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Abstract. Many statistics are based on functions of sample moments. Im-
portant examples are the sample variance 𝑠2(𝑛), the sample coefficient of
variation 𝑆𝑉 (𝑛), the sample dispersion 𝑆𝐷(𝑛) and the non-central 𝑡-statistic
𝑡(𝑛). The definition of these quantities makes clear that the vector defined
by
(︀∑︀𝑛

𝑖=1𝑋𝑖,
∑︀𝑛
𝑖=1𝑋

2
𝑖

)︀
plays an important role. In the paper we obtain

conditions under which the vector (𝑋,𝑋2) belongs to a bivariate domain of
attraction of a stable law. Applying simple transformations then leads to a
full discussion of the asymptotic behaviour of 𝑆𝑉 (𝑛) and 𝑡(𝑛).

1. Introduction

Let 𝐹 (𝑥) = 𝑃 (𝑋 6 𝑥) and 𝐹2(𝑥) = 𝑃 (𝑋2 6 𝑥) denote the distribution function
(d.f.) of a real random variable 𝑋 and 𝑋2 respectively. Let 𝐺(𝑥, 𝑦) denote the d.f.
of the random vector (r.v.) (𝑋,𝑋2). We find that

𝐺(𝑥, 𝑦) = 𝑃 (−√𝑦 6 𝑋 6 min(𝑥,√𝑦 )), 𝑦 > 0, 𝑥 > −√𝑦.
Clearly this relationship can be used to transfer properties from 𝐹 to 𝐺.

Studying the random vector (𝑋,𝑋2) can be interesting because it is linked to
many statistical estimators. To estimate the mean 𝜇 = 𝐸(𝑋) and the variance
𝜎2 = 𝑉 𝑎𝑟(𝑋) for example, one uses the sample mean 𝑋 and the sample variance
𝑠2𝑛 = 𝑋2 − 𝑋2 or 𝑠2𝑛−1 = 𝑛𝑠2𝑛/(𝑛 − 1). Other related statistical measures are
the non-central 𝑡-statistic 𝑡(𝑛) =

√
𝑛 𝑋/𝑠𝑛, the coefficient of variation 𝑆𝑉 (𝑛) =

𝑠𝑛/𝑋 and the sample dispersion 𝑆𝐷(𝑛) = 𝑠2𝑛/𝑋. Many asymptotic properties of
these statistics are known if the mean 𝜇 and the variance 𝜎2 are finite. On the
other hand, if the variance or the mean is not finite, it also makes sense to study
asymptotic properties of these quantities. For a recent paper devoted to 𝑡(𝑛), we
refer to Bentkus et al. (2007) and the references given there. In Albrecher and
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Teugels (2004) and Ladoucette and Teugels (2006), the authors discuss asymptotic
properties of 𝑆𝑉 (𝑛) and 𝑆𝐷(𝑛). In the case where𝑋 > 0, Omey (2008a) obtained a
detailed and complete analysis of 𝑆𝐷(𝑛), 𝑆𝑉 (𝑛) and 𝑡(𝑛). It turns out, cf. Section 3,
that a key role is played by the real random vector

(︀∑︀𝑛
𝑖=1𝑋𝑖,

∑︀𝑛
𝑖=1𝑋

2
𝑖

)︀
and by

𝑇 (𝑛), where

𝑇 (𝑛) =
∑︀𝑛
𝑖=1𝑋

2
𝑖

(
∑︀𝑛
𝑖=1𝑋𝑖)2

In the present paper we remove the restriction that 𝑋 > 0. To avoid difficulties
with the definition of 𝑇 (𝑛), in section 3 below we assume that 𝐹 (𝑥) is continuous.

The structure of the paper is as in Omey (2008a), where in each step we remove
the restriction that 𝑋 > 0. In the real case, it turns out that the case where
𝜇 = 𝐸(𝑋) = 0 needs a special treatment. In section 2 we briefly recall univariate
and bivariate domains of attraction and we discuss domains of attraction of the
real random vector (𝑋,𝑋2). In section 3 we use transformations to recover many
results concerning 𝑇 (𝑛), 𝑆𝑉 (𝑛) and 𝑡(𝑛). We finish the paper with some concluding
remarks.

We assume the reader is familiar with regular variation. For further use, recall
the definition of regular variation: a positive and measurable function 𝑔(𝑥) is regu-
larly varying with real index 𝛼 (notation 𝑔 ∈ 𝑅𝑉 (𝛼)) if as 𝑡→∞, 𝑔(𝑡𝑦)/𝑔(𝑡)→ 𝑦𝛼,
∀𝑦 > 0. It can be proved that the defining convergence holds locally uniformly
(l.u.) with respect to 𝑦 > 0. For this and other properties and applications of
𝑅𝑉 (𝛼), we refer to Seneta (1976), Geluk and de Haan (1987) and Bingham et.al.
(1989). For a recent survey paper, see Jessen and Mikosch (2006).

2. Domains of attraction

In this section we briefly discuss known results about univariate and bivariate
domains of attraction.

2.1. Univariate case. Recall that the random variable 𝑋 belongs to the
domain of attraction of a stable law 𝑌 (𝛼) with parameter 𝛼, 0 < 𝛼 6 2, if there
exist positive numbers 𝑎(𝑛) and real numbers 𝑐(𝑛) so that

(2.1) 𝑆(𝑛)− 𝑐(𝑛)
𝑎(𝑛)

𝑑=⇒ 𝑌 (𝛼).

Notation: 𝑋 ∈ 𝐷(𝑌 (𝛼)). Here 𝑆(𝑛) = 𝑋1 +𝑋2 + · · ·+𝑋𝑛 is the sequence of partial
sums generated by i.i.d. copies of 𝑋 and 𝑑=⇒ denotes convergence in distribution,
i.e., (2.1) is the same as

lim
𝑛→∞
𝑃
(︁𝑆(𝑛)− 𝑐(𝑛)

𝑎(𝑛) 6 𝑥
)︁

= 𝑃
(︀
𝑌 (𝛼) 6 𝑥

)︀
.

Let 𝐹 (𝑥) = 𝑃 (𝑋 6 𝑥), 𝐹|𝑋|(𝑥) = 𝑃 (|𝑋| 6 𝑥) and let 𝐾𝑋(𝑥) denote the
truncated second moment function, i.e.

𝐾𝑋(𝑥) =
∫︁ 𝑥
−𝑥
𝑦2𝑑𝐹 (𝑦) = 𝐸

(︀
𝑋2𝐼{|𝑋| 6 𝑥}

)︀
.
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The tails are given by 𝐹 (𝑥) = 𝑃 (𝑋 > 𝑥) = 1−𝐹 (𝑥) and by 𝐹 |𝑋|(𝑥) = 𝑃 (|𝑋| > 𝑥)
= 𝐹 (𝑥) + 𝐹 (−𝑥). The following result is well known, cf. Feller (1971), Petrov
(1995).

Theorem 2.1. (i) For 0<𝛼<2, we have 𝑋 ∈ 𝐷(𝑌 (𝛼)) iff 𝐾𝑋(𝑥) ∈ 𝑅𝑉 (2−𝛼)
and

lim
𝑥→∞
𝐹 (𝑥)/𝐹 |𝑋|(𝑥) = 𝑝, lim

𝑥→∞
𝐹 (−𝑥)/𝐹 |𝑋|(𝑥) = 𝑞,

where 0 6 𝑝 = 1− 𝑞 6 1.
(ii) If 𝑋 is not concentrated in 1 point, then 𝑋 ∈ 𝐷(𝑌 (2)) iff 𝐾𝑋(𝑥) ∈ 𝑅𝑉 (0).
(iii) For 0 < 𝛼 6 2, 𝐾𝑋(𝑥) ∈ 𝑅𝑉 (2− 𝛼) holds iff

lim
𝑥→∞
𝑥2𝐹 |𝑋|(𝑥)/𝐾𝑋(𝑥) = (2− 𝛼)/𝛼,

and for 0 < 𝛼 < 2, this holds iff 𝐹 |𝑋|(𝑥) ∈ 𝑅𝑉 (−𝛼).

Remark 2.1. 1) Note that 𝐾𝑋(𝑥) = 𝐾|𝑋|(𝑥). It follows that for 0 < 𝛼 < 2,
𝑋 ∈ 𝐷(𝑌 (𝛼)) implies that |𝑋| ∈ 𝐷(𝑌 *(𝛼)) for some 𝛼-stable law 𝑌 *(𝛼).

2) If 𝛼 = 2, 𝐹 |𝑋|(𝑥) ∈ 𝑅𝑉 (−2) implies that 𝑋 ∈ 𝐷(𝑌 (2)) and |𝑋| ∈ 𝐷(𝑌 *(2)).

We have some freedom in choosing the normalizing sequences {𝑎(𝑛)} and
{𝑐(𝑛)}. In our paper, we use the normalizing constants by replacing 𝑥 by 𝑛 in
the functions 𝑎(𝑥) and 𝑐(𝑥) defined as follows:
∙ For 𝛼 = 2, 𝑎(𝑥) ∈ 𝑅𝑉 (1/2) is determined by the asymptotic relation
(2.2) 𝑥𝐾𝑋(𝑎(𝑥))/𝑎2(𝑥)→ 1.
If 𝜇2 = 𝐸(𝑋2) <∞, then 𝐾𝑋(𝑥)→ 𝜇2 and 𝑎2(𝑛) ∼ 𝑛𝜇2.

∙ If 0 < 𝛼 < 2, 𝑎(𝑥) ∈ 𝑅𝑉 (1/𝛼) is determined by the asymptotic relation
(2.3) 𝑥𝐹 |𝑋|(𝑎(𝑥))→ 1.
∙ If 0 < 𝛼 < 1, we choose 𝑐(𝑥) = 0. If 1 < 𝛼 6 2, we have 𝐸|𝑋| < ∞ and we
choose 𝑐(𝑥) = 𝑥𝜇 = 𝑥𝐸(𝑋).
∙ If 𝛼 = 1, then 𝑐(𝑥) is given by the relation 𝑐(𝑥) = 𝑥𝑎(𝑥)𝐸

(︀
sin(𝑋/𝑎(𝑥))

)︀
, where

𝑎(𝑥) is determined by (2.3). If 𝑋 > 0, we can use 𝑐(𝑥) = 𝑥𝑚(𝑎(𝑥)) where 𝑎(𝑥) is
given by (2.3) and where 𝑚(𝑥) denotes the integrated tail

𝑚(𝑥) =
∫︁ 𝑥

0
𝐹 (𝑡) 𝑑𝑡.

Note that if 𝛼 = 1 and 𝐸|𝑋| <∞, then 𝑐(𝑥)/𝑥→ 𝐸(𝑋).

2.2. Multivariate case. The random vector (𝑋,𝑌 ) belongs to a multivari-
ate domain of attraction of a bivariate stable vector (𝑌1(𝛼), 𝑌2(𝛽)) if we can find
sequences of constants 𝑎(𝑛) > 0, 𝑏(𝑛) > 0 and 𝑐(𝑛), 𝑑(𝑛) such that

(2.4)
(︁𝑆𝑋(𝑛)− 𝑐(𝑛)

𝑎(𝑛) ,
𝑆𝑌 (𝑛)− 𝑑(𝑛)
𝑏(𝑛)

)︁
𝑑=⇒
(︀
𝑌1(𝛼), 𝑌2(𝛽)

)︀
where 𝑆𝑋(𝑛) and 𝑆𝑌 (𝑛) are partial sums of independent copies of (𝑋,𝑌 ). Notation
(𝑋,𝑌 ) ∈ 𝐷

(︀
𝑌1(𝛼), 𝑌2(𝛽)

)︀
. Assuming that 𝑌1(𝛼) and 𝑌2(𝛽) are nondegenerate, the

normalizing constants are determined by the convergence of the marginals in (2.4)
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and we use the normalizing constants given as before. We denote the d.f. of (𝑋,𝑌 )
by 𝐹 (𝑥, 𝑦). In the multivariate case, the following result was initiated by Rvaceva
(1962) and further analyzed by Greenwood and Resnick (1979), see also de Haan
et al. (1984). For a point process approach we refer to Resnick (1986).

Theorem 2.2. Suppose 𝑋 ∈ 𝐷(𝑌1(𝛼)), 𝑌 ∈ 𝐷(𝑌2(𝛽)) and 0 < 𝛼, 𝛽 6 2.
(i) Let 𝜈(.) denote the Lévy-measure of the bivariate stable law (𝑌1(𝛼), 𝑌2(𝛽)). If
0<𝛼, 𝛽<2, then (𝑋,𝑌 ) ∈ 𝐷(𝑌1(𝛼), 𝑌2(𝛽)) iff for all Borel sets 𝑉 ∈ 𝐵(R2r{(0, 0)})
with 𝜈(𝛿𝑉 ) = 0 and 𝜈(𝑉 ) <∞ we have

lim
𝑡→∞
𝑡𝑃
(︁(︁ 𝑋
𝑎(𝑡) ,

𝑌

𝑏(𝑡)

)︁
∈ 𝑉
)︁

= 𝜈(𝑉 ).

(ii) If 𝛼 = 𝛽 = 2, then (𝑋,𝑌 ) ∈ 𝐷
(︀
𝑌1(2), 𝑌2(2)

)︀
iff for each 𝑥, 𝑦 > 0 we have

lim
𝑡→∞

𝑡𝑊
(︀
𝑎(𝑡)𝑥, 𝑏(𝑡)𝑦

)︀
𝑎(𝑡)𝑏(𝑡) = 𝐶

where 𝐶 denotes a constant and where 𝑊 (𝑥, 𝑦) is given by

𝑊 (𝑥, 𝑦) =
∫︁
|𝑢|6𝑥

∫︁
|𝑣|6𝑦
𝑢𝑣 𝑑𝐹 (𝑢, 𝑣), 𝑥, 𝑦 > 0.

(iii) If 0 < 𝛼 < 2 and 𝛽 = 2, then (𝑋,𝑌 ) ∈ 𝐷
(︀
𝑌1(𝛼), 𝑌2(2)

)︀
and 𝑌1(𝛼) and 𝑌2(2)

are independent.

2.3. The case where 𝑋 = (𝑋, 𝑋2). We can apply Theorem 2.2 to obtain
the following result for the vector (𝑋,𝑋2).

Theorem 2.3. (i) For 0 < 𝛼 < 2 we have (𝑋,𝑋2) ∈ 𝐷
(︀
𝑌1(𝛼), 𝑌2(𝛼/2)

)︀
iff

𝑋 ∈ 𝐷(𝑌1(𝛼)).
(ii) For 2 6 𝛼 < 4 we have (𝑋,𝑋2) ∈ 𝐷

(︀
𝑌1(2), 𝑌2(𝛼/2)

)︀
iff 𝑋2 ∈ 𝐷(𝑌2(𝛼/2)) and

also, if 𝛼 = 2, 𝑋 ∈ 𝐷(𝑌1(2)). Moreover, 𝑌1(2) and 𝑌2(𝛼/2) are independent.
(iii) We have (𝑋,𝑋2) ∈ 𝐷

(︀
𝑌1(2), 𝑌2(2)

)︀
if and only if 𝑋2 ∈ 𝐷(𝑌2(2))

Proof. (i) If (𝑋,𝑋2) ∈ 𝐷
(︀
𝑌1(𝛼), 𝑌2(𝛼/2)

)︀
then we automatically have 𝑋 ∈

𝐷(𝑌1(𝛼)). To prove the converse, suppose first that 𝑥, 𝑦 > 0. In this case we have

𝑡𝑃
(︁ 𝑋
𝑎(𝑡) > 𝑥,

𝑋2

𝑎2(𝑡) > 𝑦
)︁

= 𝑡𝑃
(︁ 𝑋
𝑎(𝑡) > max(𝑥,√𝑦)

)︁
It follows from Theorem 2.1 (i) and our choice of 𝑎(𝑡) that

𝑡𝑃
(︁ 𝑋
𝑎(𝑡) > 𝑥,

𝑋2

𝑎2(𝑡) > 𝑦
)︁
→ 𝑝
(︀

max(𝑥,√𝑦)
)︀−𝛼
.

For 𝑥 < 0 < 𝑦 we have

𝑡𝑃
(︁ 𝑋
𝑎(𝑡) < 𝑥,

𝑋2

𝑎2(𝑡) > 𝑦
)︁
→ 𝑞
(︀

min(𝑥,−√𝑦)
)︀−𝛼
.

Now the result follows.
(ii) This is case (iii) of Theorem 2.2.
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(iii) If 𝑋2 ∈ 𝐷(𝑌2(2)), then 𝐸𝑋3 < ∞, 𝑋 ∈ 𝐷(𝑌1(2)) and 𝑎2(𝑡) ∼ 𝑡𝐸(𝑋2).
For 𝑏(𝑡) we have 𝑏2(𝑡) ∼ 𝑡𝐾2(𝑏(𝑡)) where 𝐾2(𝑥) = 𝐾𝑋2(𝑥). Now consider 𝑊 (𝑥, 𝑦).
In our case we have 𝑊 (𝑥, 𝑦) = 𝐸

(︀
𝑋3𝐼
{︀
|𝑋| 6 min

(︀
𝑥,
√
𝑦
)︀}︀)︀
, 𝑥, 𝑦 > 0, and it

follows that 𝑊
(︀
𝑎(𝑡)𝑥, 𝑏(𝑡)𝑦

)︀
→ 𝐸(𝑋3). On the other hand, using the convention

that 1/∞ = 0, we have

𝑡

𝑎(𝑡)𝑏(𝑡) →

√︃
1

𝐸(𝑋2)𝐸(𝑋4) .

We conclude that
𝑡𝑊 (𝑎(𝑡)𝑥, 𝑏(𝑡)𝑦)
𝑎(𝑡)𝑏(𝑡) → 𝐶 = 𝐸(𝑋3)√︀

𝐸(𝑋2)𝐸(𝑋4)
. �

Remark 2.2. In case (ii) of Theorem 2.3 note that𝑋2∈𝐷(𝑌2(𝛼/2)), 2 < 𝛼 < 4
implies that 𝐸(𝑋2) <∞ so that 𝑋 ∈ 𝐷(𝑌1(2)).

Remark 2.3. Theorem 2.3 gives conditions under which

(2.5)
(︂∑︀𝑛

𝑖=1𝑋𝑖 − 𝑐(𝑛)
𝑎(𝑛) ,

∑︀𝑛
𝑖=1𝑋

2
𝑖 − 𝑑(𝑛)
𝑏(𝑛)

)︂
𝑑=⇒ (𝑌1(𝑢), 𝑌2(𝑣))

for some numbers 𝑢 and 𝑣. For further use, in this remark we give the precise form
of the normalizing sequences.

(i) If 0 < 𝛼 < 2, then in (2.5) we have 𝑢 = 𝛼 and 𝑣 = 𝛼/2. We can use (2.3)
to see that 𝑏(𝑛) = 𝑎2(𝑛). Since 𝛼/2 < 1, we can take 𝑑(𝑛) = 0 and 𝑐(𝑛) according
to the different cases of Section 2.1.

(ii) If 2 < 𝛼 < 4, then in (2.5) we have 𝑢 = 2 and 𝑣 = 𝛼/2. We take 𝑐(𝑛) = 𝑛𝜇
and 𝑎(𝑛) is determined by (2.2). The sequence 𝑏(𝑛) is determined by the relation
𝑛(1− 𝐹2(𝑏(𝑛)))→ 1. Finally, we have 𝑑(𝑛) = 𝑛𝜇2.

(iii) If 𝛼 = 2 we have 𝑢 = 2 and 𝑣 = 1. The sequences 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛) are
determined as in (ii). For 𝑑(𝑛) we take (recall that 𝑋2 > 0) 𝑑(𝑛) = 𝑛𝑚2(𝑏(𝑛))
where 𝑚2(𝑥) =

∫︀ 𝑥
0 𝐹 2(𝑢)𝑑𝑢.

(iv) In case (iii) of Theorem 2.3, in (2.5) we have 𝑢 = 𝑣 = 2. Now we take
𝑐(𝑛) = 𝑛𝜇 and 𝑑(𝑛) = 𝑛𝜇2. The sequence 𝑎(𝑛) is determined by (2.2) and 𝑏(𝑛) is
determined by 𝑏2(𝑛) ∼ 𝑛𝐾2(𝑏(𝑛)), where 𝐾2(𝑥) = 𝐸

(︀
𝑋4𝐼{𝑋2 6 𝑥}

)︀
.

3. Applications

As mentioned in the introduction, many characteristics in statistics are based
on
(︀∑︀𝑛

𝑖=1𝑋𝑖,
∑︀𝑛
𝑖=1𝑋

2
𝑖

)︀
. As examples we mention the sample variance 𝑠2(𝑛), the

sample coefficient of variation 𝑆𝑉 (𝑛) = 𝑠𝑛/𝑋, and the non-central 𝑡-statistic 𝑡(𝑛) =√
𝑛 𝑋/𝑠𝑛. In this section, we assume that 𝑋 is a continuous random variable and,

as in Ladoucette and Teugels (2006), we define 𝑇 (𝑛) as follows:

𝑇 (𝑛) =
∑︀𝑛
𝑖=1𝑋

2
𝑖(︀∑︀𝑛

𝑖=1𝑋𝑖
)︀2 .
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Note that 𝑆𝑉 2(𝑛) = 𝑛𝑇 (𝑛)− 1 and 𝑡2(𝑛) = 𝑛/(𝑛𝑇 (𝑛)− 1). Clearly 𝑇 (𝑛) plays an
important role in studying 𝑆𝑉 (𝑛) and 𝑡(𝑛). Without loss of generality, if the mean
𝜇 is finite, then we assume that 𝜇 > 0. Otherwise we replace 𝑋 by −𝑋.

3.1. The asymptotic behaviour of 𝑇 (𝑛). Using the notations of Theo-
rem 2.3 and Remark 2.3, we have the following result. The result completes the
proofs of the corresponding results of Albrecher and Teugels (2004) or Ladoucette
and Teugels (2006), Ladoucette (2007), Omey (2008a). In Theorem 3.1 below we
consider the case where 𝛼 ̸= 1. The case where 𝛼 = 1 follows in Remark 3.1 below.

Theorem 3.1. (i) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 0 < 𝛼 < 1 or with 1 <
𝛼 < 2 and 𝜇 = 0. Then

𝑇 (𝑛) 𝑑=⇒ 𝑌2(𝛼/2)
𝑌 2

1 (𝛼) .

(ii) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 1 < 𝛼 < 2 and 𝜇 ̸= 0. Then
𝑛2

𝑎2(𝑛)𝑇 (𝑛) 𝑑=⇒ 1
𝜇2𝑌2(𝛼/2).

(iii) Suppose that 𝑋2 ∈ 𝐷(𝑌2(1)) and 𝑋 ∈ 𝐷(𝑌1(2)).

(a) If 𝜇 ̸= 0, then 𝑛

𝑏(𝑛)

(︁
𝑛𝑇 (𝑛)− 𝑑(𝑛)

𝑛𝜇2

)︁
𝑑=⇒ 1
𝜇2𝑌2(1).

(b) If 𝜇 = 0, then 𝑎
2(𝑛)
𝑑(𝑛) 𝑇 (𝑛) 𝑑=⇒ 1

𝑌 2
1 (2) .

(iv) Suppose that 𝑋2 ∈ 𝐷(𝑌2(𝛼/2)) with 2 < 𝛼 < 4 and with 𝜇 ̸= 0. Then
𝑛

𝑏(𝑛)

(︁
𝑛𝑇 (𝑛)− 𝜇2

𝜇2

)︁
𝑑=⇒ 1
𝜇2𝑌2(𝛼/2).

(v) Suppose that 𝑋2 ∈ 𝐷(𝑌2(2)) and 𝜇 ̸= 0. Then
𝑛

𝑏(𝑛)

(︁
𝑛𝑇 (𝑛)− 𝜇2

𝜇2

)︁
𝑑=⇒ 𝑌3(2)

where 𝑌3(2) 𝑑= 1
𝜇2𝑌2(2)− 2

𝜇2
√
𝜇2

𝜇3√𝜇4
𝑌1(2) if 𝜇4 = 𝐸(𝑋4) <∞ and 𝑌3(2) 𝑑= 𝑌2(2)/𝜇2

otherwise.
(vi) If 𝜇2 <∞ and 𝜇 = 0, then 𝑇 (𝑛) 𝑑=⇒ 1/𝑌 2

1 (2).

Proof. (i) If 0 < 𝛼 < 1 we have

(3.1)
(︂∑︀𝑛

𝑖=1𝑋𝑖
𝑎(𝑛) ,

∑︀𝑛
𝑖=1𝑋

2
𝑖

𝑎2(𝑛)

)︂
𝑑=⇒ (𝑌1(𝛼), 𝑌2(𝛼/2)).

Now it follows that

𝑃 (𝑇 (𝑛) 6 𝑥) = 𝑃
(︂

1
𝑎2(𝑛)

𝑛∑︁
𝑖=1
𝑋2
𝑖 6 𝑥

(︂
1
𝑎(𝑛)

𝑛∑︁
𝑖=1
𝑋𝑖

)︂2)︂
so that
(3.2) 𝑃 (𝑇 (𝑛) 6 𝑥)→ 𝑃 (𝑌2(𝛼/2) 6 𝑥𝑌 2

1 (𝛼)).
If 1 < 𝛼 < 2 and 𝜇 = 0, we still have (3.1) and then again (3.2) follows.
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(ii) Since 𝜇 <∞, we have(︂∑︀𝑛
𝑖=1𝑋𝑖
𝑛

,

∑︀𝑛
𝑖=1𝑋

2
𝑖

𝑎2(𝑛)

)︂
𝑑=⇒ (𝜇, 𝑌2(𝛼/2))

and the result follows as in (i).
(iii) (a) Using the notations

𝐴(𝑛) =
(
∑︀𝑛
𝑖=1𝑋𝑖)2 − (𝑛𝜇)2

𝑛𝑎(𝑛) , 𝐵(𝑛) =
∑︀𝑛
𝑖=1𝑋

2
𝑖 − 𝑑(𝑛)
𝑏(𝑛) ,

in this case we have

(3.3) (𝐴(𝑛), 𝐵(𝑛)) 𝑑=⇒ (2𝜇𝑌1(2), 𝑌2(1)).

To prove the result, we consider

𝐼 = 𝑃
(︂
𝑑(𝑛)
𝑏(𝑛)

(︂
𝑛2𝑇 (𝑛)
𝑑(𝑛) −

1
𝜇2

)︂
6 𝑥

)︂
.

Using the definition of 𝑇 (𝑛), we obtain that

𝐼 = 𝑃
(︂ 𝑛∑︁
𝑖=1
𝑋2
𝑖 −
(︂
𝑑(𝑛)
𝜇2𝑛2 + 𝑥𝑏(𝑛)

𝑛2

)︂(︂ 𝑛∑︁
𝑖=1
𝑋𝑖

)︂2
6 0
)︂

= 𝑃
(︁
𝐵(𝑛)𝑏(𝑛)−

(︁ 𝑑(𝑛)
𝜇2𝑛2 + 𝑥𝑏(𝑛)

𝑛2

)︁
𝐴(𝑛)𝑛𝑎(𝑛) 6 𝑥𝑏(𝑛)𝜇2

)︁
= 𝑃
(︁
𝐵(𝑛)−

(︁𝑎(𝑛)𝑑(𝑛)
𝜇2𝑏(𝑛)𝑛 + 𝑎(𝑛)𝑥

𝑛

)︁
𝐴(𝑛) 6 𝑥𝜇2

)︁
.

Now recall that 𝐴(𝑛) 𝑑=⇒ 2𝜇𝑌2(2) and observe that 𝑎(𝑥) ∈ 𝑅𝑉 (1/2). Also note
that 𝑏(𝑥) ∈ 𝑅𝑉 (1) and that 𝑑(𝑥) ∈ 𝑅𝑉 (1). It follows that 𝑎(𝑥)/𝑥 → 0 and that
𝑎(𝑥)𝑑(𝑥)/(𝑥𝑏(𝑥))→ 0. Using (3.3) we conclude that 𝐼 → 𝑃 (𝑌2(1) 6 𝑥𝜇2).

(iii)(b) In this case we have(︂
(
∑︀𝑛
𝑖=1𝑋𝑖)2

𝑎2(𝑛) ,

∑︀𝑛
𝑖=1𝑋

2
𝑖

𝑑(𝑛)

)︂
𝑑=⇒ (𝑌 2

1 (2), 1)

and the result follows as in (i).
(iv) In this case we have 𝑑(𝑛) = 𝑛𝜇2 and

(3.4)
(︀
𝐴(𝑛), 𝐵(𝑛)

)︀ 𝑑=⇒
(︀
2𝜇𝑌1(2), 𝑌2(𝛼/2)

)︀
where 𝑎2(𝑛) ∼ 𝑛𝜇2 and 𝑏(𝑥) ∈ 𝑅𝑉 (2/𝛼). Now consider

𝐼 = 𝑃
(︁ 𝑛
𝑏(𝑛)

(︁
𝑛𝑇 (𝑛)− 𝜇2

𝜇2

)︁
6 𝑥
)︁
.
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By using the definition of 𝑇 (𝑛), we find that

𝐼 = 𝑃
(︂ 𝑛∑︁
𝑖=1
𝑋2
𝑖 −
(︂ 𝑛∑︁
𝑖=1
𝑋𝑖

)︂2(︁𝑥𝑏(𝑛)
𝑛2 + 𝜇2

𝑛𝜇2

)︁
6 0
)︂

= 𝑃
(︁
𝐵(𝑛)𝑏(𝑛)−

(︁𝑥𝑏(𝑛)
𝑛2 + 𝜇2

𝑛𝜇2

)︁
𝑛𝑎(𝑛)𝐴(𝑛) 6 𝑥𝑏(𝑛)𝜇2

)︁
= 𝑃
(︁
𝐵(𝑛)−

(︁𝑎(𝑛)𝑥
𝑛

+ 𝑎(𝑛)𝜇2

𝑏(𝑛)𝜇2

)︁
𝐴(𝑛) 6 𝜇2𝑥

)︁
.

Since 𝑎(𝑛)/𝑛→ 0 and 𝑎(𝑛)/𝑏(𝑛)→ 0, using (3.4), we conclude that 𝐼 → 𝑃 (𝑌2(𝛼/2)−
0 6 𝜇2𝑥) and this proves the result.

(v) Now we have
(︀
𝐴(𝑛), 𝐵(𝑛)

)︀ 𝑑=⇒
(︀
2𝜇𝑌1(2), 𝑌2(2)

)︀
where, cf. (2), 𝑎2(𝑛) ∼

𝑛𝜇2. As in case (iv) we consider 𝐼 and again we find that

𝐼 = 𝑃
(︁
𝐵(𝑛)−

(︁𝑎(𝑛)𝑥
𝑛

+ 𝑎(𝑛)𝜇2

𝑏(𝑛)𝜇2

)︁
𝐴(𝑛) 6 𝜇2𝑥

)︁
.

Now we have to distinghuish between two cases. If 𝜇4 < ∞, we have 𝑏2(𝑛) ∼ 𝑛𝜇4
and it follows that

𝐼 → 𝑃
(︁
𝑌2(2)−

𝜇2
√
𝜇2

𝜇2√𝜇4
2𝜇𝑌1(2) 6 𝜇2𝑥

)︁
.

In the case where 𝜇4 =∞, we have
𝑎2(𝑛)
𝑏2(𝑛) ∼

𝑛𝜇2

𝑏2(𝑛) ∼
𝜇2

𝑉2(𝑏(𝑛)) → 0.

and we find that 𝐼 → 𝑃 (𝑌2(2) 6 𝜇2𝑥).
(vi) In this case we have(︂

(
∑︀𝑛
𝑖=1𝑋𝑖)2

𝑎2(𝑛) ,

∑︀𝑛
𝑖=1𝑋

2
𝑖

𝑛

)︂
𝑑=⇒ (𝑌 2

1 (2), 𝜇2)

and 𝑎2(𝑛) ∼ 𝑛𝜇2. Now the result follows. �

Remark 3.1. 1) If 𝑋2 ∈ 𝐷(𝑌2(𝛼/2)) with 2 < 𝛼 6 4 and 𝜇 = 0, then 𝜇2 <∞
and case (vi) applies.

2) In the case where 𝛼 = 1, we have to be more careful. If 𝜇 = 𝐸(𝑋) is finite,
we have

∑︀𝑛
𝑖=1𝑋𝑖/𝑛

𝑝→ 𝜇 and if 𝜇 ̸= 0, we can proceed as in case (ii) to obtain that
𝑛2

𝑎2(𝑛)𝑇 (𝑛) 𝑑=⇒ 1
𝜇2𝑌2(1/2).

If 𝜇 = 0 or if 𝜇 = ∞, we assume that either 𝑋 is symmetric around 0 so that
𝑐(𝑛) = 0, or that

∑︀𝑛
𝑖=1𝑋𝑖/𝑐(𝑛)

𝑝→ 1. In the first case, as in case (i), we obtain that

𝑇 (𝑛) 𝑑=⇒ 𝑌2(1/2)
𝑌 2

1 (1) .

In the second case, we obtain that
𝑐2(𝑛)
𝑎2(𝑛)𝑇 (𝑛) 𝑑=⇒ 𝑌2(1/2).
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3.2. The asymptotic behaviour of 𝑆𝑉 (𝑛). Now we use Theorem 3.1 to
obtain the precise asymptotic behaviour of the sample coefficient of variation. Re-
call that 𝑆𝑉 2(𝑛) = 𝑛𝑇 (𝑛)−1 and that if 𝜇 is finite, we assume that 𝜇 > 0. If 𝜇 > 0
it follows that for 𝑛 → ∞, 𝑆𝑉 (𝑛) =

√︀
𝑛𝑇 (𝑛)− 1 > 0. In the result below we use

the notation 𝜎2 = 𝜇2 − 𝜇2. In the case where 𝑋 > 0, the result was obtained in
Omey (2008a) and partially in Ladoucette and Teugels (2006).

Theorem 3.2. (i) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 0 < 𝛼 < 1 or 𝑋 ∈
𝐷(𝑌1(𝛼)) with 1 < 𝛼 < 2 and 𝜇 = 0. Then

𝑆𝑉 2(𝑛)
𝑛

𝑑=⇒ 𝑌2(𝛼/2)
𝑌 2

1 (𝛼) .

(ii) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 1 < 𝛼 < 2 and 𝜇 ̸= 0. Then
√
𝑛

𝑎(𝑛)𝑆𝑉 (𝑛) 𝑑=⇒ 1
𝜇

√︀
𝑌2(𝛼/2).

(iii) Suppose that 𝑋2 ∈ 𝐷(𝑌2(1)) and 𝑋 ∈ 𝐷(𝑌1(2)).
(a) If 𝜇 ̸= 0, then

𝑛
√︀
𝑐(𝑛)
𝑏(𝑛)

(︀
𝑆𝑉 (𝑛)−

√︀
𝑐(𝑛)
)︀ 𝑑=⇒ 1

2𝜇2𝑌2(1)

where 𝑐(𝑛) is given by 𝑐(𝑛) = 𝑑(𝑛)/𝑛𝜇2 − 1.
(b) If 𝜇 = 0, then

𝑎2(𝑛)
𝑛𝑑(𝑛)𝑆𝑉

2(𝑛) 𝑑=⇒ 1
𝑌 2

1 (2) .

(iv) Suppose that 𝑋2 ∈ 𝐷(𝑌2(𝛼/2)) with 2 < 𝛼 < 4 and 𝜇 ̸= 0. Then
𝑛

𝑏(𝑛)

(︁
𝑆𝑉 (𝑛)− 𝜎

𝜇

)︁
𝑑=⇒ 1

2𝜎𝜇𝑌2(𝛼/2).

(v) Suppose that 𝑋2 ∈ 𝐷(𝑌2(2)) and 𝜇 ̸= 0, then
𝑛

𝑏(𝑛)

(︁
𝑆𝑉 (𝑛)− 𝜎

𝜇

)︁
𝑑=⇒ 𝜇2𝜎𝑌3(2)

where 𝑌3(2) is given in Theorem 3.1(v).
(vi) If 𝜇2 <∞ and 𝜇 = 0. Then

𝑆𝑉 2(𝑛)
𝑛

𝑑=⇒ 1
𝑌 2

1 (2)
Proof. (i) and (ii) follow immediately from Theorem 3.1 (i),(ii).
(iii) (a) From Theorem 3.1 (iii) we obtain that

𝑛

𝑏(𝑛)
(︀
𝑆𝑉 2(𝑛)− 𝑐(𝑛)

)︀ 𝑑=⇒ 1
𝜇2𝑌2(1)

where 𝑐(𝑛) = 𝑑(𝑛)/𝑛𝜇2 − 1. Since 𝑑(𝑛)/𝑏(𝑛) → ∞ and 𝑑(𝑛)/𝑛 → ∞, we obtain
that

𝑆𝑉 (𝑛)√︀
𝑐(𝑛)

𝑝−→ 1.
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Now observe that
𝑛
√︀
𝑐(𝑛)
𝑏(𝑛)

(︀
𝑆𝑉 (𝑛)−

√︀
𝑐(𝑛)
)︀

=
𝑛
(︀
𝑆𝑉 2(𝑛)− 𝑐(𝑛)

)︀
𝑏(𝑛)

√︀
𝑐(𝑛)

𝑆𝑉 (𝑛) +
√︀
𝑐(𝑛)

𝑑=⇒ 1
2𝜇2𝑌2(1)

(b) In this case, Theorem 3.1 (vi) gives
𝑎2(𝑛)
𝑑(𝑛)

1 + 𝑆𝑉 2(𝑛)
𝑛

𝑑=⇒ 1
𝑌 2

1 (2) .

Since 𝑎2(𝑛)/𝑛𝑑(𝑛)→ 0, we obtain the result.
(iv) First note that Theorem 3.1(iv) shows that 𝑛𝑇 (𝑛) 𝑝−→ 𝜇2/𝜇

2 so that
𝑆𝑉 (𝑛) 𝑝−→ 𝜎/𝜇 where 𝜎2 = 𝜇2 − 𝜇2. Now we have

𝑆𝑉 (𝑛)− 𝜎
𝜇

= 𝑛𝑇 (𝑛)− 𝜇2/𝜇
2

𝜎/𝜇+ 𝑆𝑉 (𝑛) .

Theorem 3.1(iv) can now be used to obtain the desired result.
(v) Theorem 3.1(v) shows that 𝑛𝑇 (𝑛) 𝑝−→ 𝜇2/𝜇

2 so that 𝑆𝑉 (𝑛) 𝑝−→ 𝜎/𝜇 where
𝜎2 = 𝜇2 − 𝜇2. Now we have

𝑆𝑉 (𝑛)− 𝜎
𝜇

= 𝑛𝑇 (𝑛)− 𝜇2/𝜇
2

𝜎/𝜇+ 𝑆𝑉 (𝑛) .

Theorem 3.1(v) can be used to obtain the desired result.
(vi) Theorem 3.1(vi) shows that

𝑆𝑉 2(𝑛) + 1
𝑛

𝑑=⇒ 1
𝑌 2

1 (2) .

Now the result follows. �

Remark 3.2. Also here, the case where 𝛼 = 1 can be treated as in Remark 3.1.

3.3. The asymptotic behaviour of 𝑡(𝑛). Using the definition of 𝑡(𝑛) we
see that 𝑡2(𝑛) = 𝑛/𝑆𝑉 2(𝑛) and this relation can by used to transfer the asymptotic
properties of 𝑆𝑉 (𝑛) to 𝑡(𝑛). Our Theorem 3.3 should be compared to the results
of Bentkus et al. (2007). As before, if 𝜇 <∞, we assume that 𝜇 > 0.

Theorem 3.3. (i) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 0 < 𝛼 < 1 or with 1 <
𝛼 < 2 and 𝜇 = 0. Then

𝑡2(𝑛) 𝑑=⇒ 𝑌 2
1 (𝛼)
𝑌2(𝛼/2) .

(ii) Suppose that 𝑋 ∈ 𝐷(𝑌1(𝛼)) with 1 < 𝛼 < 2 and 𝜇 ̸= 0. Then

𝑎(𝑛)
𝑛
𝑡(𝑛) 𝑑=⇒ 𝜇

√︃
1

𝑌2(𝛼/2) .

(iii) Suppose that 𝑋 ∈ 𝐷(𝑌1(2)) and 𝑋2 ∈ 𝐷(𝑌2(1)).
(a) If 𝜇 ̸= 0, then

𝑛𝑐(𝑛)
√︀
𝑐(𝑛)

𝑏(𝑛)

(︂
1√︀
𝑐(𝑛)
− 𝑡(𝑛)√
𝑛

)︂
𝑑=⇒ 1

2𝜇2𝑌2(1)
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where 𝑐(𝑛) = 𝑑(𝑛)/𝑛𝜇2 − 1.
(b) If 𝜇 = 0, then

𝑑(𝑛)
𝑎2(𝑛) 𝑡

2(𝑛) 𝑑=⇒ 𝑌 2
1 (2).

(iv) Suppose that 𝑋2 ∈ 𝐷(𝑌2(𝛼/2)) with 2 < 𝛼 < 4 and with 𝜇 ̸= 0. Then

𝑛

𝑏(𝑛)
𝜎

𝜇

(︂
𝜇

𝜎
− 𝑡(𝑛)√
𝑛

)︂
𝑑=⇒ 1

2𝜎2𝑌2(𝛼/2)

(v) Suppose that 𝑋2 ∈ 𝐷(𝑌2(2)) with 𝜇 ̸= 0. Then

𝑛

𝑏(𝑛)
𝜎

𝜇

(︂
𝜇

𝜎
− 𝑡(𝑛)√
𝑛

)︂
𝑑=⇒ 1

2𝑌3(2)

where 𝑌3(2) is given in Theorem 3.1(v).
(vi) If 𝜇2 <∞ and 𝜇 = 0, then 𝑡(𝑛) 𝑑=⇒ 𝑌1(2).

Proof. (i), (ii) This follows immediately from Theorem 3.2 (i), (ii).
(iii) (a) To prove this result, recall that 𝑡(𝑛)/

√
𝑛 = 1/𝑆𝑉 (𝑛). Now we write

1√︀
𝑐(𝑛)
− 𝑡(𝑛)√
𝑛

=
𝑆𝑉 (𝑛)−

√︀
𝑐(𝑛)

𝑆𝑉 (𝑛)
√︀
𝑐(𝑛)

From Theorem 3.2 (iii)(a), we know that 𝑆𝑉 (𝑛)/
√︀
𝑐(𝑛) 𝑝−→ 1 and then we obtain

that

𝑛𝑐(𝑛)
√︀
𝑐(𝑛)

𝑏(𝑛)

(︂
1√︀
𝑐(𝑛)
− 𝑡(𝑛)√
𝑛

)︂
=
𝑛
√︀
𝑐(𝑛)
𝑏(𝑛)

(︀
𝑆𝑉 (𝑛)−

√︀
𝑐(𝑛)
)︀ 𝑐(𝑛)
𝑆𝑉 (𝑛)

√︀
𝑐(𝑛)

𝑑=⇒ 1
2𝜇2𝑌2(1)

(b) Now we use 𝑡2(𝑛) = 𝑛/𝑆𝑉 2(𝑛) and Theorem 3.2 (iii)(b)
(iv) To prove this result, as in the proof of (iii)(a) we write

𝜇

𝜎
− 𝑡(𝑛)√
𝑛

= 𝑆𝑉 (𝑛)− 𝜎/𝜇
𝑆𝑉 (𝑛)𝜎/𝜇

and then we obtain

𝑛

𝑏(𝑛)
𝜎

𝜇

(︂
𝜇

𝜎
− 𝑡(𝑛)√
𝑛

)︂
= 𝑛

𝑏(𝑛)
𝑆𝑉 (𝑛)− 𝜎/𝜇
𝑆𝑉 (𝑛)

𝑑=⇒ 1
2𝜎2𝑌2(𝛼/2)

(v) Similar as the proof of part (iv).
(vi) If 𝜇2 < ∞ and 𝜇 = 0 we have 𝑠2𝑛 → 𝜇2 and

√
𝑛𝑋/
√
𝜇2

𝑑=⇒ 𝑌1(2). The
result follows. �
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4. Concluding remarks

1) The reader can formulate similar asymptotic results for the sample dispersion
𝑆𝐷(𝑛) = 𝑠2𝑛/𝑋.

2) The case where 𝛼 = 1 needs to be investigated further. In the case of 𝑡(𝑛),
Bentkus et al. (2007) use the results of Griffin (2002) and obtain the asymptotic
behaviour of 𝐴(𝑛)(𝑡(𝑛)−𝐵(𝑛)) for suitable sequences 𝐴(𝑛) and 𝐵(𝑛).

3) There are many statistics that use higher sample moments. In a forthcom-
ing paper Omey (2008b) we analyze domains of attraction of the random vector
(𝑋,𝑋2, . . . , 𝑋𝑘) and then apply the results to these statistics.

4) The coefficient of variation and the sample dispersion are widely used mea-
sures of variation. For applications in the context of insurance and actuarial risk,
we refer to Albrecher and Teugels (2004), Ladoucette (2007) and the references
given there. In portfolio theory, the very popular ratio of Sharpe turns out to be
given by 1/𝑆𝑉 (𝑛), cf. Sharpe (1966), Knight and Satchell (2005). The coefficient
of variation is also used as a performance measure in queueing systems and in
simulation, cf. Krishnamurthy and Suri (2006).
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