A NOTE ON DIFFERENCES OF POWER MEANS

Slavko Simić

Communicated by Stevan Pilipović

Abstract. We give some new inequalities concerning the differences of power means.

1. Introduction

Let $\tilde{x}_{n}=\left\{x_{i}\right\}_{1}^{n}, \tilde{p}_{n}=\left\{p_{i}\right\}_{1}^{n}$ denote two sequences of positive real numbers with $\sum_{1}^{n} p_{i}=1$. From the Theory of Convex Means (cf. [1], [2], [3]), it is well known that for $t>1$,

$$
\begin{equation*}
\sum_{1}^{n} p_{i} x_{i}^{t} \geqslant\left(\sum_{1}^{n} p_{i} x_{i}\right)^{t} \tag{1}
\end{equation*}
$$

and vice versa for $0<t<1$, The equality sign in (1) occurs if and only if all members of \tilde{x}_{n} are equal (cf. [1]).

In this article we shall consider the difference

$$
d_{t}=d_{t}^{(n)}=d_{t}^{(n)}\left(\tilde{x}_{n}, \tilde{p}_{n}\right):=\sum_{1}^{n} p_{i} x_{i}^{t}-\left(\sum_{1}^{n} p_{i} x_{i}\right)^{t}, \quad t>1
$$

and thus generated sequence $d=\left\{d_{m}\right\}_{m \geqslant 2}$ of non-negative real numbers.
By the above, if all members of the sequence \tilde{x}_{n} are equal, then all members of d are zero; hence this trivial case will be excluded in the sequel.

An interesting fact is that there exists an explicit constant c_{m}, independent of the sequences \tilde{x}_{n} and \tilde{p}_{n}, such that $d_{m-1} d_{m+1} \geqslant c_{m}\left(d_{m}\right)^{2}, m \geqslant 3$.

On the contrary, we show that there is no constant C_{m}, depending only on m, such that $d_{m-1} d_{m+1} \leqslant C_{m}\left(d_{m}\right)^{2}$.

Nontrivial lower bound for d_{m} and corresponding integral inequalities will also be given.

Finally we posed an open problem concerning the above matter.

[^0]
2. Results

Denote by S_{+}the space of all positive sequences. Our main result is
THEOREM 1. Let $\tilde{p}_{n}, \tilde{x}_{n} \in S_{+}$and $d_{m}=d_{m}^{(n)}:=\sum_{1}^{n} p_{i} x_{i}^{m}-\left(\sum_{1}^{n} p_{i} x_{i}\right)^{m}$; $m \in \mathbb{N}$. Then

$$
\begin{equation*}
d_{m-1} d_{m+1} \geqslant c_{m}\left(d_{m}\right)^{2}, \quad m \geqslant 3 \tag{2}
\end{equation*}
$$

with the best possible constant $c_{m}=1-\frac{2}{m(m-1)}$.
This inequality is very precise. For example

$$
d_{2}^{(2)} d_{4}^{(2)}-\frac{2}{3}\left(d_{3}^{(2)}\right)^{2}=\frac{1}{3}\left(p_{1} p_{2}\right)^{2}\left(1+p_{1} p_{2}\right)\left(x_{1}-x_{2}\right)^{6} .
$$

Non-trivial lower bound for d_{m} follows.
Theorem 2. For d_{m} defined as above, we have

$$
d_{m} \geqslant\binom{ m}{2} \frac{\left(d_{3} / 3\right)^{m-2}}{\left(d_{2}\right)^{m-3}}, \quad m \geqslant 2 .
$$

Applying the standard procedure (cf. [1, p.131]), we pass from finite sums to definite integrals and obtain

Theorem 3. Let $f(t), p(t)$ be non-negative, continuous and integrable functions for $t \in[a, b]$, with $\int_{a}^{b} p(t) d t=1$. Denote

$$
D_{m}=D_{m}(a, b ; f, p):=\int_{a}^{b} p(t) f^{m}(t) d t-\left(\int_{a}^{b} p(t) f(t) d t\right)^{m}
$$

Then
(i) $D_{m-1} D_{m+1} \geqslant\left(1-\frac{2}{m(m-1)}\right)\left(D_{m}\right)^{2}, m \geqslant 3$;
(ii) If $f(t) \neq C, t \in[a, b]$, we have

$$
D_{m} \geqslant\binom{ m}{2} \frac{\left(D_{3} / 3\right)^{m-2}}{\left(D_{2}\right)^{m-3}}, \quad m \geqslant 2 .
$$

3. Proofs

We start with an interesting formula. For $\tilde{p}_{n}, \tilde{x}_{n} \in S_{+}$, making a shift $x_{i} \rightarrow$ $x_{i}+t$, we obtain
$d_{m}(t):=\sum_{1}^{n} p_{i}\left(x_{i}+t\right)^{m}-\left(\sum_{1}^{n} p_{i}\left(x_{i}+t\right)\right)^{m}=\sum_{1}^{n} p_{i}\left(t+x_{i}\right)^{m}-\left(t+\sum_{1}^{n} p_{i} x_{i}\right)^{m}$.
Developing, we get

$$
\begin{equation*}
d_{m}(t)=\sum_{2}^{n} d_{i}\binom{m}{i} t^{m-i} \tag{3}
\end{equation*}
$$

Therefore $d_{m}(t)$ belongs to the class of Appell polynomials i.e., $d_{m}^{\prime}(t)=m d_{m-1}(t)$ (cf [3], [4]).

If the properties of this class of polynomials lead to the proof of Theorem 1 is left to the readers to examine. For example, by $(1), d_{4}(t)$ is non-negative for each $t \in \mathbb{R}$. Hence by (3),

$$
d_{4}(t)=d_{4}+4 d_{3} t+6 d_{2} t^{2} \geqslant 0
$$

Putting $t=-\frac{1}{3} \frac{d_{3}}{d_{2}}$, we obtain (2) with $m=3$.
In this article we turn the other way, noting that (2) can be rewritten in the form

$$
\frac{d_{m-1}}{(m-1)(m-2)} \frac{d_{m+1}}{(m+1) m} \geqslant\left(\frac{d_{m}}{m(m-1)}\right)^{2}, \quad m \geqslant 3 .
$$

Hence, (2) is equivalent to the assertion that $\frac{d_{m}}{m(m-1)}$ is log-convex for $m \geqslant 3$.
Definition. A sequence of positive numbers $\left\{c_{m}\right\}$ is log-convex $\left(c_{m} \in L C\right)$ if $c_{m-1} c_{m+1} \geqslant\left(c_{m}\right)^{2}$.

We quote here some useful lemmas from log-convex theory (cf [3]).
Lemma 3.1. A positive sequence $\left\{c_{m}\right\}$ is log-convex if and only if the inequality $c_{m-1} u^{2}+2 c_{m} u v+c_{m+1} v^{2} \geqslant 0$ holds for each real u, v.

Lemma 3.2. Let $a_{m}, b_{m} \in L C$ and A, B, C be arbitrary positive constants. Then: (i) $A C^{m+B} a_{m} \in L C$;
(ii) $A a_{m}+B b_{m} \in L C$.

Now we are able to produce a proof of Theorem 1 by induction on n.
Proof of Theorem 1. For $n=2$ we have to prove that

$$
\begin{equation*}
\frac{p_{1} x_{1}^{m}+p_{2} x_{2}^{m}-\left(p_{1} x_{1}+p_{2} x_{2}\right)^{m}}{m(m-1)} \in L C \tag{4}
\end{equation*}
$$

holds for each positive $x_{1}, x_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$. To this end, we need the following simple assertion

Lemma 3.3. If $A \geqslant B>0$, then $\frac{A^{m}-B^{m}}{m} \in L C$, holds for $m \geqslant 2$.
Now, for fixed $x_{1}, x_{2}, p_{1}, p_{2}$ and arbitrary $\xi \geqslant 1$ put $A=\xi, B=p_{1} \xi+p_{2}$; note that $A \geqslant B$ since $p_{1}+p_{2}=1$. By lemmas 1,3 and $2(\mathrm{i})$, for arbitrary $u, v \in \mathbb{R}$, $m \geqslant 3$, we get

$$
\begin{align*}
p_{1} x_{2}^{m-1}\left(\frac{\xi^{m-2}-\left(p_{1} \xi+p_{2}\right)^{m-2}}{m-2}\right) u^{2} & +2 p_{1} x_{2}^{m}\left(\frac{\xi^{m-1}-\left(p_{1} \xi+p_{2}\right)^{m-1}}{m-1}\right) u v \tag{5}\\
& +p_{1} x_{2}^{m+1}\left(\frac{\xi^{m}-\left(p_{1} \xi+p_{2}\right)^{m}}{m}\right) v^{2} \geqslant 0
\end{align*}
$$

Integrating (5) with respect to ξ over $\xi \in\left[1, x_{1} / x_{2}\right]$, we obtain

$$
\begin{aligned}
& \frac{p_{1} x_{1}^{m-1}+p_{2} x_{2}^{m-1}-\left(p_{1} x_{1}+p_{2} x_{2}\right)^{m-1}}{(m-1)(m-2)} u^{2}+2 \frac{p_{1} x_{1}^{m}+p_{2} x_{2}^{m}-\left(p_{1} x_{1}+p_{2} x_{2}\right)^{m}}{m(m-1)} u v \\
&+ \frac{p_{1} x_{1}^{m+1}+p_{2} x_{2}^{m+1}-\left(p_{1} x_{1}+p_{2} x_{2}\right)^{m+1}}{(m+1) m} v^{2} \geqslant 0 .
\end{aligned}
$$

Therefore by Lemma 1 we conclude that (4) is true.

Let $T:=\frac{1}{1-p_{n}} \sum_{1}^{n-1} p_{i} x_{i}$. Then

$$
\frac{d_{m}^{(n)}}{m(m-1)}=\left(1-p_{n}\right) \frac{d_{m}^{(n-1)}}{m(m-1)}+\frac{\left(1-p_{n}\right) T^{m}+p_{n} x_{n}^{m}-\left(\left(1-p_{n}\right) T+p_{n} x_{n}\right)^{m}}{m(m-1)}
$$

Since $\frac{d_{m}^{(n-1)}}{m(m-1)} \in L C$ by induction hypothesis, by (4) and Lemma 2(ii), it follows that $\frac{d_{m}^{(n)}}{m(m-1)} \in L C$, and the proof is done.

To see that the constant $c_{m}=1-\frac{2}{m(m-1)}$ is best possible, consider the representation (3). Since variable t is independent of the sequences $\tilde{p}_{n}, \tilde{x}_{n}$, we have $d_{m}(t) \sim d_{2}\binom{m}{2} t^{m-2}(t \rightarrow \infty)$. Hence

$$
\frac{d_{m-1}(t) d_{m+1}(t)}{\left(d_{m}(t)\right)^{2}} \sim \frac{\binom{m-1}{2} t^{m-3}\binom{m+1}{2} t^{m-1}}{\left(\binom{m}{2} t^{m-2}\right)^{2}}=c_{m} \quad(t \rightarrow \infty)
$$

Proof of Theorem 2. From (2) we get $d_{m+1} / d_{m} \geqslant c_{m}\left(d_{m} / d_{m-1}\right), m \geqslant 3$. Hence

$$
\prod_{3}^{m}\left(\frac{d_{k+1}}{d_{k}}\right) \geqslant \prod_{3}^{m} \frac{(k+1)(k-2)}{k(k-1)} \prod_{3}^{m}\left(\frac{d_{k}}{d_{k-1}}\right)
$$

i.e.,

$$
\frac{d_{m+1}}{d_{m}} \geqslant\left(\frac{m+1}{3(m-1)}\right)\left(\frac{d_{3}}{d_{2}}\right), \quad m \geqslant 2
$$

Therefore, the conclusion follows from

$$
\frac{d_{m}}{d_{2}}=\prod_{2}^{m-1}\left(\frac{d_{k+1}}{d_{k}}\right) \geqslant \prod_{2}^{m-1}\left(\frac{k+1}{k-1}\right) \prod_{2}^{m-1}\left(\frac{d_{3}}{3 d_{2}}\right)=\binom{m}{2}\left(\frac{d_{3}}{3 d_{2}}\right)^{m-2}
$$

Proof of Theorem 3. Write $d_{m}^{(n)}$ in the form

$$
d_{m}^{(n)}=\frac{\sum_{1}^{n} p_{n i} x_{n i}^{m}}{\sum_{1}^{n} p_{n i}}-\left(\frac{\sum_{1}^{n} p_{n i} x_{n i}}{\sum_{1}^{n} p_{n i}}\right)^{m}
$$

with $p_{n i}:=p\left(a+i \frac{b-a}{n}\right), x_{n i}:=f\left(a+i \frac{b-a}{n}\right)$. Passing to the limit, we obtain $\lim _{n \rightarrow \infty} d_{m}^{(n)}=D_{m}$ and from Theorems 1, 2 the assertions of Theorem 3 follow.

There remains a problem of inverse inequality for the sequence d.
Question 1. Is there a constant C_{m}, independent of $\tilde{p}_{n}, \tilde{x}_{n} \in S_{+}$, such that $d_{m-1} d_{m+1} \leqslant C_{m}\left(d_{m}\right)^{2}, m \geqslant 2$.

The answer to this question is negative.
Proof. We apply a special choice of the sequences $\tilde{p}_{n}, \tilde{x}_{n} \in S_{+}$. Namely, for fixed $n \geqslant 2$ let $p_{i}:=\binom{n-1}{i-1} / 2^{n-1} ; x_{i}:=(1-t)^{i-1}(1+t)^{n-i},-1<t<1$. We obtain a sequence $d^{*}=\left\{d_{m}^{*}(t)\right\}$ with

$$
d_{m}^{*}(t)=\left(\frac{(1-t)^{m}+(1+t)^{m}}{2}\right)^{n-1}-1
$$

For sufficiently large n, we have

$$
d_{2}^{*}(1 / \sqrt{2}) \sim(3 / 2)^{n-1} ; \quad d_{4}^{*}(1 / \sqrt{2}) \sim(17 / 4)^{n-1} ; \quad d_{3}^{*}(1 / \sqrt{2}) \sim(5 / 2)^{n-1}
$$

Hence $C_{3} \geqslant(51 / 50)^{n-1} \rightarrow \infty(n \rightarrow \infty)$.
Therefore, we have to reformulate the problem.
Question 2. Is there a constant $C_{m, n}$ such that $d_{m-1}^{(n)} d_{m+1}^{(n)} \leqslant C_{m, n}\left(d_{m}^{(n)}\right)^{2}$, for each $m, n \geqslant 2$, independently of sequences $\tilde{p}_{n}, \tilde{x}_{n} \in S_{+}$?

The best possible constant (if exists) is given by

$$
C_{m, n}=\sup \left\{\left.\frac{d_{m-1}^{(n)} d_{m+1}^{(n)}}{\left(d_{m}^{(n)}\right)^{2}} \right\rvert\, \tilde{p}_{n}, \tilde{x}_{n} \in S_{+}\right\}
$$

Examining the sequence d^{*}, we conclude that $C_{m, n} \geqslant\left(1+C / m^{2}\right)^{n-1}$, where C is an absolute constant.

References

[1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1978.
[2] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[3] P. A. MacMahon, Combinatory Analysis, Chelsea, New York, 1960.
[4] S. Simić, Turan's inequality for Appell polynomials, J. Inequal. Appl. (2006), 1-7.
Mathematical Institute SANU

[^0]: 2000 Mathematics Subject Classification: Primary 26D15.
 Key words and phrases: power means; logarithmic convexity; best possible bounds.

