

1. Introduction

Let �̃�𝑛 = {𝑥𝑖}𝑛1 , 𝑝𝑛 = {𝑝𝑖}𝑛1 denote two sequences of positive real numbers with∑︀𝑛
1 𝑝𝑖 = 1. From the Theory of Convex Means (cf. [1], [2], [3]), it is well known

that for 𝑡 > 1,

(1)
𝑛∑︁
1
𝑝𝑖𝑥
𝑡
𝑖 >

(︂ 𝑛∑︁
1
𝑝𝑖𝑥𝑖

)︂𝑡
,

and vice versa for 0 < 𝑡 < 1, The equality sign in (1) occurs if and only if all
members of �̃�𝑛 are equal (cf. [1]).

In this article we shall consider the difference

𝑑𝑡 = 𝑑(𝑛)
𝑡 = 𝑑(𝑛)

𝑡 (�̃�𝑛, 𝑝𝑛) :=
𝑛∑︁
1
𝑝𝑖𝑥
𝑡
𝑖 −
(︂ 𝑛∑︁

1
𝑝𝑖𝑥𝑖

)︂𝑡
, 𝑡 > 1,

and thus generated sequence 𝑑 = {𝑑𝑚}𝑚>2 of non-negative real numbers.
By the above, if all members of the sequence �̃�𝑛 are equal, then all members

of 𝑑 are zero; hence this trivial case will be excluded in the sequel.
An interesting fact is that there exists an explicit constant 𝑐𝑚, independent of

the sequences �̃�𝑛 and 𝑝𝑛, such that 𝑑𝑚−1𝑑𝑚+1 > 𝑐𝑚(𝑑𝑚)2, 𝑚 > 3.
On the contrary, we show that there is no constant 𝐶𝑚, depending only on 𝑚,

such that 𝑑𝑚−1𝑑𝑚+1 6 𝐶𝑚(𝑑𝑚)2.
Nontrivial lower bound for 𝑑𝑚 and corresponding integral inequalities will also

be given.
Finally we posed an open problem concerning the above matter.
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2. Results

Denote by 𝑆+ the space of all positive sequences. Our main result is

Theorem 1. Let 𝑝𝑛, �̃�𝑛 ∈ 𝑆+ and 𝑑𝑚 = 𝑑(𝑛)
𝑚 :=

∑︀𝑛
1 𝑝𝑖𝑥

𝑚
𝑖 − (

∑︀𝑛
1 𝑝𝑖𝑥𝑖)𝑚;

𝑚 ∈ N. Then

(2) 𝑑𝑚−1𝑑𝑚+1 > 𝑐𝑚(𝑑𝑚)2, 𝑚 > 3,

with the best possible constant 𝑐𝑚 = 1− 2
𝑚(𝑚−1) .

This inequality is very precise. For example

𝑑
(2)
2 𝑑

(2)
4 −

2
3
(︀
𝑑

(2)
3
)︀2 = 1

3(𝑝1𝑝2)2(1 + 𝑝1𝑝2)(𝑥1 − 𝑥2)6.

Non-trivial lower bound for 𝑑𝑚 follows.

Theorem 2. For 𝑑𝑚 defined as above, we have

𝑑𝑚 >

(︂
𝑚

2

)︂
(𝑑3/3)𝑚−2

(𝑑2)𝑚−3 , 𝑚 > 2.

Applying the standard procedure (cf. [1, p. 131]), we pass from finite sums to
definite integrals and obtain

Theorem 3. Let 𝑓(𝑡), 𝑝(𝑡) be non-negative, continuous and integrable functions
for 𝑡 ∈ [𝑎, 𝑏], with

∫︀ 𝑏
𝑎
𝑝(𝑡) 𝑑𝑡 = 1. Denote

𝐷𝑚 = 𝐷𝑚(𝑎, 𝑏 ; 𝑓, 𝑝) :=
∫︁ 𝑏
𝑎

𝑝(𝑡) 𝑓𝑚(𝑡) 𝑑𝑡−
(︂∫︁ 𝑏
𝑎

𝑝(𝑡) 𝑓(𝑡) 𝑑𝑡
)︂𝑚
.

Then
(i) 𝐷𝑚−1𝐷𝑚+1 >

(︀
1− 2

𝑚(𝑚−1)
)︀
(𝐷𝑚)2, 𝑚 > 3;

(ii) If 𝑓(𝑡) ̸= 𝐶, 𝑡 ∈ [𝑎, 𝑏], we have

𝐷𝑚 >

(︂
𝑚

2

)︂
(𝐷3/3)𝑚−2

(𝐷2)𝑚−3 , 𝑚 > 2.

3. Proofs

We start with an interesting formula. For 𝑝𝑛, �̃�𝑛 ∈ 𝑆+, making a shift 𝑥𝑖 →
𝑥𝑖 + 𝑡, we obtain

𝑑𝑚(𝑡) :=
𝑛∑︁
1
𝑝𝑖(𝑥𝑖 + 𝑡)𝑚 −

(︂ 𝑛∑︁
1
𝑝𝑖(𝑥𝑖 + 𝑡)

)︂𝑚
=
𝑛∑︁
1
𝑝𝑖(𝑡+ 𝑥𝑖)𝑚 −

(︂
𝑡+

𝑛∑︁
1
𝑝𝑖𝑥𝑖

)︂𝑚
.

Developing, we get

(3) 𝑑𝑚(𝑡) =
𝑛∑︁
2
𝑑𝑖

(︂
𝑚

𝑖

)︂
𝑡𝑚−𝑖.

Therefore 𝑑𝑚(𝑡) belongs to the class of Appell polynomials i.e., 𝑑′𝑚(𝑡) = 𝑚𝑑𝑚−1(𝑡)
(cf [3], [4]).
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If the properties of this class of polynomials lead to the proof of Theorem 1 is
left to the readers to examine. For example, by (1), 𝑑4(𝑡) is non-negative for each
𝑡 ∈ R. Hence by (3),

𝑑4(𝑡) = 𝑑4 + 4𝑑3𝑡+ 6𝑑2𝑡2 > 0.
Putting 𝑡 = − 1

3
𝑑3
𝑑2

, we obtain (2) with 𝑚 = 3.
In this article we turn the other way, noting that (2) can be rewritten in the

form
𝑑𝑚−1

(𝑚− 1)(𝑚− 2)
𝑑𝑚+1

(𝑚+ 1)𝑚 >
(︁ 𝑑𝑚
𝑚(𝑚− 1)

)︁2
, 𝑚 > 3.

Hence, (2) is equivalent to the assertion that 𝑑𝑚
𝑚(𝑚−1) is log-convex for 𝑚 > 3.

Definition. A sequence of positive numbers {𝑐𝑚} is log-convex (𝑐𝑚 ∈ 𝐿𝐶) if
𝑐𝑚−1𝑐𝑚+1 > (𝑐𝑚)2.

We quote here some useful lemmas from log-convex theory (cf [3]).

Lemma 3.1. A positive sequence {𝑐𝑚} is log-convex if and only if the inequality
𝑐𝑚−1𝑢

2 + 2𝑐𝑚𝑢𝑣 + 𝑐𝑚+1𝑣
2 > 0 holds for each real 𝑢, 𝑣.

Lemma 3.2. Let 𝑎𝑚, 𝑏𝑚 ∈ 𝐿𝐶 and 𝐴,𝐵,𝐶 be arbitrary positive constants.
Then: (i) 𝐴𝐶𝑚+𝐵𝑎𝑚 ∈ 𝐿𝐶; (ii) 𝐴𝑎𝑚 +𝐵𝑏𝑚 ∈ 𝐿𝐶.

Now we are able to produce a proof of Theorem 1 by induction on 𝑛.

Proof of Theorem 1. For 𝑛 = 2 we have to prove that

(4) 𝑝1𝑥
𝑚
1 + 𝑝2𝑥𝑚2 − (𝑝1𝑥1 + 𝑝2𝑥2)𝑚

𝑚(𝑚− 1) ∈ 𝐿𝐶,

holds for each positive 𝑥1, 𝑥2, 𝑝1, 𝑝2 with 𝑝1 + 𝑝2 = 1. To this end, we need the
following simple assertion

Lemma 3.3. If 𝐴 > 𝐵 > 0, then 𝐴
𝑚−𝐵𝑚
𝑚 ∈ 𝐿𝐶, holds for 𝑚 > 2.

Now, for fixed 𝑥1, 𝑥2, 𝑝1, 𝑝2 and arbitrary 𝜉 > 1 put 𝐴 = 𝜉, 𝐵 = 𝑝1𝜉 + 𝑝2; note
that 𝐴 > 𝐵 since 𝑝1 + 𝑝2 = 1. By lemmas 1, 3 and 2(i), for arbitrary 𝑢, 𝑣 ∈ R,
𝑚 > 3, we get

𝑝1𝑥
𝑚−1
2

(︁𝜉𝑚−2 − (𝑝1𝜉 + 𝑝2)𝑚−2

𝑚− 2

)︁
𝑢2 + 2𝑝1𝑥𝑚2

(︁𝜉𝑚−1 − (𝑝1𝜉 + 𝑝2)𝑚−1

𝑚− 1

)︁
𝑢𝑣(5)

+ 𝑝1𝑥𝑚+1
2

(︁𝜉𝑚 − (𝑝1𝜉 + 𝑝2)𝑚

𝑚

)︁
𝑣2 > 0.

Integrating (5) with respect to 𝜉 over 𝜉 ∈ [1, 𝑥1/𝑥2], we obtain

𝑝1𝑥
𝑚−1
1 + 𝑝2𝑥𝑚−1

2 − (𝑝1𝑥1+𝑝2𝑥2)𝑚−1

(𝑚− 1)(𝑚− 2) 𝑢2 + 2𝑝1𝑥
𝑚
1 + 𝑝2𝑥𝑚2 − (𝑝1𝑥1+𝑝2𝑥2)𝑚

𝑚(𝑚− 1) 𝑢𝑣

+𝑝1𝑥
𝑚+1
1 + 𝑝2𝑥𝑚+1

2 − (𝑝1𝑥1 + 𝑝2𝑥2)𝑚+1

(𝑚+ 1)𝑚 𝑣2 > 0.

Therefore by Lemma 1 we conclude that (4) is true.
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Let 𝑇 := 1
1−𝑝𝑛
∑︀𝑛−1

1 𝑝𝑖𝑥𝑖. Then

𝑑
(𝑛)
𝑚

𝑚(𝑚− 1) = (1− 𝑝𝑛)
𝑑

(𝑛−1)
𝑚

𝑚(𝑚− 1) + (1− 𝑝𝑛)𝑇𝑚 + 𝑝𝑛𝑥𝑚𝑛 − ((1− 𝑝𝑛)𝑇 + 𝑝𝑛𝑥𝑛)𝑚

𝑚(𝑚− 1) .

Since 𝑑(𝑛−1)
𝑚

𝑚(𝑚−1) ∈ 𝐿𝐶 by induction hypothesis, by (4) and Lemma 2(ii), it follows

that 𝑑(𝑛)
𝑚

𝑚(𝑚−1) ∈ 𝐿𝐶, and the proof is done. �

To see that the constant 𝑐𝑚 = 1 − 2
𝑚(𝑚−1) is best possible, consider the rep-

resentation (3). Since variable 𝑡 is independent of the sequences 𝑝𝑛, �̃�𝑛, we have
𝑑𝑚(𝑡) ∼ 𝑑2

(︀
𝑚
2
)︀
𝑡𝑚−2 (𝑡→∞). Hence

𝑑𝑚−1(𝑡)𝑑𝑚+1(𝑡)
(𝑑𝑚(𝑡))2 ∼

(︀
𝑚−1

2
)︀
𝑡𝑚−3(︀𝑚+1

2
)︀
𝑡𝑚−1(︀(︀

𝑚
2
)︀
𝑡𝑚−2
)︀2 = 𝑐𝑚 (𝑡→∞).

Proof of Theorem 2. From (2) we get 𝑑𝑚+1/𝑑𝑚 > 𝑐𝑚(𝑑𝑚/𝑑𝑚−1), 𝑚 > 3.
Hence

𝑚∏︁
3

(︂
𝑑𝑘+1

𝑑𝑘

)︂
>
𝑚∏︁
3

(𝑘 + 1)(𝑘 − 2)
𝑘(𝑘 − 1)

𝑚∏︁
3

(︂
𝑑𝑘
𝑑𝑘−1

)︂
,

i.e.,
𝑑𝑚+1

𝑑𝑚
>
(︁ 𝑚+ 1

3(𝑚− 1)

)︁(︁𝑑3
𝑑2

)︁
, 𝑚 > 2.

Therefore, the conclusion follows from

𝑑𝑚
𝑑2

=
𝑚−1∏︁

2

(︂
𝑑𝑘+1

𝑑𝑘

)︂
>
𝑚−1∏︁

2

(︂
𝑘 + 1
𝑘 − 1

)︂𝑚−1∏︁
2

(︂
𝑑3
3𝑑2

)︂
=
(︂
𝑚

2

)︂(︂
𝑑3
3𝑑2

)︂𝑚−2
. �

Proof of Theorem 3. Write 𝑑(𝑛)
𝑚 in the form

𝑑(𝑛)
𝑚 =

∑︀𝑛
1 𝑝𝑛𝑖𝑥

𝑚
𝑛𝑖∑︀𝑛

1 𝑝𝑛𝑖
−
(︂∑︀𝑛

1 𝑝𝑛𝑖𝑥𝑛𝑖∑︀𝑛
1 𝑝𝑛𝑖

)︂𝑚
,

with 𝑝𝑛𝑖 := 𝑝
(︀
𝑎 + 𝑖 𝑏−𝑎𝑛

)︀
, 𝑥𝑛𝑖 := 𝑓

(︀
𝑎 + 𝑖 𝑏−𝑎𝑛

)︀
. Passing to the limit, we obtain

lim𝑛→∞ 𝑑(𝑛)
𝑚 = 𝐷𝑚 and from Theorems 1, 2 the assertions of Theorem 3 follow. �

There remains a problem of inverse inequality for the sequence 𝑑.

Question 1. Is there a constant 𝐶𝑚, independent of 𝑝𝑛, �̃�𝑛 ∈ 𝑆+, such that
𝑑𝑚−1𝑑𝑚+1 6 𝐶𝑚(𝑑𝑚)2, 𝑚 > 2.

The answer to this question is negative.

Proof. We apply a special choice of the sequences 𝑝𝑛, �̃�𝑛 ∈ 𝑆+. Namely, for
fixed 𝑛 > 2 let 𝑝𝑖 :=

(︀
𝑛−1
𝑖−1
)︀
/2𝑛−1; 𝑥𝑖 := (1− 𝑡)𝑖−1(1 + 𝑡)𝑛−𝑖, −1 < 𝑡 < 1. We obtain

a sequence 𝑑* = {𝑑*𝑚(𝑡)} with

𝑑*𝑚(𝑡) =
(︁ (1− 𝑡)𝑚 + (1 + 𝑡)𝑚

2

)︁𝑛−1
− 1.
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For sufficiently large 𝑛, we have
𝑑*2(1/

√
2) ∼ (3/2)𝑛−1; 𝑑*4(1/

√
2) ∼ (17/4)𝑛−1; 𝑑*3(1/

√
2) ∼ (5/2)𝑛−1.

Hence 𝐶3 > (51/50)𝑛−1 →∞ (𝑛→∞). �

Therefore, we have to reformulate the problem.

Question 2. Is there a constant 𝐶𝑚,𝑛 such that 𝑑(𝑛)
𝑚−1𝑑

(𝑛)
𝑚+1 6 𝐶𝑚,𝑛(𝑑

(𝑛)
𝑚 )2,

for each 𝑚,𝑛 > 2, independently of sequences 𝑝𝑛, �̃�𝑛 ∈ 𝑆+?

The best possible constant (if exists) is given by

𝐶𝑚,𝑛 = sup
{︂
𝑑

(𝑛)
𝑚−1𝑑

(𝑛)
𝑚+1

(𝑑(𝑛)
𝑚 )2

| 𝑝𝑛, �̃�𝑛 ∈ 𝑆+

}︂
Examining the sequence 𝑑*, we conclude that 𝐶𝑚,𝑛 > (1 + 𝐶/𝑚2)𝑛−1, where

𝐶 is an absolute constant.
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