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Abstract. We consider certain specific exponential sums related to holomor-
phic cusp forms, give a reformulation for the Lehmer conjecture and prove that
certain exponential sums of Fourier coefficients of holomorphic cusp forms con-
tain information on other similar non-overlapping exponential sums. Also, we
prove an Omega result for short sums of Fourier coefficients.

1. Introduction

Holomorphic cusp forms can be represented as Fourier series

𝐹 (𝑧) =
∞∑︁
𝑛=1
𝑎(𝑛)𝑛(𝜅−1)/2𝑒(𝑛𝑧),

where Im 𝑧 > 0, 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥, and the numbers 𝑎(𝑛) are called normalized Fourier
coefficients and 𝜅 is the weight of the form; see e.g. [1] or [13] for an account of
the theory of holomorphic modular forms. For properties of exponential sums and
related techniques, see [10].

It is of interest to consider exponential sums of the normalized Fourier coeffi-
cients:

𝐴(𝑀,Δ, 𝛼) =
∑︁

𝑀6𝑛6𝑀+Δ

𝑎(𝑛) 𝑒(𝑛𝛼)

with 0 < Δ 6 𝑀 and 𝛼 ∈ R. For similar exponential sums involving the divisor
function 𝑑(𝑛) =

∑︀
𝑑|𝑛 1, the notation 𝐷(𝑀,Δ, 𝛼) will be used. Wilton’s estimate

[17] ∑︁
𝑛6𝑀

𝑎(𝑛) 𝑒(𝑛𝛼)≪𝑀1/2 log𝑀

from the year 1929 is a classical result. This estimate is nearly sharp, only the
logarithm can be removed and that was done by Jutila in 1987 [11]. Therefore,
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moving the focus to short sums was a logical next step. Karppinen and Ernvall-
Hytönen [5] proved that, for 1 6 Δ≪𝑀3/4,

𝐴(𝑀,Δ, 𝛼)≪

⎧⎪⎪⎨⎪⎪⎩
Δ𝑀𝜀, when 1 6 Δ≪𝑀2/5

Δ1/6𝑀1/3+𝜀, when 𝑀2/5 ≪ Δ≪𝑀5/8

Δ𝑀−9/48+𝜀, when 𝑀5/8 ≪ Δ𝑀11/16

𝑀−1/4Δ +𝑀1/2−1/32+𝜀, when 𝑀11/16 ≪ Δ𝑀3/4.

In this article, we will consider the sum∑︁
𝑀6𝑛6𝑀+Δ

𝑐(𝑛)𝑒
(︂
𝑛
√
𝑘√
𝑀

)︂
𝑤(𝑛),

where 𝑐(𝑛) is either 𝑎(𝑛) or 𝑑(𝑛), 𝑘 ∈ N, and 𝑤 is a smooth weight function. In
particular, we will show a connection between this sum with 𝑐(𝑛) = 𝑎(𝑛) and the
coefficient 𝑎(𝑘). For 𝑘 = 1, such a relation was established in [5] for 𝑐(𝑛) = 𝑎(𝑛)
and in [4] for 𝑐(𝑛) = 𝑑(𝑛). We will also show that this sum contains information
about similar shifted (not necessarily overlapping) sums.

Also, we will show the Ω-result∑︁
𝑀6𝑛6𝑀+𝑐

√
𝑀

𝑎(𝑛) = Ω
(︀
𝑀1/4)︀,

where the Ω-symbol is to be understood in the following way: 𝑓 = Ω (𝑔) if 𝑓 = 𝑜(𝑔)
does not hold. The question of good Ω-results has been earlier tackled by several
mathematicians, Joris [9], Redmond [16], Corrádi and Katai [2], to mention a few.
In 1989, Ivić and Hafner [6] proved the existence of a positive constant 𝐷 such that∑︁

𝑛6𝑀

𝑎(𝑛)𝑛(𝜅−1)/2 = Ω±
(︂
𝑀𝜅/2−1/4 exp

(︂
𝐷

(log log𝑀)1/4

(log log log𝑀)3/4

)︂)︂
,

where Ω± means the following: 𝑓= Ω±(𝑔) if lim sup 𝑓/𝑔>0 and lim inf 𝑓/𝑔<0. One
year later appeared Ivić’s paper [8] in which he showed that there are 𝐴,𝐵, 𝑇0 > 0
such that, for 𝑇 > 𝑇0, every interval

[︀
𝑇, 𝑇 + 𝐴

√
𝑇
]︀

contains 𝑡1 and 𝑡2 for which
𝐴(1, 𝑡1− 1, 0) > 𝐵𝑡1/41 and 𝐴(1, 𝑡2− 1, 0) < −𝐵𝑡1/42 . Very recently, Ivić [7] proved
an Ω-result for short sums:

𝐴(𝑀,Δ, 1) = Ω
(︀√

Δ
)︀

when 𝑀𝜀 6 Δ 6𝑀1/2−𝜀. The result in this article extends this result by treating
the “missing" case Δ ≍𝑀1/2.

The author would like to thank professors Jutila and Ivić for valuable insight
and comments.

2. Preliminaries

Let us begin with

Definition 2.1. Given 𝑋,𝑌, 𝑍 ∈ R we write
𝑑(𝑋,𝑌, 𝑍) = {𝑥 ∈ C : ∃𝑦 ∈ [𝑋,𝑌 ] : |𝑥− 𝑦| < 𝑍} .
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Now we may state a lemma [12, Lemma 6] which will be used repeatedly in
this article:

Lemma 2.1. Let 𝐴 be a function which is compactly supported in a finite inter-
val [𝑀1,𝑀2] and at least 𝑃 > 0 times differentiable. Assume also that there exist
two natural numbers 𝐴0 and 𝐴1 such that for any non-negative integer 𝜈 6 𝑃 and
for any 𝑥 ∈ [𝑀1,𝑀2],

𝐴(𝜈)(𝑥)≪ 𝐴0𝐴
−𝜈
1 .

Also, let 𝐵 be a function which is real-valued on [𝑀1,𝑀2], and regular throughout
the complex domain 𝑑(𝑀1,𝑀2, 𝜌); and assume that there exists a quantity 𝐵1 such
that

0 < 𝐵1 ≪ |𝐵′(𝑥)|
for any point 𝑥 in the domain. Then we have∫︁ ∞

−∞
𝐴(𝑥) 𝑒(𝐵(𝑥)) 𝑑𝑥≪ 𝐴0(𝐴1𝐵1)−𝑃

(︁
1 + 𝐴1

𝜚

)︁𝑃
(𝑀2 −𝑀1).

3. Connecting exponential sums and individual coefficients

The following theorem was proved in [5]:

Theorem 3.1. Let 𝑀1/2+𝛿 < Δ 6 𝜆𝑀3/4, where 0 < 𝜆 < 1 is a constant. Let
𝑤 be a smooth weight function on the interval [𝑀,𝑀 + Δ] which equals 1 on the
interval [𝑎, 𝑏] ⊂ [𝑀,𝑀 + Δ] where 𝑎−𝑀 =𝑀 + Δ− 𝑏 = Δ1−𝛿 with 𝛿 a sufficiently
small fixed positive real number. Assume further that 𝛼 =𝑀−1/2. Then⃒⃒⃒⃒ ∑︁

𝑀6𝑛6𝑀+Δ

𝑎(𝑛)𝑤(𝑛) 𝑒(𝛼𝑛)
⃒⃒⃒⃒
≍ Δ𝑀−1/4.

The symbol ≍ has to be understood in the following way: 𝑓 ≍ 𝑔 if 𝑓 = 𝑂(𝑔)
and 𝑔 = 𝑂(𝑓).

However, the following more general theorem holds:

Theorem 3.2. Let 𝑀1/2+𝜃 ≪ Δ 6 𝜆𝑀3/4 and 0 6 𝑇 6𝑀3/4, where 0 < 𝜆 6
1/
√
𝑘 is a constant, 𝜃 an arbitrarily small fixed positive number, 𝑘 a positive integer,

and let 𝑤 be a smooth weight function on the interval [𝑀,𝑀 + Δ] such that 𝑤 is a
constant function 1 on the interval [𝑎, 𝑏] ⊂ [𝑀,𝑀 + Δ] where 𝑎−𝑀,𝑀 + Δ− 𝑏 =
Δ1−𝛿 with 𝛿 < 2𝜃

1+2𝜃 a sufficiently small fixed positive real number. Then

∑︁
𝑀+𝑇6𝑛6𝑀+𝑇+Δ

𝑐(𝑛)𝑤(𝑛− 𝑇 ) 𝑒
(︂√
𝑘 𝑛√
𝑀

)︂

= 𝐶𝑐(𝑘)𝑘−1/4
∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
𝑥−1/4𝑤(𝑥− 𝑇 ) 𝑒

(︂ √
𝑘√
𝑀
𝑥− 2

√
𝑘𝑥

)︂
𝑑𝑥+𝑂(1),

where 𝑐(𝑛) = 𝑎(𝑛) or 𝑑(𝑛) and 𝐶 is a constant depending only whether 𝑐(𝑛) equals
𝑑(𝑛) or 𝑎(𝑛) and on the weight of the form.

Notice that the size of the integral is ≍ 𝑀−1/4Δ. This can be easily proved
using the fact that the exponential part is stationary.
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Proof of Theorem 3.2. The proof for 𝑐(𝑛) = 𝑎(𝑛) with 𝑘 = 1 and 𝑇 = 0
can be found in [5] and the proof for both 𝑐(𝑛) = 𝑑(𝑛) and 𝑐(𝑛) = 𝑎(𝑛) with 𝑘 = 1
and 𝑇 = 0 can be found in [4] and the proof of the above formula is similar. As
the case with 𝑐(𝑛) = 𝑎(𝑛) is easier and similar to the case 𝑐(𝑛) = 𝑑(𝑛), we are only
going to prove the latter case.

Let us first use a Voronoi type summation formula [10, Theorem 1.7]

𝐷

(︂
𝑀 + 𝑇,Δ,

√
𝑘√
𝑀

)︂
=
∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
(log 𝑥+ 2𝛾)𝑤(𝑥− 𝑇 ) 𝑒

(︂√
𝑘𝑥√
𝑀

)︂
𝑑𝑥

+
∞∑︁
𝑛=1
𝑑(𝑛)
∫︁ 𝑀+𝑇+Δ

𝑀+𝑇

{︀
−2𝜋𝑌0

(︀
4𝜋
√
𝑛𝑥
)︀

+ 4𝐾0
(︀
4𝜋
√
𝑛𝑥
)︀}︀
𝑤(𝑥− 𝑇 ) 𝑒

(︂√
𝑘𝑥√
𝑀

)︂
𝑑𝑥,

where 𝑌0 and 𝐾0 are Bessel functions in the standard notation. The following
estimate is well known (see formula (5.16.5) of [14])

𝐾0(𝑧) ∼
√︂
𝜋

2𝑧 𝑒
−𝑧, when 𝑧 →∞.

Therefore, the integral corresponding to the 𝐾-function yields∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
4𝐾0
(︀
4𝜋
√
𝑛𝑥
)︀
𝑤(𝑥− 𝑇 ) 𝑒

(︂√
𝑘𝑥√
𝑀

)︂
𝑑𝑥

≪ 1
𝑛1/4

∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
𝑥−1/4𝑒−4𝜋

√
𝑛𝑥𝑑𝑥≪ 𝑛−3/2.

Hence, the corresponding sums converges to 𝑂(1) (as a function of 𝑀). Let us
now move to the 𝑌 -Bessel function. We write it first using Hankel functions [14,
(5.6.1)]:

𝑌0(𝑧) = 1
2𝑖
(︀
𝐻

(1)
0 (𝑧)−𝐻(2)

0 (𝑧)
)︀
.

The asymptotic expansions for the Hankel functions [14, (5.11.5)] give

(3.1) 𝐻
(𝑗)
0 (𝑧) =

(︁ 2
𝜋𝑧

)︁1/2
𝑒𝑖(−1)𝑗−1(𝑧−𝜋/4)(︀1 + 𝑐1𝑗𝑧−1 +𝑂

(︀
|𝑧|−2)︀)︀.

The first step to treat these terms is first to integrate and then sum over the 𝑂-term:
∞∑︁
𝑛=1
𝑑(𝑛)
∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
(𝑛𝑥)−5/4𝑑𝑥≪

∞∑︁
𝑛=1
𝑑(𝑛)𝑛−5/4Δ𝑀−5/4 ≪ 1.

Use Lemma 2.1 to treat the integral over the second term in (3.1), except in the
case of 𝑛 = 𝑑, with the following choices: 𝑀2 −𝑀1 = Δ, 𝜚 = 1

2𝑀 , 𝐴1 = Δ1−𝛿,
𝐵1 ≍

√
𝑛√
𝑀

and 𝐴0 = 𝑛−3/4𝑀−3/4. We obtain∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
(𝑛𝑥)−3/4 𝑒

(︂
𝑥
√
𝑘√
𝑀
± 2
√
𝑛𝑥

)︂
𝑤(𝑥− 𝑇 ) 𝑑𝑥

≪ Δ−𝑃 (1−𝛿)+1 𝑛−𝑃/2−3/4𝑀𝑃/2−3/4

≪ 𝑛−𝑃/2−3/4𝑀−𝑃 (1/2+𝜃)(1−𝛿)+𝑃/2−1/4+𝜃 ≪ 𝑛−𝑃/2−3/4.
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Therefore, the series converges and produces an error term of size 𝑂(1). When
𝑛 = 𝑘, use integration over the absolute values to obtain the same estimate. Let
us now treat the integral corresponding to the first term in the asymptotic Expan-
Sion (3.1). When 𝑛 ̸= 𝑘, we obtain by use of Lemma 2.1 the estimate

≪ Δ(1−𝛿)(1−𝑃 )𝑛−𝑃/2−1/4𝑀𝑃/2−1/4

≪𝑀−𝑃 (1/2+𝜃)(1−𝛿)+𝑃/2+1/4+𝜃𝑛−𝑃/2−1/4 ≪ 𝑛−𝑃/2−1/4,

when 𝑃 is sufficiently large. When 𝑛 = 𝑘, the first term in the asymptotic expansion
for 𝐻(1)

0 also gives the same estimate. Hence, we have now derived

𝐷

(︂
𝑀 + 𝑇,Δ,

√
𝑘√
𝑀

)︂
=
∫︁ 𝑀+𝑇+Δ

𝑀+𝑇

(︁
2𝛾 + log 𝑥− 𝑐𝑑(𝑘)𝑘−1/4𝑥−1/4𝑒

(︀
−2
√
𝑘𝑥
)︀)︁

× 𝑤(𝑥− 𝑇 ) 𝑒
(︂
𝑥
√
𝑘√
𝑀

)︂
𝑑𝑥+𝑂(1),

where 𝑐 is a constant. Write 𝑞(𝑥) = 𝑤(𝑥 − 𝑇 )(ln 𝑥 + 2𝛾). Now 𝑞(𝑃 )(𝑥) ≪
Δ(1−𝛿)(𝜀−𝑃 ). Using Lemma 2.1 we obtain∫︁ 𝑀+𝑇+Δ

𝑀+𝑇
𝑞(𝑥) 𝑒

(︂
𝑥
√
𝑘√
𝑀

)︂
𝑑𝑥≪ Δ(1−𝛿)(𝜀−𝑃 )+1𝑀𝑃/2

≪𝑀𝑃/2+(1−𝛿)(𝜀−𝑃 )+1/2+𝜃 ≪ 1.

This proves the theorem. �

As a simple corollary, we obtain

Corollary 3.1. With the assumptions of the previous theorem and supposing,
moreover, that 𝑎(𝑘) = 0, we have∑︁

𝑀6𝑛6𝑀+Δ

𝑎(𝑛)𝑤(𝑛) 𝑒
(︂ √
𝑘√
𝑀
𝑛

)︂
= 𝑂(1).

On the other hand, if 𝑎(𝑘) ̸= 0, then∑︁
𝑀6𝑛6𝑀+Δ

𝑎(𝑛)𝑤(𝑛) 𝑒
(︂ √
𝑘√
𝑀
𝑛

)︂
≍𝑀−1/4Δ.

In other words, the Lehmer conjecture for the eigenfunctions of the Hecke
operators is equivalent to the corresponding sums being large.

Remark 3.1. Notice that if 𝑎(𝑘) ̸= 0, then⃒⃒⃒⃒ ∑︁
𝑀6𝑛6𝑀+Δ′

𝑎(𝑛) 𝑒
(︂ √
𝑘√
𝑀
𝑛

)︂⃒⃒⃒⃒
≫𝑀−1/4Δ

for some Δ′ ∈ (0,Δ]. Otherwise, it would follow from partial summation that the
estimate for the smoothed sum would be 𝑜(𝑀−1/4Δ).
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Theorem 3.3. With the assumptions of Theorem 3.2, the following holds:

∑︁
𝑀6𝑛6𝑀+Δ

𝑐(𝑛)𝑤(𝑛) 𝑒
(︂√
𝑘 𝑛√
𝑀

)︂
−

∑︁
𝑀+𝑇6𝑛6𝑀+𝑇+Δ

𝑐(𝑛)𝑤(𝑛− 𝑇 ) 𝑒
(︂√
𝑘 𝑛√
𝑀

)︂

≪ 𝑇Δ(𝑇 + Δ)
𝑀7/4 + Δ(Δ + 𝑇 )

𝑀5/4 + 1.

Proof. Using Theorem 3.2, we see that it is sufficient to consider the difference∫︁ 𝑀+Δ

𝑀

𝑥−1/4𝑤(𝑥) 𝑒
(︂ √
𝑘√
𝑀
𝑥− 2

√
𝑘𝑥

)︂
𝑑𝑥

−
∫︁ 𝑀+Δ

𝑀

(𝑥+ 𝑇 )−1/4𝑤(𝑥) 𝑒
(︂√
𝑘(𝑥+ 𝑇 )√
𝑀

𝑥− 2
√︀
𝑘(𝑥+ 𝑇 )

)︂
𝑑𝑥.

We first use the Taylor expansion to treat the terms 𝑥−1/4 and (𝑥+ 𝑇 )−1/4:

𝑥−1/4 =𝑀−1/4 +𝑂
(︀
𝑀−5/4|𝑥−𝑀 |

)︀
.

Hence,∫︁ 𝑀+Δ

𝑀

(︂
𝑤(𝑥)
𝑥1/4 𝑒

(︂ √
𝑘√
𝑀
𝑥−2
√
𝑘𝑥

)︂
− 𝑤(𝑥)

(𝑥+𝑇 )1/4 𝑒

(︂√
𝑘(𝑥+𝑇 )√
𝑀

𝑥−2
√︀
𝑘(𝑥+𝑇 )

)︂)︂
𝑑𝑥

=𝑀−1/4
∫︁ 𝑀+Δ

𝑀

𝑤(𝑥)
(︂
𝑒

(︂√
𝑘𝑥√
𝑀
− 2
√
𝑘𝑥

)︂
− 𝑒
(︂√
𝑘(𝑥+ 𝑇 )√
𝑀

− 2
√︀
𝑘(𝑥+ 𝑇 )

)︂)︂
𝑑𝑥

+𝑂
(︂

Δ(Δ + 𝑇 )
𝑀5/4

)︂
.

Let us now consider the difference⃒⃒⃒⃒
𝑒

(︂√
𝑘𝑥√
𝑀
− 2
√
𝑘𝑥

)︂
− 𝑒
(︂√
𝑘(𝑥+ 𝑇 )√
𝑀

− 2
√︀
𝑘(𝑥+ 𝑇 )

)︂⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑒

(︂√
𝑘 𝑥√
𝑀
− 2
√
𝑘𝑥−

√
𝑘(𝑥+ 𝑇 )√
𝑀

+ 2
√︀
𝑘(𝑥+ 𝑇 )

)︂
− 1
⃒⃒⃒⃒
.

Since |𝑒𝑖𝑦 − 1| 6 |𝑦|, it is sufficient to consider the exponent to obtain an upper
bound for the difference of the exponent functions, and thereby for the original
integral expression:⃒⃒⃒⃒ √

𝑘√
𝑀
𝑥− 2

√
𝑘𝑥−

√
𝑘(𝑥+ 𝑇 )√
𝑀

+ 2
√︀
𝑘(𝑥+ 𝑇 )

⃒⃒⃒⃒
≪ 𝑇 (Δ + 𝑇 )

𝑀3/2 .

We obtain∫︁ 𝑀+Δ

𝑀

(︂
𝑤(𝑥)
𝑥1/4 𝑒

(︂ √
𝑘√
𝑀
𝑥−2
√
𝑘𝑥

)︂
− 𝑤(𝑥)

(𝑥+𝑇 )1/4 𝑒

(︂√
𝑘(𝑥+𝑇 )√
𝑀

𝑥−2
√︀
𝑘(𝑥+𝑇 )

)︂)︂
𝑑𝑥

≪ 𝑇Δ(𝑇 + Δ)
𝑀7/4 + Δ(Δ + 𝑇 )

𝑀5/4 . �
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4. An Omega-result for short sums of Fourier coefficients

Theorem 4.1. Let 𝑐 > 0 be an arbitrary real number. Then∑︁
𝑀6𝑛6𝑀+𝑐

√
𝑀

𝑎(𝑛) = Ω
(︀
𝑀1/4)︀.

Before proving the theorem, let us prove a lemma:

Lemma 4.1. Write 𝐷 = 𝐾𝑐4, where 𝐾 is a sufficiently large constant. Write
‖𝑥‖ to denote the distance from 𝑥 to the nearest integer. Let 𝑏 be a sufficiently
large constant. Then it is possible to choose an integer 𝑘 ∈ [𝑏−1𝐷, 𝑏𝐷] such that
the following two conditions are satisfied: (1)

⃦⃦
𝑐
√
𝑘
⃦⃦
> 𝐷−1/4, (2) 𝑎(𝑘) ̸= 0.

Proof. First, consider the difference

𝑐
√
𝑘 + 1− 𝑐

√
𝑘 = 𝑐√

𝑘 +
√
𝑘 + 1

≍ 𝐷−1/2.

Therefore, the values
⃦⃦
𝑐
√
𝑘
⃦⃦

are somewhat uniformly distributed on the interval
[ 0, 1). It is now easy to conclude that only ≍ 𝐷3/4 of 𝑘 ∈ [𝑏−1𝐷, 𝑏𝐷] satisfy the
condition

⃦⃦
𝑐
√
𝑘
⃦⃦
6 𝐷−1/4. Since 𝑎(𝑘)≪ 𝑘𝜀 by Deligne’s estimate [3], we obtain∑︁

𝑏−1𝐷6𝑘6𝑏𝐷,
‖𝑐
√
𝑘‖<𝐷−1/4

|𝑎(𝑘)|2 ≪ 𝐷3/4+𝜀.

The Rankin–Selberg mean value theorem (see e.g. Rankin [15]) gives the estimate∑︁
𝑏−1𝐷6𝑘6𝑏𝐷,
‖𝑐
√
𝑘‖>𝐷−1/4

|𝑎(𝑘)|2 +𝑂
(︀
𝐷3/4+𝜀)︀ ≍ 𝐷,

which proves the existence of a coefficient satisfying both conditions. �

We may now turn to the proof of the actual theorem.

Proof of Theorem 4.1. Take 𝑘 as in Lemma 4.1. From the first condition
we obtain⃒⃒⃒⃒ ∑︁

06ℎ6𝑐
√
𝑀

𝑒

(︂
ℎ
√
𝑘√
𝑀

)︂⃒⃒⃒⃒
=
⃒⃒⃒⃒
1− 𝑒
(︀⌊︀
𝑐
√
𝑀
⌋︀√
𝑘𝑀−1/2 +

√
𝑘𝑀−1/2)︀

1− 𝑒
(︀√
𝑘𝑀−1/2

)︀ ⃒⃒⃒⃒
≫𝑀1/2,

since the denominator is ≍ 𝑀−1/2
√
𝑘 ≍ 𝑀−1/2 as 𝑘 is a constant, and the nomi-

nator is ≍ 1 by condition (1) of Lemma 4.1. From Remark 3.1 we know that there
exists Δ′ 6 𝜆𝑀3/4, where 𝜆 ∈ (0, 1) is a constant, such that⃒⃒⃒⃒ ∑︁

𝑀6𝑛6𝑀+Δ′
𝑎(𝑛) 𝑒

(︂ √
𝑘√
𝑀

)︂⃒⃒⃒⃒
≫𝑀1/2.
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Multiplying these two sums together, we obtain

𝑀 ≪
⃒⃒⃒⃒(︂ ∑︁

06ℎ6𝑐
√
𝑀

𝑒

(︂
ℎ
√
𝑘√
𝑀

)︂)︂(︂ ∑︁
𝑀6𝑛6𝑀+Δ′

𝑎(𝑛) 𝑒
(︂
𝑛
√
𝑘√
𝑀

)︂)︂⃒⃒⃒⃒
.

Change the variable 𝑚 = ℎ+ 𝑛 and estimate further:

=
⃒⃒⃒⃒ ∑︁
𝑀6𝑚6𝑀+Δ′+𝑐

√
𝑀

𝑒

(︂
𝑚

√
𝑘√
𝑀

)︂ ∑︁
𝑛∈[𝑀,𝑀+Δ′]∩[𝑚−𝑐

√
𝑀,𝑚]

𝑎(𝑛)
⃒⃒⃒⃒

6

⃒⃒⃒⃒ ∑︁
𝑀+𝑐

√
𝑀6𝑚6𝑀+Δ′

𝑒

(︂
𝑐
√
𝑘√
𝑀

)︂ ∑︁
𝑚−𝑐

√
𝑀6𝑛6𝑚

𝑎(𝑛)
⃒⃒⃒⃒

+
⃒⃒⃒⃒ ∑︁
𝑀6𝑚<𝑀+𝑐

√
𝑀

𝑒

(︂
𝑐
√
𝑘√
𝑀

)︂ ∑︁
𝑛∈[𝑀,𝑀+Δ′]∩[𝑚−𝑐

√
𝑀,𝑚]

𝑎(𝑛)
⃒⃒⃒⃒

+
⃒⃒⃒⃒ ∑︁
𝑀+Δ′<𝑚6𝑀+Δ′+𝑐

√
𝑀

𝑒

(︂
𝑐
√
𝑘√
𝑀

)︂ ∑︁
𝑛∈[𝑀,𝑀+Δ′]∩[𝑚−𝑐

√
𝑀,𝑚]

𝑎(𝑛)
⃒⃒⃒⃒

We may now use the well-known estimate (see [10])
∑︀
𝑛6𝑀 𝑎(𝑛)≪𝑀1/3+𝜀 to treat

the second and third term and then use the triangle inequality to the first term to
obtain

≪
∑︁

𝑀+𝑐
√
𝑀6𝑚6𝑀+𝜆𝑀3/4

⃒⃒⃒⃒ ∑︁
𝑚−𝑐

√
𝑀6𝑛6𝑚

𝑎(𝑛)
⃒⃒⃒⃒
+𝑀5/6,

Therefore the mean of the sums
⃒⃒∑︀
𝑚−𝑐

√
𝑀6𝑛6𝑚 𝑎(𝑛)

⃒⃒
is ≫ 𝑀1/4 and hence,

at least one of them has to be ≫𝑀1/4. This proves the theorem. �
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