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Abstract. We analyze the boundedness of the wavelet transform𝒲𝑔𝑓 of the
quasiasymptotically bounded distribution 𝑓 . Assuming that the distribution
𝑓 ∈ 𝒮′(R) is quasiasymptotically or 𝑟-quasiasymptotically bounded at a point
or at infinity related to a continuous and positive function, we obtain results
for the localization of its wavelet transform.

1. Introduction

Dependence of the localization properties of the continuous wavelet transform
𝒲𝑔𝑓 from the localization of the analyzing function 𝑓 ∈ 𝐿2(R) and the wavelet
𝑔 ∈ 𝐿2(R) in time and frequency space, as well as the opposite dependence is
analyzed by Holschneider [2]. Working in the Fourier space, Pathak proved some
Abelian theorems for the behaviour of the wavelet transform of 𝐿2 functions and
tempered distributions [3]. Contrary to the approaches in [2, 3], that are based
on classical estimations, we use the theory of asymptotic behaviour of distributions
to the asymptotic analysis of the continuous wavelet transform. Several Abelian
and Tauberian theorems for the wavelet transform are proved in [5, 6, 7] using
the quasiasymptotics and the S-asymptotics of distributions. We refer to [12, 4,
1, 9, 10, 11] and references therein for the definitions, properties and application
of these kinds of asymptotics of distributions.

In this article, we analyze the boundedness of the wavelet transform 𝒲𝑔𝑓 of
the quasiasymptotically bounded distribution 𝑓 . Assuming that the distribution
𝑓 ∈ 𝒮 ′(R) is quasiasymptotically bounded at 0 or infinity (respectively, at 𝑏0 ∈ R)
related to a continuous and positive function, we obtain novel results for the local-
ization of its wavelet transform 𝒲𝑔𝑓(𝑏, 𝑎) (respectively, 𝒲𝑔𝑓(𝑏0, 𝑎)), Theorem 3.1
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and Theorem 3.2. Additionally, we define the notion of 𝑟-quasiasymptotic bound-
edness of distributions from the space 𝒮 ′𝑟(R), 𝑟 < 0, and assuming that 𝑓 ∈ 𝒮 ′𝑟(R)
is 𝑟-quasiasymptotically bounded we prove the results for the boundedness of its
wavelet transform, Theorem 3.3 and Theorem 3.4.

2. Preliminaries and notations

The domain of functions considered in this article is R. Therefore, we omit the
suffix and write 𝐶∞ instead of 𝐶∞(R), 𝒮 instead 𝒮(R), and so on. The space of
infinitely differentiable functions (smooth functions) is denoted by 𝐶∞. The space
of rapidly decreasing smooth functions defined on the real line, supplied with the
usual topology is denoted by 𝒮. Its strong dual is the well known space of tempered
distributions 𝒮 ′. We refer to [8, 13] for the properties of these spaces.

Let 𝒮𝑟, 𝑟 < 0 be the space of functions 𝜙 ∈ 𝐶∞ for which all norms

(2.1) ‖𝜙‖𝑟,𝑝 = sup
𝑥∈R, 𝛼6𝑝

(1 + |𝑥|2)𝑟/2 |𝜙(𝛼)(𝑥)|, 𝑝 = 0, 1, 2, . . .

are finite. The topology of a projective limit of the decreasing sequence of spaces

𝒮𝑟, 0 ⊃ 𝒮𝑟,1 ⊃ · · · ⊃ 𝒮𝑟,𝑝 ⊃ · · · ,

where 𝒮𝑟,𝑝 is the completion of 𝒮 in the norm ‖ · ‖𝑟,𝑝 defined by (2.1), is introduced
in 𝒮𝑟. Each embedding 𝒮𝑟,𝑝+1 ⊂ 𝒮𝑟,𝑝, 𝑝 = 0, 1, 2, . . . is continuous.

The strong dual of 𝒮𝑟, 𝑟 < 0 is denoted by 𝒮 ′𝑟. It is the inductive limit of the
increasing sequence of spaces

𝒮 ′𝑟, 0 ⊂ 𝒮 ′𝑟,1 ⊂ · · · ⊂ 𝒮 ′𝑟,𝑝 ⊂ · · · ,

where 𝒮 ′𝑟,𝑝 is the dual to the space 𝒮𝑟,𝑝, 𝑝 = 0, 1, 2, . . ..
We also need the definition of the spaces of highly localized function over the

real line which are introduced in [2]. By 𝑆+ is denoted the set of functions 𝑠 for
which supp 𝑠 ⊂ [0,∞) and for every localized exponent 𝛼 > 0

‖𝑠‖𝛼 = sup
𝑥∈R
𝑘−1
𝛼 (𝑥)|𝑠(𝑥)|+ sup

𝜔>0
𝜑−1
𝛼 (𝜔)|𝑠(𝜔)| <∞,

where 𝑘𝛼(𝑥) = (1+|𝑥|2)−𝛼/2, 𝜑𝛼(𝜔) = 𝜔𝛼(1+𝜔)−𝛼−1 and 𝑠 is the Fourier transform
of 𝑠. The image of 𝑆+ under the parity operator is denoted by 𝑆−, that is 𝑠 ∈ 𝑆−
if and only if 𝑠(−𝑥) ∈ 𝑆+. The direct sum of 𝑆+ and 𝑆− is denoted by 𝑆0:
𝑆0 = 𝑆+⊕𝑆−. It is proved that the spaces 𝑆+, 𝑆− and 𝑆0 are closed subspaces of 𝒮;
𝑆+ (respectively, 𝑆−) consists of those functions in 𝒮 whose Fourier transforms are
supported by the positive (respectively, negative) frequencies only, and 𝑆0 consists
of functions from 𝒮 for which all the moments vanish [2, Theorem 19.1.3].

We refer to [2] for the definition and properties of the wavelet transform over
the spaces 𝐿2 and 𝒮 ′. The wavelet transform of 𝑓 ∈ 𝐿2 with respect to the wavelet
𝑔 ∈ 𝐿2 is defined by

𝒲𝑔𝑓(𝑏, 𝑎) :=
∫︁ +∞

−∞
𝑓(𝑡) 1
𝑎
𝑔
(︁ 𝑡− 𝑏
𝑎

)︁
𝑑𝑡, 𝑏 ∈ R, 𝑎 > 0 .
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The function 𝑔 is usually called mother wavelet or analyzing wavelet. The functions
𝑔𝑏,𝑎(·) = 1

𝑎𝑔
(︀ ·−𝑏
𝑎

)︀
, 𝑏 ∈ R, 𝑎 > 0 which are obtained from the wavelet 𝑔 by the

operations of dilation and translation are called wavelets. The wavelet transform
is a continuous linear transform from 𝐿2(R) into the space

𝐿2
(︁
R2,
𝑑𝑎 𝑑𝑏

𝑎2

)︁
=
{︂
𝐹 (𝑏, 𝑎) :

∫︁ +∞

0

𝑑𝑎

𝑎2

∫︁ +∞

−∞
|𝐹 (𝑏, 𝑎)|2𝑑𝑏 <∞

}︂
,

which is a Hilbert space with the inner product

⟨𝐹,𝐺⟩ =
∫︁ +∞

0

𝑑𝑎

𝑎2

∫︁ +∞

−∞
𝐹 (𝑏, 𝑎) �̄�(𝑏, 𝑎) 𝑑𝑏, 𝐹,𝐺 ∈ 𝐿2

(︁
R2,
𝑑𝑎 𝑑𝑏

𝑎2

)︁
.

The wavelet transform of the distribution 𝑓 ∈ 𝒮 ′ with respect to the wavelet
𝑔 ∈ 𝑆0 is the 𝐶∞ function over {(𝑏, 𝑎) | 𝑏 ∈ R, 𝑎 > 0} given by
(2.2) 𝒲𝑔𝑓(𝑏, 𝑎) := ⟨𝑓(𝑡), 𝑔𝑏,𝑎(𝑡)⟩, 𝑡 ∈ R
(see [2, Chapter 1, Section 25]). For every 𝑎 > 0, 𝒲𝑔𝑓(·, 𝑎) is a smooth function of
polynomial growth since 𝒲𝑔𝑓(𝑏, 𝑎) = (𝑓 * ˘̄𝑔𝑎)(𝑏), 𝑏 ∈ R, where ˘̄𝑔𝑎(𝑡) = 𝑔(−𝑡/𝑎)/𝑎,
𝑡 ∈ R is a rapidly decreasing function.

The wavelet transform of the distribution 𝑓 ∈ 𝒮 ′𝑟, 𝑟 < 0 with respect to the
wavelet 𝑔 ∈ 𝑆0 is also given by formula (2.2).

We will give a definition of quasiasymptotic boundedness of distributions from
𝒮 ′ at a point and at infinity.

Definition 2.1. Let 𝑓 ∈ 𝒮 ′ and 𝑐(𝜀), 𝜀 ∈ (0, 𝑎) (respectively, 𝑐(𝑘), 𝑘 ∈ (𝑎,∞)),
𝑎 > 0 be a continuous positive function. We say that 𝑓 is quasiasymptotically
bounded at 𝑥0 (respectively, at infinity) related to 𝑐(𝜀) (respectively, 𝑐(𝑘)) if there
exist 𝑝 ∈ N0 and 𝑀 > 0 such that⃒⃒⃒⟨ 𝑓(𝑥0 + 𝜀𝑥)

𝑐(𝜀) , 𝜙(𝑥)
⟩⃒⃒⃒
6𝑀‖𝜙‖𝑝, 0 < 𝜀 < 1(︁

respectively,
⃒⃒⃒⟨ 𝑓(𝑘𝑥)
𝑐(𝑘) , 𝜙(𝑥)

⟩⃒⃒⃒
6𝑀‖𝜙‖𝑝, 𝑘 > 1

)︁
,

for every 𝜙 ∈ 𝒮.

We will also define quasiasymptotic boundedness of distributions from the space
𝒮 ′𝑟, 𝑟 < 0, which we will call 𝑟-quasiasymptotic boundedness.

Definition 2.2. Let 𝑓 ∈ 𝒮 ′𝑟, 𝑟 < 0 and 𝑐(𝜀), 𝜀 ∈ (0, 𝑎) (respectively, 𝑐(𝑘), 𝑘 ∈
(𝑎,∞)), 𝑎 > 0 be a continuous positive function. We say that 𝑓 is 𝑟-quasiasympto-
tically bounded at 𝑥0 (respectively, at infinity) related to 𝑐(𝜀) (respectively, 𝑐(𝑘)) if
there exist 𝑝 ∈ N0 and 𝑀 > 0 such that⃒⃒⃒⟨ 𝑓(𝑥0 + 𝜀𝑥)

𝑐(𝜀) , 𝜙(𝑥)
⟩⃒⃒⃒
6𝑀‖𝜙‖𝑟,𝑝, 0 < 𝜀 < 1(︁

respectively,
⃒⃒⃒⟨𝑓(𝑘𝑥)
𝑐(𝑘) , 𝜙(𝑥)

⟩⃒⃒⃒
6𝑀‖𝜙‖𝑟,𝑝, 𝑘 > 1

)︁
,

for every 𝜙 ∈ 𝒮𝑟.
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3. Main results

In the following theorems we consider the boundedness of the wavelet trans-
form 𝒲𝑔𝑓(𝑏, 𝑎) (respectively, 𝒲𝑔𝑓(𝑏0, 𝑎)) assuming that distribution 𝑓 ∈ 𝒮 ′ is
quasiasymptotically bounded at 0 (respectively, at 𝑏0) related to the continuous
and positive function.

Theorem 3.1. Let 𝑓 ∈ 𝒮 ′ and 𝑐(𝜀), 0 < 𝜀 < 𝜀′ be a continuous positive
function. If 𝑓 is quasiasymptotically bounded at 0 related to 𝑐(𝜀), then there exist
𝑝 ∈ N0 and 𝐶 > 0 such that

|𝒲𝑔𝑓(𝑏, 𝑎)| 6
𝐶

𝑎

(︁
1 + 1
𝑎

)︁𝑝
(1 + |𝑏|)𝑝, 𝑏 ∈ R, 0 < 𝑎 < 1,

for every wavelet 𝑔 ∈ 𝑆0.

Proof. From the definition of the distributional wavelet transform we have⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
=
⃒⃒⃒⟨𝑓(𝑥)
𝑐(𝜀) ,

1
𝜀𝑎
𝑔
(︁𝑥− 𝜀𝑏
𝜀𝑎

)︁⟩⃒⃒⃒
.

After the change of variables 𝑥 = 𝜀𝑡 we obtain⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
=
⃒⃒⃒⟨𝑓(𝜀𝑡)
𝑐(𝜀) ,

1
𝑎
𝑔
(︁ 𝑡− 𝑏
𝑎

)︁⟩⃒⃒⃒
.

Since 𝑓 is quasiasymptotically bounded at 0 related to 𝑐(𝜀), and 𝑔 ∈ 𝒮 it follows
that there exist 𝑝 ∈ N0 and 𝑀1 > 0 such that

(3.1)
⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
6𝑀1

⃦⃦⃦1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁⃦⃦⃦
𝑝
,

for every 0 < 𝜀 < 1. In the following, we will use the condition 0 < 𝑎 < 1, as well
as the following elementary inequalities

1 + |𝑥+ 𝑦| 6 (1 + |𝑥|)(1 + |𝑦|), 1 + |𝑥𝑦| 6 (1 + |𝑥|)(1 + |𝑦|).⃦⃦⃦1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁⃦⃦⃦
𝑝

= sup
𝑥∈R, 𝛼6𝑝

(1 + |𝑥|2)𝑝/2
⃒⃒⃒(︁1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁)︁(𝛼) ⃒⃒⃒
(3.2)

= sup
𝑥∈R, 𝛼6𝑝

(1 + |𝑥|2)𝑝/2 1
𝑎𝛼+1

⃒⃒⃒
𝑔(𝛼)
(︁𝑥− 𝑏
𝑎

)︁⃒⃒⃒
6
𝑀2

𝑎𝑝+1 sup
𝑥∈R

(1 + |𝑥|2)𝑝/2
(︁

1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
6
𝑀2

𝑎𝑝+1 sup
𝑥∈R

((1 + |𝑥|)2)𝑝/2
(︁

1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
= 𝑀2

𝑎𝑝+1 sup
𝑥∈R

(1 + |𝑥|)𝑝
(︁

1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
6
𝑀2

𝑎𝑝+1 sup
𝑥∈R

(1 + |𝑥− 𝑏|)𝑝(1 + |𝑏|)𝑝
(︁

1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
= 𝑀2

𝑎𝑝+1 (1 + |𝑏|)𝑝 sup
𝑥∈R

(︁
1 + 𝑎
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁𝑝(︁
1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
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6
𝑀2

𝑎𝑝+1 (1 + |𝑏|)𝑝 sup
𝑥∈R

(︁
1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁𝑝
(1 + 𝑎)𝑝

(︁
1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑝
=𝑀2

(1 + 𝑎)𝑝

𝑎𝑝+1 (1 + |𝑏|)𝑝,

where 𝑀2 is a positive constant.
From (3.1) and (3.2) it follows the estimation

(3.3)
⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
6𝑀1𝑀2

(1 + 𝑎)𝑝

𝑎𝑝+1 (1 + |𝑏|)𝑝,

for 0 < 𝜀 < 1, 0 < 𝑎 < 1 and 𝑏 ∈ R. We choose 𝜀0 such that 0 < 𝜀0 < 1 and put
𝜀0𝑏 = 𝑠 and 𝜀0𝑎 = 𝑚 (0 < 𝑚 < 1) in (3.3). So, we obtain⃒⃒

𝒲𝑔𝑓(𝑠,𝑚)
⃒⃒
6
𝑀1𝑀2

𝜀𝑝−1
0 𝑚𝑝+1

(𝜀0 +𝑚)𝑝(𝜀0 + |𝑠|)𝑝𝑐(𝜀0)

6𝑀1𝑀2
(1 +𝑚)𝑝

𝑚𝑝+1 (1 + |𝑠|)𝑝 (1 + 𝜀0)𝑝

𝜀𝑝−1
0

𝑐(𝜀0).

Since 𝑐(𝜀) is a positive function it follows that there exists constant 𝐶 > 0 such
that ⃒⃒

𝒲𝑔𝑓(𝑠,𝑚)
⃒⃒
6 𝐶

(1 +𝑚)𝑝

𝑚𝑝+1 (1 + |𝑠|)𝑝, 𝑠 ∈ R, 0 < 𝑚 < 1. �

The proof of the next theorem is similar to the proof of Theorem 3.1.

Theorem 3.2. Let 𝑓 ∈ 𝒮 ′ and 𝑐(𝜀), 0 < 𝜀 < 𝜀′ be a continuous positive
function. If 𝑓 is quasiasymptotically bounded at 𝑏0, 𝑏0 ∈ R related to 𝑐(𝜀), then
there exist 𝑝 ∈ N0 and 𝐶 > 0 such that

|𝒲𝑔𝑓(𝑏0, 𝑎)| 6 𝐶
(1 + 𝑎2)𝑝/2

𝑎𝑝+1 , 0 < 𝑎 < 1,

for every wavelet 𝑔 ∈ 𝑆0.

Remark 3.1. An analogous result could be obtained for the boundedeness of
the wavelet transform 𝒲𝑔𝑓(𝑏, 𝑎) in the case when distribution 𝑓 ∈ 𝒮 ′ is quasi-
asymptotically bounded at infinity.

Theorem 3.3. Let 𝑓 ∈ 𝒮 ′𝑟, 𝑟 < 0 and 𝑐(𝜀), 0 < 𝜀 < 𝜀′ be a continuous positive
function. If 𝑓 is 𝑟-quasiasymptotically bounded at 0 with respect to 𝑐(𝜀), then there
exist 𝑝 ∈ N0 and 𝐶 > 0 such that⃒⃒

𝒲𝑔𝑓(𝑏, 𝑎)
⃒⃒
6 𝐶

(1 + 𝑎)𝑞

𝑎𝑝+1
1
|𝑏|𝑞/2

, 𝑞 = −𝑟 > 0, 𝑏 ∈ R, 0 < 𝑎 < 1,

for every wavelet 𝑔 ∈ 𝑆0.

Proof. As in the proof of Theorem 3.1 we have⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
=
⃒⃒⃒⟨𝑓(𝑥)
𝑐(𝜀) ,

1
𝜀𝑎
𝑔
(︁𝑥− 𝜀𝑏
𝜀𝑎

)︁⟩⃒⃒⃒
=
⃒⃒⃒⟨𝑓(𝜀𝑡)
𝑐(𝜀) ,

1
𝑎
𝑔
(︁ 𝑡− 𝑏
𝑎

)︁⟩⃒⃒⃒
.
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Since 𝑓 is 𝑟-quasiasymptotically bounded at 0 related to 𝑐(𝜀), and 𝑔 ∈ 𝑆0 it follows
that there exist 𝑝 ∈ N0 and 𝑀1 > 0 such that

(3.4)
⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
6𝑀1

⃦⃦⃦1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁⃦⃦⃦
𝑟,𝑝

for every 0 < 𝜀 < 1. Since 0 < 𝑎 < 1 we have⃦⃦⃦1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁⃦⃦⃦
𝑟,𝑝

= sup
𝑥∈R, 𝛼6𝑝

(1 + |𝑥|2)𝑟/2
⃒⃒⃒(︁1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁)︁(𝛼) ⃒⃒⃒
= sup
𝑥∈R, 𝛼6𝑝

(1 + |𝑥|2)𝑟/2 1
𝑎𝛼+1

⃒⃒⃒
𝑔(𝛼)
(︁𝑥− 𝑏
𝑎

)︁⃒⃒⃒
6

1
𝑎𝑝+1 sup

𝑥∈R, 𝛼6𝑝
(1 + |𝑥|2)𝑟/2

⃒⃒⃒
𝑔(𝛼)
(︁𝑥− 𝑏
𝑎

)︁⃒⃒⃒
.

We put 𝑟 = −𝑞, 𝑞 > 0 and get

(3.5)
⃦⃦⃦1
𝑎
𝑔
(︁𝑥− 𝑏
𝑎

)︁⃦⃦⃦
𝑟,𝑝
6
𝑀2

𝑎𝑝+1 sup
𝑥∈R

1
(1 + |𝑥|2)𝑞/2

(︁
1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑞
,

where 𝑀2 is a positive constant.
Since it holds

(1 + |𝑏|)𝑞 6 (1 + |𝑏− 𝑥|+ |𝑥|)𝑞 6 (1 + |𝑥− 𝑏|)𝑞 (1 + |𝑥|)𝑞

=
(︁

1 + 𝑎
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁𝑞
(1 + |𝑥|)𝑞 6

(︁
1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁𝑞
(1 + 𝑎)𝑞(1 + |𝑥|)𝑞,

we have

(3.6)
(︁

1 +
⃒⃒⃒𝑥− 𝑏
𝑎

⃒⃒⃒)︁−𝑞
6

(1 + 𝑎)𝑞(1 + |𝑥|)𝑞

(1 + |𝑏|)𝑞 .

From the inequalities (3.4), (3.5) and (3.6) we obtain⃒⃒⃒𝒲𝑔𝑓(𝜀𝑏, 𝜀𝑎)
𝑐(𝜀)

⃒⃒⃒
6𝑀1𝑀2

(1 + 𝑎)𝑞

𝑎𝑝+1
1

(1 + |𝑏|)𝑞 sup
𝑥∈R

((1 + |𝑥|)2)𝑞/2

(1 + |𝑥|2)𝑞/2

=𝑀1𝑀2
(1 + 𝑎)𝑞

𝑎𝑝+1
1

(1 + |𝑏|)𝑞 sup
𝑥∈R

(︁
1 + 2|𝑥|

1 + |𝑥|2
)︁𝑞/2

6𝑀1𝑀22𝑞/2 (1 + 𝑎)𝑞

𝑎𝑝+1
1

(1 + |𝑏|)𝑞 .

If we choose 0 < 𝜀0 < 1 and put 𝜀0𝑏 = 𝑠 and 𝜀0𝑎 = 𝑚 (0 < 𝑚 < 1) in the
above inequality, we get⃒⃒⃒𝒲𝑔𝑓(𝑠,𝑚)

𝑐(𝜀0)

⃒⃒⃒
6𝑀1𝑀22𝑞/2 𝜀

𝑝+1
0
𝑚𝑝+1

(𝜀0 +𝑚)𝑞

(𝜀0 + |𝑠|)𝑞 .

Since 𝑐(𝜀) is a positive function and from the following inequalities

(𝜀0 +𝑚)𝑞 6 (1 + 𝜀0)𝑞(1 +𝑚)𝑞, (𝜀0 + |𝑠|)𝑞 = ((𝜀0 + |𝑠|)2)𝑞/2 > (2𝜀0|𝑠|)𝑞/2,
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we have

|𝒲𝑔𝑓(𝑠,𝑚)| 6𝑀1𝑀22𝑞/2 𝜀
𝑝+1
0 (1 + 𝜀0)𝑞

2𝑞/2𝜀𝑞/20
𝑐(𝜀0) (1 +𝑚)𝑞

𝑚𝑝+1|𝑠|𝑞/2

= 𝐶 (1 +𝑚)𝑞

𝑚𝑝+1
1
|𝑠|𝑞/2

, �

where 𝑠 ∈ R, 0 < 𝑚 < 1 and 𝐶 is a positive constant.

The result for the boundedness of the wavelet transform 𝒲𝑔𝑓(𝑏0, 𝑎) for fixed
𝑏0 ∈ R when 𝑓 is 𝑟-quasiasymptotically bounded distribution at the point 𝑏0 is
given in the following theorem.

Theorem 3.4. Let 𝑓 ∈ 𝒮 ′𝑟, 𝑟 < 0 and 𝑐(𝜀), 0 < 𝜀 < 𝜀′ be a continuous positive
function. If 𝑓 is 𝑟-quasiasymptotically bounded at 𝑏0, 𝑏0 ∈ R related to 𝑐(𝜀), then
there exist 𝑝 ∈ N0 and 𝐶 > 0 such that

|𝒲𝑔𝑓(𝑏0, 𝑎)| 6 𝐶
(1 + 𝑎2)𝑞/2

𝑎𝑝+1 , 𝑞 = −𝑟 > 0, 0 < 𝑎 < 1,

for every wavelet 𝑔 ∈ 𝑆0.

Remark 3.2. An analogous result could be obtained assuming that 𝑓 ∈ 𝒮 ′𝑟,
𝑟 < 0 is 𝑟-quasiasymptotically bounded at infinity.

Remark 3.3. It is also possible to obtain an analogous result for the local-
ization of the wavelet transform 𝒲𝑔𝑓 , assuming that the Fourier transform of dis-
tribution 𝑓 ∈ 𝒮 ′ or 𝑓 ∈ 𝒮 ′𝑟, 𝑟 < 0 is quasiasymptotically or 𝑟-quasiasymptotically
bounded, respectively.
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