A RELATION BETWEEN FOURIER COEFFICIENTS OF HOLOMORPHIC CUSP FORMS AND EXPONENTIAL SUMS

Anne-Maria Ernvall-Hytönen

Communicated by Aleksandar Ivić

Abstract

We consider certain specific exponential sums related to holomorphic cusp forms, give a reformulation for the Lehmer conjecture and prove that certain exponential sums of Fourier coefficients of holomorphic cusp forms contain information on other similar non-overlapping exponential sums. Also, we prove an Omega result for short sums of Fourier coefficients.

1. Introduction

Holomorphic cusp forms can be represented as Fourier series

$$
F(z)=\sum_{n=1}^{\infty} a(n) n^{(\kappa-1) / 2} e(n z)
$$

where $\operatorname{Im} z>0, e(x)=e^{2 \pi i x}$, and the numbers $a(n)$ are called normalized Fourier coefficients and κ is the weight of the form; see e.g. [1] or 13 for an account of the theory of holomorphic modular forms. For properties of exponential sums and related techniques, see [10].

It is of interest to consider exponential sums of the normalized Fourier coefficients:

$$
A(M, \Delta, \alpha)=\sum_{M \leqslant n \leqslant M+\Delta} a(n) e(n \alpha)
$$

with $0<\Delta \leqslant M$ and $\alpha \in \mathbb{R}$. For similar exponential sums involving the divisor function $d(n)=\sum_{d \mid n} 1$, the notation $D(M, \Delta, \alpha)$ will be used. Wilton's estimate 17]

$$
\sum_{n \leqslant M} a(n) e(n \alpha) \ll M^{1 / 2} \log M
$$

from the year 1929 is a classical result. This estimate is nearly sharp, only the logarithm can be removed and that was done by Jutila in 1987 [11]. Therefore,

[^0]moving the focus to short sums was a logical next step. Karppinen and ErnvallHytönen [5] proved that, for $1 \leqslant \Delta \ll M^{3 / 4}$,
\[

A(M, \Delta, \alpha) \ll $$
\begin{cases}\Delta M^{\varepsilon}, & \text { when } 1 \leqslant \Delta \ll M^{2 / 5} \\ \Delta^{1 / 6} M^{1 / 3+\varepsilon}, & \text { when } M^{2 / 5} \ll \Delta \ll M^{5 / 8} \\ \Delta M^{-9 / 48+\varepsilon}, & \text { when } M^{5 / 8} \ll \Delta M^{11 / 16} \\ M^{-1 / 4} \Delta+M^{1 / 2-1 / 32+\varepsilon}, & \text { when } M^{11 / 16} \ll \Delta M^{3 / 4}\end{cases}
$$
\]

In this article, we will consider the sum

$$
\sum_{M \leqslant n \leqslant M+\Delta} c(n) e\left(\frac{n \sqrt{k}}{\sqrt{M}}\right) w(n)
$$

where $c(n)$ is either $a(n)$ or $d(n), k \in \mathbb{N}$, and w is a smooth weight function. In particular, we will show a connection between this sum with $c(n)=a(n)$ and the coefficient $a(k)$. For $k=1$, such a relation was established in [5 for $c(n)=a(n)$ and in [4] for $c(n)=d(n)$. We will also show that this sum contains information about similar shifted (not necessarily overlapping) sums.

Also, we will show the Ω-result

$$
\sum_{M \leqslant n \leqslant M+c \sqrt{M}} a(n)=\Omega\left(M^{1 / 4}\right),
$$

where the Ω-symbol is to be understood in the following way: $f=\Omega(g)$ if $f=o(g)$ does not hold. The question of good Ω-results has been earlier tackled by several mathematicians, Joris [9], Redmond [16, Corrádi and Katai [2], to mention a few. In 1989, Ivić and Hafner [6] proved the existence of a positive constant D such that

$$
\sum_{n \leqslant M} a(n) n^{(\kappa-1) / 2}=\Omega_{ \pm}\left(M^{\kappa / 2-1 / 4} \exp \left(D \frac{(\log \log M)^{1 / 4}}{(\log \log \log M)^{3 / 4}}\right)\right)
$$

where $\Omega_{ \pm}$means the following: $f=\Omega_{ \pm}(g)$ if $\limsup f / g>0$ and $\lim \inf f / g<0$. One year later appeared Ivić's paper [8] in which he showed that there are $A, B, T_{0}>0$ such that, for $T \geqslant T_{0}$, every interval $[T, T+A \sqrt{T}]$ contains t_{1} and t_{2} for which $A\left(1, t_{1}-1,0\right)>B t_{1}^{1 / 4}$ and $A\left(1, t_{2}-1,0\right)<-B t_{2}^{1 / 4}$. Very recently, Ivić [7] proved an Ω-result for short sums:

$$
A(M, \Delta, 1)=\Omega(\sqrt{\Delta})
$$

when $M^{\varepsilon} \leqslant \Delta \leqslant M^{1 / 2-\varepsilon}$. The result in this article extends this result by treating the "missing" case $\Delta \asymp M^{1 / 2}$.

The author would like to thank professors Jutila and Ivić for valuable insight and comments.

2. Preliminaries

Let us begin with
Definition 2.1. Given $X, Y, Z \in \mathbb{R}$ we write

$$
d(X, Y, Z)=\{x \in \mathbb{C}: \exists y \in[X, Y]:|x-y|<Z\}
$$

Now we may state a lemma [12, Lemma 6] which will be used repeatedly in this article:

Lemma 2.1. Let A be a function which is compactly supported in a finite interval $\left[M_{1}, M_{2}\right]$ and at least $P \geqslant 0$ times differentiable. Assume also that there exist two natural numbers A_{0} and A_{1} such that for any non-negative integer $\nu \leqslant P$ and for any $x \in\left[M_{1}, M_{2}\right]$,

$$
A^{(\nu)}(x) \ll A_{0} A_{1}^{-\nu}
$$

Also, let B be a function which is real-valued on $\left[M_{1}, M_{2}\right]$, and regular throughout the complex domain $d\left(M_{1}, M_{2}, \rho\right)$; and assume that there exists a quantity B_{1} such that

$$
0<B_{1} \ll\left|B^{\prime}(x)\right|
$$

for any point x in the domain. Then we have

$$
\int_{-\infty}^{\infty} A(x) e(B(x)) d x \ll A_{0}\left(A_{1} B_{1}\right)^{-P}\left(1+\frac{A_{1}}{\varrho}\right)^{P}\left(M_{2}-M_{1}\right)
$$

3. Connecting exponential sums and individual coefficients

The following theorem was proved in [5:
Theorem 3.1. Let $M^{1 / 2+\delta}<\Delta \leqslant \lambda M^{3 / 4}$, where $0<\lambda<1$ is a constant. Let w be a smooth weight function on the interval $[M, M+\Delta]$ which equals 1 on the interval $[a, b] \subset[M, M+\Delta]$ where $a-M=M+\Delta-b=\Delta^{1-\delta}$ with δ a sufficiently small fixed positive real number. Assume further that $\alpha=M^{-1 / 2}$. Then

$$
\left|\sum_{M \leqslant n \leqslant M+\Delta} a(n) w(n) e(\alpha n)\right| \asymp \Delta M^{-1 / 4}
$$

The symbol \asymp has to be understood in the following way: $f \asymp g$ if $f=O(g)$ and $g=O(f)$.

However, the following more general theorem holds:
THEOREM 3.2. Let $M^{1 / 2+\theta} \ll \Delta \leqslant \lambda M^{3 / 4}$ and $0 \leqslant T \leqslant M^{3 / 4}$, where $0<\lambda \leqslant$ $1 / \sqrt{k}$ is a constant, θ an arbitrarily small fixed positive number, k a positive integer, and let w be a smooth weight function on the interval $[M, M+\Delta]$ such that w is a constant function 1 on the interval $[a, b] \subset[M, M+\Delta]$ where $a-M, M+\Delta-b=$ $\Delta^{1-\delta}$ with $\delta<\frac{2 \theta}{1+2 \theta}$ a sufficiently small fixed positive real number. Then

$$
\begin{aligned}
& \sum_{M+T \leqslant n \leqslant M+T+\Delta} c(n) w(n-T) e\left(\frac{\sqrt{k} n}{\sqrt{M}}\right) \\
& \quad=C c(k) k^{-1 / 4} \int_{M+T}^{M+T+\Delta} x^{-1 / 4} w(x-T) e\left(\frac{\sqrt{k}}{\sqrt{M}} x-2 \sqrt{k x}\right) d x+O(1)
\end{aligned}
$$

where $c(n)=a(n)$ or $d(n)$ and C is a constant depending only whether $c(n)$ equals $d(n)$ or $a(n)$ and on the weight of the form.

Notice that the size of the integral is $\asymp M^{-1 / 4} \Delta$. This can be easily proved using the fact that the exponential part is stationary.

Proof of Theorem 3.2. The proof for $c(n)=a(n)$ with $k=1$ and $T=0$ can be found in [5] and the proof for both $c(n)=d(n)$ and $c(n)=a(n)$ with $k=1$ and $T=0$ can be found in [4] and the proof of the above formula is similar. As the case with $c(n)=a(n)$ is easier and similar to the case $c(n)=d(n)$, we are only going to prove the latter case.

Let us first use a Voronoi type summation formula [10, Theorem 1.7]

$$
\begin{aligned}
& D\left(M+T, \Delta, \frac{\sqrt{k}}{\sqrt{M}}\right)=\int_{M+T}^{M+T+\Delta}(\log x+2 \gamma) w(x-T) e\left(\frac{\sqrt{k} x}{\sqrt{M}}\right) d x \\
& +\sum_{n=1}^{\infty} d(n) \int_{M+T}^{M+T+\Delta}\left\{-2 \pi Y_{0}(4 \pi \sqrt{n x})+4 K_{0}(4 \pi \sqrt{n x})\right\} w(x-T) e\left(\frac{\sqrt{k} x}{\sqrt{M}}\right) d x
\end{aligned}
$$

where Y_{0} and K_{0} are Bessel functions in the standard notation. The following estimate is well known (see formula (5.16.5) of $[\mathbf{1 4}$)

$$
K_{0}(z) \sim \sqrt{\frac{\pi}{2 z}} e^{-z}, \quad \text { when } z \rightarrow \infty
$$

Therefore, the integral corresponding to the K-function yields

$$
\begin{aligned}
\int_{M+T}^{M+T+\Delta} 4 K_{0}(4 \pi \sqrt{n x}) w(x-T) & e\left(\frac{\sqrt{k} x}{\sqrt{M}}\right) d x \\
& \ll \frac{1}{n^{1 / 4}} \int_{M+T}^{M+T+\Delta} x^{-1 / 4} e^{-4 \pi \sqrt{n x}} d x \ll n^{-3 / 2}
\end{aligned}
$$

Hence, the corresponding sums converges to $O(1)$ (as a function of M). Let us now move to the Y-Bessel function. We write it first using Hankel functions [14, (5.6.1)]:

$$
Y_{0}(z)=\frac{1}{2 i}\left(H_{0}^{(1)}(z)-H_{0}^{(2)}(z)\right)
$$

The asymptotic expansions for the Hankel functions [14, (5.11.5)] give

$$
\begin{equation*}
H_{0}^{(j)}(z)=\left(\frac{2}{\pi z}\right)^{1 / 2} e^{i(-1)^{j-1}(z-\pi / 4)}\left(1+c_{1 j} z^{-1}+O\left(|z|^{-2}\right)\right) \tag{3.1}
\end{equation*}
$$

The first step to treat these terms is first to integrate and then sum over the O-term:

$$
\sum_{n=1}^{\infty} d(n) \int_{M+T}^{M+T+\Delta}(n x)^{-5 / 4} d x \ll \sum_{n=1}^{\infty} d(n) n^{-5 / 4} \Delta M^{-5 / 4} \ll 1
$$

Use Lemma 2.1 to treat the integral over the second term in 3.1, except in the case of $n=d$, with the following choices: $M_{2}-M_{1}=\Delta, \varrho=\frac{1}{2} M, A_{1}=\Delta^{1-\delta}$, $B_{1} \asymp \frac{\sqrt{n}}{\sqrt{M}}$ and $A_{0}=n^{-3 / 4} M^{-3 / 4}$. We obtain

$$
\begin{array}{rl}
\int_{M+T}^{M+T+\Delta}(n x)^{-3 / 4} & e\left(\frac{x \sqrt{k}}{\sqrt{M}} \pm 2 \sqrt{n x}\right) w(x-T) d x \\
& \ll \Delta^{-P(1-\delta)+1} n^{-P / 2-3 / 4} M^{P / 2-3 / 4} \\
& \ll n^{-P / 2-3 / 4} M^{-P(1 / 2+\theta)(1-\delta)+P / 2-1 / 4+\theta} \ll n^{-P / 2-3 / 4}
\end{array}
$$

Therefore, the series converges and produces an error term of size $O(1)$. When $n=k$, use integration over the absolute values to obtain the same estimate. Let us now treat the integral corresponding to the first term in the asymptotic ExpanSion (3.1). When $n \neq k$, we obtain by use of Lemma 2.1 the estimate

$$
\begin{aligned}
& \ll \Delta^{(1-\delta)(1-P)} n^{-P / 2-1 / 4} M^{P / 2-1 / 4} \\
& \ll M^{-P(1 / 2+\theta)(1-\delta)+P / 2+1 / 4+\theta} n^{-P / 2-1 / 4} \ll n^{-P / 2-1 / 4},
\end{aligned}
$$

when P is sufficiently large. When $n=k$, the first term in the asymptotic expansion for $H_{0}^{(1)}$ also gives the same estimate. Hence, we have now derived

$$
\begin{aligned}
& D\left(M+T, \Delta, \frac{\sqrt{k}}{\sqrt{M}}\right)=\int_{M+T}^{M+T+\Delta}(2 \gamma+\log x\left.-c d(k) k^{-1 / 4} x^{-1 / 4} e(-2 \sqrt{k x})\right) \\
& \times w(x-T) e\left(\frac{x \sqrt{k}}{\sqrt{M}}\right) d x+O(1)
\end{aligned}
$$

where c is a constant. Write $q(x)=w(x-T)(\ln x+2 \gamma)$. Now $q^{(P)}(x) \ll$ $\Delta^{(1-\delta)(\varepsilon-P)}$. Using Lemma 2.1 we obtain

$$
\begin{aligned}
\int_{M+T}^{M+T+\Delta} q(x) e\left(\frac{x \sqrt{k}}{\sqrt{M}}\right) d x & \ll \Delta^{(1-\delta)(\varepsilon-P)+1} M^{P / 2} \\
& \ll M^{P / 2+(1-\delta)(\varepsilon-P)+1 / 2+\theta} \ll 1
\end{aligned}
$$

This proves the theorem.
As a simple corollary, we obtain
Corollary 3.1. With the assumptions of the previous theorem and supposing, moreover, that $a(k)=0$, we have

$$
\sum_{M \leqslant n \leqslant M+\Delta} a(n) w(n) e\left(\frac{\sqrt{k}}{\sqrt{M}} n\right)=O(1)
$$

On the other hand, if $a(k) \neq 0$, then

$$
\sum_{M \leqslant n \leqslant M+\Delta} a(n) w(n) e\left(\frac{\sqrt{k}}{\sqrt{M}} n\right) \asymp M^{-1 / 4} \Delta .
$$

In other words, the Lehmer conjecture for the eigenfunctions of the Hecke operators is equivalent to the corresponding sums being large.

Remark 3.1. Notice that if $a(k) \neq 0$, then

$$
\left|\sum_{M \leqslant n \leqslant M+\Delta^{\prime}} a(n) e\left(\frac{\sqrt{k}}{\sqrt{M}} n\right)\right| \gg M^{-1 / 4} \Delta
$$

for some $\Delta^{\prime} \in(0, \Delta]$. Otherwise, it would follow from partial summation that the estimate for the smoothed sum would be $o\left(M^{-1 / 4} \Delta\right)$.

Theorem 3.3. With the assumptions of Theorem 3.2, the following holds:

$$
\begin{array}{r}
\sum_{M \leqslant n \leqslant M+\Delta} c(n) w(n) e\left(\frac{\sqrt{k} n}{\sqrt{M}}\right)-\sum_{M+T \leqslant n \leqslant M+T+\Delta} c(n) w(n-T) e\left(\frac{\sqrt{k} n}{\sqrt{M}}\right) \\
\ll \frac{T \Delta(T+\Delta)}{M^{7 / 4}}+\frac{\Delta(\Delta+T)}{M^{5 / 4}}+1 .
\end{array}
$$

Proof. Using Theorem 3.2 we see that it is sufficient to consider the difference

$$
\begin{aligned}
& \int_{M}^{M+\Delta} x^{-1 / 4} w(x) e\left(\frac{\sqrt{k}}{\sqrt{M}} x-2 \sqrt{k x}\right) d x \\
&-\int_{M}^{M+\Delta}(x+T)^{-1 / 4} w(x) e\left(\frac{\sqrt{k}(x+T)}{\sqrt{M}} x-2 \sqrt{k(x+T)}\right) d x
\end{aligned}
$$

We first use the Taylor expansion to treat the terms $x^{-1 / 4}$ and $(x+T)^{-1 / 4}$:

$$
x^{-1 / 4}=M^{-1 / 4}+O\left(M^{-5 / 4}|x-M|\right)
$$

Hence,

$$
\begin{aligned}
& \int_{M}^{M+\Delta}\left(\frac{w(x)}{x^{1 / 4}} e\left(\frac{\sqrt{k}}{\sqrt{M}} x-2 \sqrt{k x}\right)-\frac{w(x)}{(x+T)^{1 / 4}} e\left(\frac{\sqrt{k}(x+T)}{\sqrt{M}} x-2 \sqrt{k(x+T)}\right)\right) d x \\
& =M^{-1 / 4} \int_{M}^{M+\Delta} w(x)\left(e\left(\frac{\sqrt{k} x}{\sqrt{M}}-2 \sqrt{k x}\right)-e\left(\frac{\sqrt{k}(x+T)}{\sqrt{M}}-2 \sqrt{k(x+T)}\right)\right) d x \\
& +O\left(\frac{\Delta(\Delta+T)}{M^{5 / 4}}\right) .
\end{aligned}
$$

Let us now consider the difference

$$
\begin{aligned}
\left\lvert\, e\left(\frac{\sqrt{k} x}{\sqrt{M}}-2 \sqrt{k x}\right)-\right. & \left.e\left(\frac{\sqrt{k}(x+T)}{\sqrt{M}}-2 \sqrt{k(x+T)}\right) \right\rvert\, \\
& =\left|e\left(\frac{\sqrt{k} x}{\sqrt{M}}-2 \sqrt{k x}-\frac{\sqrt{k}(x+T)}{\sqrt{M}}+2 \sqrt{k(x+T)}\right)-1\right|
\end{aligned}
$$

Since $\left|e^{i y}-1\right| \leqslant|y|$, it is sufficient to consider the exponent to obtain an upper bound for the difference of the exponent functions, and thereby for the original integral expression:

$$
\left|\frac{\sqrt{k}}{\sqrt{M}} x-2 \sqrt{k x}-\frac{\sqrt{k}(x+T)}{\sqrt{M}}+2 \sqrt{k(x+T)}\right| \ll \frac{T(\Delta+T)}{M^{3 / 2}} .
$$

We obtain

$$
\begin{aligned}
\int_{M}^{M+\Delta}\left(\frac{w(x)}{x^{1 / 4}} e\left(\frac{\sqrt{k}}{\sqrt{M}} x-2 \sqrt{k x}\right)-\frac{w(x)}{(x+T)^{1 / 4}}\right. & \left.e\left(\frac{\sqrt{k}(x+T)}{\sqrt{M}} x-2 \sqrt{k(x+T)}\right)\right) d x \\
& \ll \frac{T \Delta(T+\Delta)}{M^{7 / 4}}+\frac{\Delta(\Delta+T)}{M^{5 / 4}}
\end{aligned}
$$

4. An Omega-result for short sums of Fourier coefficients

Theorem 4.1. Let $c>0$ be an arbitrary real number. Then

$$
\sum_{M \leqslant n \leqslant M+c \sqrt{M}} a(n)=\Omega\left(M^{1 / 4}\right)
$$

Before proving the theorem, let us prove a lemma:
Lemma 4.1. Write $D=K c^{4}$, where K is a sufficiently large constant. Write $\|x\|$ to denote the distance from x to the nearest integer. Let b be a sufficiently large constant. Then it is possible to choose an integer $k \in\left[b^{-1} D, b D\right]$ such that the following two conditions are satisfied: (1) $\|c \sqrt{k}\|>D^{-1 / 4}$, (2) $a(k) \neq 0$.

Proof. First, consider the difference

$$
c \sqrt{k+1}-c \sqrt{k}=\frac{c}{\sqrt{k}+\sqrt{k+1}} \asymp D^{-1 / 2} .
$$

Therefore, the values $\|c \sqrt{k}\|$ are somewhat uniformly distributed on the interval $[0,1)$. It is now easy to conclude that only $\asymp D^{3 / 4}$ of $k \in\left[b^{-1} D, b D\right]$ satisfy the condition $\|c \sqrt{k}\| \leqslant D^{-1 / 4}$. Since $a(k) \ll k^{\varepsilon}$ by Deligne's estimate [3], we obtain

$$
\sum_{\substack{b^{-1} D \leqslant k \leqslant b,\|c \sqrt{k}\|<D^{-1 / 4}}}|a(k)|^{2} \ll D^{3 / 4+\varepsilon} .
$$

The Rankin-Selberg mean value theorem (see e.g. Rankin [15) gives the estimate

$$
\sum_{\substack{b^{-1} D \leqslant k \leqslant b D,\|c \sqrt{k}\|>D^{-1 / 4}}}|a(k)|^{2}+O\left(D^{3 / 4+\varepsilon}\right) \asymp D
$$

which proves the existence of a coefficient satisfying both conditions.
We may now turn to the proof of the actual theorem.
Proof of Theorem 4.1. Take k as in Lemma 4.1 From the first condition we obtain

$$
\left|\sum_{0 \leqslant h \leqslant c \sqrt{M}} e\left(\frac{h \sqrt{k}}{\sqrt{M}}\right)\right|=\left|\frac{1-e\left(\lfloor c \sqrt{M}\rfloor \sqrt{k} M^{-1 / 2}+\sqrt{k} M^{-1 / 2}\right)}{1-e\left(\sqrt{k} M^{-1 / 2}\right)}\right| \gg M^{1 / 2}
$$

since the denominator is $\asymp M^{-1 / 2} \sqrt{k} \asymp M^{-1 / 2}$ as k is a constant, and the nominator is $\asymp 1$ by condition (1) of Lemma 4.1. From Remark 3.1 we know that there exists $\Delta^{\prime} \leqslant \lambda M^{3 / 4}$, where $\lambda \in(0,1)$ is a constant, such that

$$
\left|\sum_{M \leqslant n \leqslant M+\Delta^{\prime}} a(n) e\left(\frac{\sqrt{k}}{\sqrt{M}}\right)\right| \gg M^{1 / 2}
$$

Multiplying these two sums together, we obtain

$$
M \ll\left|\left(\sum_{0 \leqslant h \leqslant c \sqrt{M}} e\left(\frac{h \sqrt{k}}{\sqrt{M}}\right)\right)\left(\sum_{M \leqslant n \leqslant M+\Delta^{\prime}} a(n) e\left(\frac{n \sqrt{k}}{\sqrt{M}}\right)\right)\right| .
$$

Change the variable $m=h+n$ and estimate further:

$$
\begin{aligned}
= & \left|\sum_{M \leqslant m \leqslant M+\Delta^{\prime}+c \sqrt{M}} e\left(m \frac{\sqrt{k}}{\sqrt{M}}\right) \sum_{n \in\left[M, M+\Delta^{\prime}\right] \cap[m-c \sqrt{M}, m]} a(n)\right| \\
\leqslant & \left.\sum_{M+c \sqrt{M} \leqslant m \leqslant M+\Delta^{\prime}} e\left(\frac{c \sqrt{k}}{\sqrt{M}}\right) \sum_{m-c \sqrt{M} \leqslant n \leqslant m} a(n) \right\rvert\, \\
& \left.+\sum_{M \leqslant m<M+c \sqrt{M}} e\left(\frac{c \sqrt{k}}{\sqrt{M}}\right) \sum_{n \in\left[M, M+\Delta^{\prime}\right] \cap[m-c \sqrt{M}, m]} a(n) \right\rvert\, \\
& +\left|\sum_{M+\Delta^{\prime}<m \leqslant M+\Delta^{\prime}+c \sqrt{M}} e\left(\frac{c \sqrt{k}}{\sqrt{M}}\right) \sum_{n \in\left[M, M+\Delta^{\prime}\right] \cap[m-c \sqrt{M}, m]} a(n)\right|
\end{aligned}
$$

We may now use the well-known estimate (see [10) $\sum_{n \leqslant M} a(n) \ll M^{1 / 3+\varepsilon}$ to treat the second and third term and then use the triangle inequality to the first term to obtain

$$
\ll \sum_{M+c \sqrt{M} \leqslant m \leqslant M+\lambda M^{3 / 4}}\left|\sum_{m-c \sqrt{M} \leqslant n \leqslant m} a(n)\right|+M^{5 / 6}
$$

Therefore the mean of the sums $\left|\sum_{m-c \sqrt{M} \leqslant n \leqslant m} a(n)\right|$ is $\gg M^{1 / 4}$ and hence, at least one of them has to be $\gg M^{1 / 4}$. This proves the theorem.

References

[1] T. M. Apostol. Modular Functions and Dirichlet Series in Number Theory, second edition, Grad. Texts Math. 41, Springer-Verlag, New York, 1990.
[2] K. Corrádi and I. Kátai. A comment on K. S. Gangadharan's paper entitled "Two classical lattice point problems", Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 89-97.
[3] P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307.
[4] A.-M. Ernvall-Hytönen, On problems related to Fourier series of holomorphic cusp forms; in: A. Laurinčikas and J. Steuding (eds.), Proc. 4 th Internat. Kyiv Conf. Analytic Number Theory and Spatial Tesselations, Kiev, 2008, 18-26.
[5] A.-M. Ernvall-Hytönen and K. Karppinen, On short exponential sums involving Fourier coefficients of holomorphic cusp forms, Int. Math. Res. Not. IMRN (10), doi: 10.1093/imrn/rnn022 44pp (2008).
[6] J. L. Hafner and A. Ivić, On sums of Fourier coefficients of cusp forms, Enseign. Math. (2) 35(3-4) (1989), 375-382.
[7] A. Ivić, On the divisor function and the Riemann zeta-function in short intervals, Ramanujan J. 19(2) (2009), 207-224.
[8] A. Ivić, Large values of certain number-theoretic error terms, Acta Arith. 56(2) (1990), 135-159.
[9] H. Joris, Ω-Sätze für zwei arithmetische Funktionen, Comment. Math. Helv. 47 (1972), 220248.
[10] M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Lect. Math. Phys., Math., Tata Inst. Fundam. Res. 80, Tata Institute, Bombay, 1987.
[11] M. Jutila, On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci. 97(1-3) (1987), 157-166.
[12] M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta Math. 195 (2005), 61-115.
[13] M. Koecher and A. Krieg. Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin, 1998.
[14] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972, Revised edition, translated from the Russian and edited by Richard A. Silverman.
[15] R. A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
[16] D. Redmond, Omega theorems for a class of Dirichlet series, Rocky Mountain J. Math. 9(4) (1979), 733-748.
[17] J. R. Wilton, A note on Ramanujan's arithmetical function $\tau(n)$, Proc. Cambridge Philos. Soc. 25(II) (1929), 121-129.

Department of Mathematics
(Received 0812 2008)
University of Turku
(Revised 2703 2009)
Turku
Finland
anmaer@utu.fi

[^0]: 2000 Mathematics Subject Classification: Primary 11L07; Secondary 11F11, 11F30.

