FACTORIZATION PROPERTIES OF SUBRINGS IN TRIGONOMETRIC POLYNOMIAL RINGS

Tariq Shah and Ehsan Ullah

Communicated by Žarko Mijajlović

Abstract

We explore the subrings in trigonometric polynomial rings and their factorization properties. Consider the ring S^{\prime} of complex trigonometric polynomials over the field $\mathbb{Q}(i)$ (see [11]). We construct the subrings $S_{1}^{\prime}, S_{0}^{\prime}$ of S^{\prime} such that $S_{1}^{\prime} \subseteq S_{0}^{\prime} \subseteq S^{\prime}$. Then S_{1}^{\prime} is a Euclidean domain, whereas S_{0}^{\prime} is a Noetherian HFD. We also characterize the irreducible elements of $S_{1}^{\prime}, S_{0}^{\prime}$ and discuss among these structures the condition: Let $A \subseteq B$ be a unitary (commutative) ring extension. For each $x \in B$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A$ such that $x=x^{\prime} x^{\prime \prime}$.

1. Introduction

Factorization properties of integral domains have been a common interest of algebraists, particularly for polynomial rings. In this study we investigate the factorization properties of the subrings of S^{\prime} (see 11). The basic concepts, notions and terminology are standard, as in [7].

For the factorization of exponential polynomials, J. F. Ritt developed: "If $1+$ $a_{1} e^{\alpha_{1} x}+\cdots+a_{n} e^{\alpha_{n} x}$ is divisible by $1+b_{1} e^{\beta_{1} x}+\cdots+b_{r} e^{\beta_{r} x}$ with no $b=0$, then every β is a linear combination of $\alpha_{1}, \ldots, \alpha_{n}$ with rational coefficients" [9 Theorem].

Getting inspired by this, G. Picavet and M. Picavet [7] investigated some factorization properties in trigonometric polynomial rings. Following [7, when we replace all α_{k} above by im, with $m \in \mathbb{Z}$, we obtain trigonometric polynomials. Whereas

$$
\begin{aligned}
T^{\prime} & =\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{C}\right\} \\
T & =\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}\right\}
\end{aligned}
$$

2000 Mathematics Subject Classification: 13A05, 13B30, 12D05, 42A05.
Key words and phrases: trigonometric polynomial, HFD, subrings, condition 1, irreducible.
are trigonometric polynomial rings.
Following Cohn [4] an integral domain D is atomic if each nonzero nonunit of D is a product of irreducible elements (atoms) of D, and it is well known that UFDs, PIDs and Noetherian domains are atomic domains. An integral domain D satisfies the ascending chain condition on principal ideals (ACCP) if there does not exist any infinite strictly ascending chain of principal integral ideals of D. Every PID, UFD and Noetherian domain satisfy ACCP and a domain satisfying ACCP is atomic. Grams [6] and Zaks 13 provided examples of atomic domains, which do not satisfy ACCP. Following [12], an integral domain D is said to be a halffactorial domain (HFD) if D is atomic and whenever $x_{1} \ldots x_{m}=y_{1} \ldots y_{n}$, where $x_{1}, x_{2} \ldots x_{m}, y_{1}, y_{2} \ldots y_{n}$ are irreducibles in D, then $m=n$. A UFD is obviously an HFD, but the converse fails, since any Krull domain D with $C I(D) \cong \mathbb{Z}_{2}$ is an HFD [12, but not a UFD. Moreover a polynomial extension of an HFD is not an HFD, for example, $\mathbb{Z}[\sqrt{-3}][X]$ is not an HFD, as $\mathbb{Z}[\sqrt{-3}]$ is an HFD but not integrally closed [5. Following [2], an integral domain D is a finite factorization domain (FFD) if each nonzero nonunit of D has only a finite number of nonassociate divisors and hence only a finite number of factorizations up to order and associates. In general,

$$
\begin{aligned}
& \mathrm{UFD} \Longrightarrow \mathrm{HFD} \Longrightarrow \mathrm{ACCP} \Longrightarrow \text { Atomic } \\
& \mathrm{UFD} \Longrightarrow \mathrm{FFD} \Longrightarrow \mathbf{A C C P} \Longrightarrow \text { Atomic. }
\end{aligned}
$$

But none of the above implications is reversible.
In [7, Theorems 2.1 and 3.1], G. Picavet and M. Picavet demonstrated that T^{\prime} is a Euclidean domain and T is a Dedekind half-factorial domain. Moreover, in [11] we extended the study of factorization properties of trigonometric polynomials with coefficients from the field \mathbb{Q} and its algebraic extension $\mathbb{Q}(i)$, instead of \mathbb{R} and \mathbb{C}, that is we study

$$
\begin{aligned}
S^{\prime} & =\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q}(i)\right\} \\
S & =\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q}\right\}
\end{aligned}
$$

where S^{\prime} is a Euclidean domain and S is a Dedekind finite factorization domain (see [11, Theorem $1 \&$ Theorem 2]).

Again following [7, $\operatorname{Sin}^{2} x=(1-\operatorname{Cos} x)(1+\operatorname{Cos} x)$ shows that two different nonassociated irreducible factorizations of the same element may appear. Throughout we denote by $\operatorname{Cos} k x$ and $\operatorname{Sin} k x$ the two functions $x \mapsto \operatorname{Cos} k x$ and $x \mapsto \operatorname{Sin} k x$ (defined over \mathbb{R}). Also from basic trigonometric identities, it is obvious that for each $n \in \mathbb{N} \backslash\{1\}, \operatorname{Cos} n x$ represents a polynomial in $\operatorname{Cos} x$ with degree n and $\operatorname{Sin} n x$ represents the product of $\operatorname{Sin} x$ and a polynomial in $\operatorname{Cos} x$ with degree $n-1$. Conversely by linearization formulas, it follows that any product $\operatorname{Cos}^{n} x \operatorname{Sin}^{p} x$ can
be written as:

$$
\sum_{k=0}^{q}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right), \text { where } q \in \mathbb{N} \text { and } a_{k}, b_{k} \in \mathbb{Q}
$$

Hence $S=\mathbb{Q}[\operatorname{Cos} x, \operatorname{Sin} x] \subseteq \mathbb{R}[\operatorname{Cos} x, \operatorname{Sin} x]=T$ and $S^{\prime}=\mathbb{Q}(i)[\operatorname{Cos} x, \operatorname{Sin} x] \subseteq$ $\mathbb{C}[\operatorname{Cos} x, \operatorname{Sin} x]=T^{\prime}$.

We continue the investigations to find the factorization properties in trigonometric polynomial rings, begun in [7] and extended in [11]. In other words we extend this study towards finding factorization properties of subrings of trigonometric polynomial rings, by establishing S_{0}^{\prime} and S_{1}^{\prime} as subrings.

In Section 2 we explore S_{1}^{\prime} and S_{0}^{\prime}, and demonstrate that the ring S_{1}^{\prime} is Euclidean domain $\left(\simeq(\mathbb{Q}[X])_{X}\right)$, whereas S_{0}^{\prime} is a Notherian HFD $\left(\simeq(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}\right)$. In Section 3 we discus Condition 1 (see [8, p. 661]) among the rings $S_{1}^{\prime}, S_{0}^{\prime}$ and S^{\prime}. We also extend the Condition 1, as Condition 2.

2. The Subrings of $\mathbb{Q}(i)[\operatorname{Cos} x, \operatorname{Sin} x]$

A Construction of S_{1}^{\prime}. We consider

$$
S_{1}^{\prime}=\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+i b_{k} \operatorname{Sin} k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q}\right\} .
$$

Let $z=\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+i b_{k} \operatorname{Sin} k x\right) \in S_{1}^{\prime}$. As $\operatorname{Cos} x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$ and $\operatorname{Sin} x=$ $\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$, so

$$
\begin{aligned}
z & =\sum_{k=0}^{n}\left\{\left(\frac{a_{k}+b_{k}}{2}\right) e^{i k x}+\left(\frac{a_{k}-b_{k}}{2}\right) e^{-i k x}\right\} \\
& =e^{-i n x}\left[\sum_{k=0}^{n}\left\{\left(\frac{a_{k}+b_{k}}{2}\right) e^{i(n+k) x}+\left(\frac{a_{k}-b_{k}}{2}\right) e^{i(n-k) x}\right\}\right]
\end{aligned}
$$

where $\left(a_{k}+b_{k}\right) / 2,\left(a_{k}-b_{k}\right) / 2 \in \mathbb{Q}$. Therefore any element z is of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}[X]$ and $\operatorname{deg}(P) \leqslant 2 n$.

Conversely, for $\alpha_{k} \in \mathbb{Q}, 0 \leqslant k \leqslant 2 n$, we have

$$
e^{-i n x} P\left(e^{i x}\right)=e^{-i n x}\left(\sum_{k=0}^{2 n} \alpha_{k} e^{i k x}\right)=\sum_{k=0}^{n-1}\left(\alpha_{k} e^{-i(n-k) x}+\alpha_{2 n-k} e^{i(n-k) x}\right)+\alpha_{n}
$$

As $e^{i x}=\operatorname{Cos} x+i \operatorname{Sin} x$, so

$$
\begin{aligned}
e^{-i n x} P\left(e^{i x}\right)= & \sum_{k=0}^{n-1}\left\{\alpha_{k}(\operatorname{Cos}(n-k) x-i \operatorname{Sin}(n-k) x)\right. \\
& \left.\quad+\alpha_{2 n-k}(\operatorname{Cos}(n-k) x+i \operatorname{Sin}(n-k) x)\right\}+\alpha_{n} \\
= & \sum_{k=0}^{n-1}\left\{\begin{array}{l}
\left(\alpha_{k}+\alpha_{2 n-k}\right) \operatorname{Cos}(n-k) x \\
\\
\left.\left.\quad+i\left(\alpha_{2 n-k}-\alpha_{k}\right)\right) \operatorname{Sin}(n-k) x\right\}+\alpha_{n}
\end{array}\right.
\end{aligned}
$$

where $\alpha_{k}+\alpha_{2 n-k}, \alpha_{2 n-k}-\alpha_{k} \in \mathbb{Q}$. Therefore S_{1}^{\prime} contains all the elements that are of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}[X]$ has degree at most $2 n$.

Conclusion 1. A consequence of the above construction is : $S_{1}^{\prime}=\left\{e^{-i n x} P\left(e^{i x}\right)\right.$, $n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}[X]$ and $\operatorname{deg}(P) \leqslant 2 n\}$. So we have an isomorphism $f:(\mathbb{Q}[X])_{X} \rightarrow S_{1}^{\prime}$ through the substitution morphism $X \rightarrow e^{i x}$. Therefore $S_{1}^{\prime} \simeq(\mathbb{Q}[X])_{X}$.

THEOREM 2.1. S_{1}^{\prime} is a Euclidean domain having nonzero elements of \mathbb{Q} as units and irreducible elements, up to units, trigonometric polynomials of the form $\operatorname{Cos} x+i \operatorname{Sin} x-a$, where $a \in \mathbb{Q} \backslash\{0\}$.

Proof. $(\mathbb{Q}[X])_{X}$ is a localization of $\mathbb{Q}[X]$ by a multiplicative system generated by a prime because X is a prime in $\mathbb{Q}[X]$ 1 Example $1.8(\mathrm{~b})]$. Also $\mathbb{Q}[X]$ is a Euclidean domain. Therefore $(\mathbb{Q}[X])_{X}$ is a Eucledean domain [10, Proposition 7]. Now use the isomorphism $S_{1}^{\prime} \simeq(\mathbb{Q}[X])_{X}$ in Conclusion 1 .

A Construction of S_{0}^{\prime}. Let $z=\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in$ $\mathbb{Q}(i)$, such that $a_{n}=\alpha+\gamma+i \beta$ and $b_{n}=-\beta+i(\alpha-\gamma)$, where $\alpha, \beta, \gamma \in \mathbb{Q}$; obviously $z \in S^{\prime}$. We define S_{0}^{\prime} to be the set of all the polynomials of the form $\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q}(i)$ and $a_{n}=\alpha+\gamma+i \beta, b_{n}=$ $-\beta+i(\alpha-\gamma)$. Let z be a polynomial from S_{0}^{\prime}. We may write

$$
\begin{gathered}
z=a_{0}+\sum_{k=1}^{n-1}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right)+\{(\alpha+\gamma+i \beta) \operatorname{Cos} n x+(-\beta+i(\alpha-\gamma)) \operatorname{Sin} n x\} \\
=a_{0}+\sum_{k=1}^{n-1}\left\{\left(\frac{a_{k}^{\prime}+b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}-b_{k}^{\prime}\right)}{2}\right) e^{i k x}+\left(\frac{a_{k}^{\prime}-b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}+b_{k}^{\prime}\right)}{2}\right) e^{-i k x}\right\} \\
+(\alpha+i \beta) e^{i n x}+\gamma e^{-i n x}
\end{gathered}
$$

where $a_{k}=a_{k}^{\prime}+i a_{k}^{\prime \prime}, b_{k}=b_{k}^{\prime}+i b_{k}^{\prime \prime}$ and $a_{k}^{\prime}, a_{k}^{\prime \prime}, b_{k}^{\prime}, b_{k}^{\prime \prime} \in \mathbb{Q}, a_{0} \in \mathbb{Q}(i)$. Setting $\alpha_{k}^{\prime}=\frac{1}{2}\left(a_{k}^{\prime}+b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}-b_{k}^{\prime}\right)\right)$ and $\beta_{k}^{\prime}=\frac{1}{2}\left(a_{k}^{\prime}-b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}+b_{k}^{\prime}\right)\right)$, we have

$$
z=e^{-i n x}\left[a_{0} e^{i n x}+\sum_{k=1}^{n-1}\left\{\alpha_{k}^{\prime} e^{i(n+k) x}+\beta_{k}^{\prime} e^{i(n-k) x}\right\}+(\alpha+i \beta) e^{i 2 n x}+\gamma\right],
$$

where $\alpha_{k}^{\prime}, \beta_{k}^{\prime}, a_{0} \in \mathbb{Q}(i)$ and $\alpha, \beta, \gamma \in \mathbb{Q}$. So z is of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}+X \mathbb{Q}(i)[X]$ and $\operatorname{deg}(P) \leqslant 2 n$.

Conversely, for $\alpha_{0} \in \mathbb{Q}$, and $\alpha_{k} \in \mathbb{Q}(i), 1 \leqslant k \leqslant 2 n$, we have

$$
\begin{aligned}
e^{-i n x} P\left(e^{i x}\right) & =e^{-i n x}\left(\alpha_{0}+\alpha_{1} e^{i x}+\cdots+\alpha_{2 n} e^{i 2 n x}\right) \\
& =\alpha_{0} e^{-i n x}+\sum_{k=1}^{2 n-1} \alpha_{k} e^{-i(n-k) x}+\alpha_{2 n} e^{i n x} \\
& =\alpha_{0} e^{-i n x}+\alpha_{2 n} e^{i n x}+\sum_{k=1}^{n-1}\left(\alpha_{k} e^{-i(n-k) x}+\alpha_{2 n-k} e^{i(n-k) x}\right)+\alpha_{n} \\
& =\alpha_{0}(\operatorname{Cos} n x-i \operatorname{Sin} n x)+\alpha_{2 n}(\operatorname{Cos} n x+i \operatorname{Sin} n x)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{n-1}\left\{\alpha_{k}(\operatorname{Cos}(n-k) x-i \operatorname{Sin}(n-k) x)\right. \\
& \left.\quad+\alpha_{2 n-k}(\operatorname{Cos}(n-k) x+i \operatorname{Sin}(n-k) x)\right\}+\alpha_{n}
\end{aligned}
$$

Take $\alpha_{k}=\alpha_{k}^{\prime}+i \alpha_{k}^{\prime \prime}, \alpha_{2 n-k}=\alpha_{2 n-k}^{\prime}+i \alpha_{2 n-k}^{\prime \prime}$ and $\alpha_{2 n}=\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime}$. Thus

$$
\begin{aligned}
& e^{-i n x} P\left(e^{i x}\right)=\left(\alpha_{0}+\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime}\right) \operatorname{Cos} n x+\left(-\alpha_{2 n}^{\prime \prime}+i\left(\alpha_{2 n}^{\prime}-\alpha_{0}\right)\right) \operatorname{Sin} n x \\
& +\sum_{k=1}^{n-1}\left\{\left(\alpha_{k}^{\prime}+\alpha_{2 n-k}^{\prime}+i\left(\alpha_{k}^{\prime \prime}+\alpha_{2 n-k}^{\prime \prime}\right)\right) \operatorname{Cos}(n-k) x\right. \\
& \left.+\left(\alpha_{k}^{\prime \prime}-\alpha_{2 n-k}^{\prime \prime}+i\left(\alpha_{2 n-k}^{\prime}-\alpha_{k}^{\prime}\right)\right) \operatorname{Sin}(n-k) x\right\}+\alpha_{n} \\
& =a_{n} \operatorname{Cos} n x+b_{n} \operatorname{Sin} n x+\sum_{k=1}^{n-1}\left\{a_{k} \operatorname{Cos}(n-k) x+b_{k} \operatorname{Sin}(n-k) x\right\}+\alpha_{n},
\end{aligned}
$$

where

$$
\begin{array}{ll}
a_{n}=\alpha_{0}+\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime}, & a_{k}=\alpha_{k}^{\prime}+\alpha_{2 n-k}^{\prime}+i\left(\alpha_{k}^{\prime \prime}+\alpha_{2 n-k}^{\prime \prime}\right), \\
b_{n}=-\alpha_{2 n}^{\prime \prime}+i\left(\alpha_{2 n}^{\prime}-\alpha_{0}\right), & b_{k}=\alpha_{k}^{\prime \prime}-\alpha_{2 n-k}^{\prime \prime}+i\left(\alpha_{2 n-k}^{\prime}-\alpha_{k}^{\prime}\right) .
\end{array}
$$

So, every element of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}+X \mathbb{Q}(i)[X]$ and $\operatorname{deg}(P) \leqslant 2 n$ is in S_{0}^{\prime}.

Conclusion 2. A consequence of above construction is: $S_{0}^{\prime}=\left\{e^{-i n x} P\left(e^{i x}\right)\right.$, $n \in \mathbb{N}$, where $P(X) \in \mathbb{Q}+X \mathbb{Q}(i)[X]$ and $\operatorname{deg}(P) \leqslant 2 n\}$. So we have an isomorphism $f:(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X} \rightarrow S_{0}^{\prime}$ through the substitution morphism $X \rightarrow e^{i x}$. Therefore $S_{0}^{\prime} \simeq(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}$.

ThEOREM 2.2. The integral domain S_{0}^{\prime} is a Noetherian HFD having nonzero elements of $\mathbb{Q}(i)$ as units and trigonometric polynomials $\operatorname{Cos} x+i \operatorname{Sin} x-a$, where $a \in \mathbb{Q}(i) \backslash\{0\}$ are irreducible elements, up to units.

Proof. Since X is a prime in $\mathbb{Q}+X \mathbb{Q}(i)[X]$ [1 Example 1.8(b)], we have that $(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}$ is a localization of $\mathbb{Q}+X \mathbb{Q}(i)[X]$ by a multiplicative system generated by a prime. Also $\mathbb{Q}+X \mathbb{Q}(i)[X]$ is a Notherian HFD [3, Theorem 4], [2, Proposition 3.1]. Therefore $(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}$ is an HFD [1, Corollary 2.5] and Notherian [14, Corollary 1, p. 224]. Hence the isomorphism $S_{0}^{\prime} \simeq(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}$ in Conclusion 2 gives the result.

The following is an analogue of [11, Corollary 1] and gives a factorization in S_{0}^{\prime} instead of S^{\prime}.

Corollary 2.1. Let $z=\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right), n \in \mathbb{N} \backslash\{1\}, a_{k}, b_{k} \in$ $\mathbb{Q}(i)$ with $\left(a_{n}, b_{n}\right) \neq(0,0)$, such that $a_{n}=\alpha+\gamma+i \beta$ and $b_{n}=-\beta+i(\alpha-\gamma)$, where $\alpha, \beta, \gamma \in \mathbb{Q}$. Let d be a common divisor of the integers k such that $\left(a_{k}, b_{k}\right) \neq(0,0)$. Then z has a unique factorization

$$
\lambda(\operatorname{Cos} n x-i \operatorname{Sin} n x) \prod_{j=1}^{2 n / d}\left(\operatorname{Cos} d x+i \operatorname{Sin} d x-\alpha_{j}\right), \text { where } \lambda, \alpha_{j} \in \mathbb{Q}(i) \backslash\{0\} .
$$

Proof. Since $S_{0}^{\prime} \subset S^{\prime}$, the proof follows by [11, Corollary 1].
REmARK 2.1. The factorization in S_{1}^{\prime} is an analogue of Corollary 2.1
Now onwards the symbol \cap in all diagrams will represent the inclusion \subseteq.
Remark 2.2. $\mathbb{Q}+X \mathbb{Q}(i)[X]$ is a Noetherian HFD wedged between two Euclidean domains $\mathbb{Q}[X]$ and $\mathbb{Q}(i)[X]$, that is $\mathbb{Q}[X] \subseteq Q+X \mathbb{Q}(i)[X] \subseteq \mathbb{Q}(i)[X]$ and the localization of all these by a multiplicative system generated by X preserves their factorization properties as

$$
\begin{array}{ccccc}
\mathbb{Q}[X] & \subseteq & \mathbb{Q}+X \mathbb{Q}(i)[X] & \subseteq & \mathbb{Q}(i)[X] \\
\cap & & \cap & & \cap \\
(\mathbb{Q}[X])_{X} & \subseteq & (\mathbb{Q}+X \mathbb{Q}(i)[X])_{X} & \subseteq & (\mathbb{Q}(i)[X])_{X} .
\end{array}
$$

Using Conclusion 1, Conclusion 2 and [11. Theorem 1], we have

$$
\begin{array}{ccccc}
\mathbb{Q}[X] & \subseteq & \mathbb{Q}+X \mathbb{Q}(i)[X] & \subseteq & \mathbb{Q}(i)[X] \\
\cap & & \cap & & \cap \\
S_{1}^{\prime} & \subseteq & S_{0}^{\prime} & \subseteq & S^{\prime}
\end{array}
$$

where S_{0}^{\prime} is a Noetherian HFD wedged between two Euclidean domains S_{1}^{\prime} and S^{\prime}.
Remark 2.3. (a) Consider the domain extension $\mathbb{Q}[X] \subseteq(Q[X])_{X}$. As $X \mathbb{Q}[X]$ is a maximal ideal of $\mathbb{Q}[X]$ and $X \mathbb{Q}[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{Q}[X])^{e}=(\mathbb{Q}[X])_{X} \quad$ 14 , Corollary 2]. Hence $(X \mathbb{Q}[X])^{e} \simeq S_{1}^{\prime}$ by Conclusion 1 .
(b) If we consider the domain extension $\mathbb{Q}+X \mathbb{Q}(i)[X] \subseteq(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}$. We observe that $X \mathbb{Q}(i)[X]$ is a maximal ideal of $\mathbb{Q}+X \mathbb{Q}(i)[X]$ and $X \mathbb{Q}(i)[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{Q}(i)[X])^{e}=(\mathbb{Q}+X \mathbb{Q}(i)[X])_{X}[\mathbf{1 4}$, Corollary 2]. Hence $(X \mathbb{Q}(i)[X])^{e} \simeq S_{0}^{\prime}$ by Conclusion 2
(c) On the same lines we can apply the same result to the domain extension $\mathbb{Q}(i)[X] \subseteq(Q(i)[X])_{X}$. In this case $X \mathbb{Q}(i)[X]$ is a maximal ideal of $\mathbb{Q}(i)[X]$ and $X \mathbb{Q}(i)[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{Q}(i)[X])^{e}=(\mathbb{Q}(i)[X])_{X}[\mathbf{1 4}$, Corollary 2]. Hence $(X \mathbb{Q}(i)[X])^{e} \simeq S^{\prime}$ by [11, Theorem 1].

Definition 2.1. Let J^{\prime} be the subset of S_{1}^{\prime} defined by

$$
J^{\prime}=\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+i b_{k} \operatorname{Sin} k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q} \text { and } a_{n}=b_{n}\right\} .
$$

Definition 2.2. Let I^{\prime} be the subset of S_{0}^{\prime} defined by
$I^{\prime}=\left\{\sum_{k=0}^{n}\left(a_{k} \operatorname{Cos} k x+b_{k} \operatorname{Sin} k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q}(i)\right.$ and $\left.a_{n}=\alpha+i \beta, b_{n}=-\beta+i \alpha\right\}$.
Lemma 2.1. For the maximal ideal $X \mathbb{Q}[X]$ (respectively $X \mathbb{Q}(i)[X])$ of $\mathbb{Q}[X]$ (respectively $\mathbb{Q}+X \mathbb{Q}(i)[X])$ we have $(X \mathbb{Q}[X])_{X} \simeq J^{\prime}\left(\right.$ respectively $(X \mathbb{Q}(i)[X])_{X} \simeq$ $\left.I^{\prime}\right)$.

Proof. Follows by Conclusion 1 (respectively Conclusion 2).

3. Conditions satisfied by ring extensions

In this section we discuss two special conditions. First one, known as Condition 1, is borrowed from [8] and the second one is derived from Condition 1. Moreover, we study a few interesting results about these conditions and trigonometric polynomial ring extensions satisfying them.

Condition 1. Let $A \subseteq B$ be a unitary (commutative) ring extension. For every $x \in B$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A$ such that $x=x^{\prime} x^{\prime \prime}$ [8 page 661].

Example 3.1. Following [8, Example 1.1]; (a) If the ring extension $A \subseteq B$ satisfies Condition 1, then the ring extension $A+X B[X] \subseteq B[X]$ (or $A+X B[[X]] \subseteq$ $B[[X]])$ also satisfies Condition 1.
(b) If the ring extensions $A \subseteq B$ and $B \subseteq C$ satisfy Condition 1 , then so does the ring extension $A \subseteq C$.
(c) If B is a fraction ring of A, then the ring extension $A \subseteq B$ satisfies Condition 1. Hence the ring extension $A \subseteq B$ satisfies Condition 1 is the generalization of localization.
(d) If B is a field, then the ring extension $A \subseteq B$ satisfies Condition 1 .

Condition 2. Let A, A_{1}, B and B_{1} be unitary (commutative) rings such that

$$
\begin{array}{ccc}
A & \subseteq \\
\cap & B \\
A_{1} & \subseteq & B_{1}
\end{array} .
$$

Then for each $x \in B_{1}$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A_{1}$ such that $x=x^{\prime} x^{\prime \prime}$.
Lemma 3.1. Let $A \subseteq B$ be a unitary (commutative) ring extension which satisfies Condition 1. If N is a multiplicative system in A, then the ring extension $N^{-1} A \subseteq N^{-1} B$ satisfies Condition 2 .

Proof. Since the ring extension $A \subseteq B$ satisfies Condition 1. Therefore for each $a \in B$ there exist $b \in U(B)$ and $c \in A$ such that $a=b c$. Obviously $N^{-1} A \subseteq$ $N^{-1} B$. Let $x=\frac{a}{s} \in N^{-1} B$, where $a \in B, s \in N$. This implies $x=\frac{b c}{s}=b \frac{c}{s}$, where $b \in U(B)$ and $\frac{c}{s} \in N^{-1} A$.

Example 3.2. (a) If the ring extensions $A \subseteq B$ and $B \subseteq C$ satisfy Condition 2, then so does the ring extension $A \subseteq C$.
(b) By Lemma 3.1 the ring extensions $S_{1}^{\prime} \subseteq S_{0}^{\prime}$ and $S_{0}^{\prime} \subseteq S^{\prime}$ satisfy Condition 2 so does the ring extension $S_{1}^{\prime} \subseteq S^{\prime}$.
(c) If the ring extension $A \subseteq B$ satisfies Condition 1 , then obviously it satisfies Condition 2.

Proposition 3.1. Let $A \subseteq B$ and $A_{1} \subseteq B_{1}$ be unitary (commutative) ring extensions, where $A \subseteq A_{1}$ and $\bar{B} \subseteq B_{1}$. Let \bar{M} be a commen ideal of A, B, A_{1} and B_{1} for which the extension $A_{1} / M \subseteq B_{1} / M$ satisfies Condition 2. Assume for each $\alpha \in U\left(B_{1} / M\right)$ there exists $a \in U(B)$ such that $p(a)=\alpha$, where $p: B_{1} \rightarrow B_{1} / M$ is the canonical surjection; then $A_{1} \subseteq B_{1}$ satisfies Condition 2 .

Proof. Let $b \in B_{1}$. We represent the class of b by \hat{b} in B_{1} / M. Using Condition 2, we have $\hat{b}=\hat{b}^{\prime} \hat{b}^{\prime \prime}$, with $\hat{b}^{\prime} \in U(B / M), \hat{b}^{\prime \prime} \in A_{1} / M$. By hypothesis $b^{\prime} \in U(B)$, since $\hat{b}^{\prime \prime} \in A_{1} / M$, for $b^{\prime \prime} \in A_{1}$, we have $b=b^{\prime} b^{\prime \prime}+m=b^{\prime}\left(b^{\prime \prime}+b^{-1} m\right)$ with $m \in M$. Thus $b^{\prime \prime}+b^{\prime-1} m \in A_{1}$.

Lemma 3.2. Let $A \subseteq B$ and $A_{1} \subseteq B_{1}$ be unitary (commutative) ring extensions, where $A \subseteq A_{1}$ and $B \subseteq B_{1}$. Let M be an ideal of A_{1} that is also an ideal in B_{1}. If for each $b \in B_{1} \backslash M$ there exists $m \in M$ such that $b+m \in U(B)$, then the extension $A \subseteq B$ satisfies Condition 2 .

Proof. If $b \in M$, then $b=1 . b$. Let $b \in B_{1} \backslash M$, then there exists $m \in M$ with $b+m \in U(B)$. So we can write, $b=(b+m)(b+m)^{-1} b$ and $(b+m)^{-1} b \in A_{1}$, because $(b+m)^{-1} b=1+m^{\prime}$ with $m^{\prime} \in M$.

Proposition 3.2. Let $A \subseteq B_{1} \subseteq B_{2}$ be a unitary (commutative) ring extension such that $A \subseteq B_{2}$ satisfies Condition 2. If for each $x \in U\left(B_{1}\right)$, we have $x \in A$ or $x^{-1} \in A$ then $B_{1}=N^{-1} A$, where $N=U\left(B_{1}\right) \cap A$.

Proof. The inclusion $N^{-1} A \subseteq B_{1}$ is obvious. Let $x \in B_{2}$. We can write $x=x^{\prime} x^{\prime \prime}$, where $x^{\prime} \in U\left(B_{1}\right), x^{\prime \prime} \in A$. If $x^{\prime} \in A$ then $x^{\prime} \in A \cap U\left(B_{1}\right)=N$ and $x \in A$. If $x^{\prime-1} \in A$ then $x^{\prime-1} \in A \cap U\left(B_{1}\right)=N$ and $x=\frac{x^{\prime \prime}}{x^{\prime-1}} \in N^{-1} A$.

Remark 3.1. Consider the following commutative inclusion diagram which follows from Remark 2.2

$\mathbb{Q}[X]$	\subseteq	$\mathbb{Q}+X \mathbb{Q}(i)[X]$	\subseteq	$\mathbb{Q}(i)[X]$
\cap	\searrow	\cap	\searrow	\cap
S_{1}^{\prime}	\subseteq	S_{0}^{\prime}	\subseteq	S^{\prime}.

Now the following table concludes our discussion on Condition 1 and Condition 2 among trigonometric polynomial ring extensioins.

Ring Extension	Condition 1	Condition 2
$\mathbb{Q}[X] \subseteq \mathbb{Q}+X \mathbb{Q}(i)[X]$	No	No
$\mathbb{Q}+X \mathbb{Q}(i)[X] \subseteq \mathbb{Q}(i)[X]$	Yes	Yes
$\mathbb{Q}[X] \subseteq S_{1}^{\prime}$	Yes	Yes
$\mathbb{Q}+X \mathbb{Q}(i)[X] \subseteq S_{0}^{\prime}$	Yes	Yes
$\mathbb{Q}(i)[X] \subseteq S^{\prime}$	Yes	Yes
$S_{1}^{\prime} \subseteq S_{0}^{\prime}$	No	Yes
$S_{0}^{\prime} \subseteq S^{\prime}$	No	Yes

By transitivity the domain extensions $\mathbb{Q}[X] \subseteq S_{0}^{\prime}, \mathbb{Q}+X \mathbb{Q}(i)[X] \subseteq S^{\prime}$ and $S_{1}^{\prime} \subseteq S^{\prime}$ also satisfy Condition 2.

References

[1] D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains II, J. Algebra 152 (1992), 78-93
[2] D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19
[3] J. Brewer and E. A. Rutter, $D+M$ constructions with general overrings, Michigan Math. J. 23 (1976) 33-42
[4] P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Phil. Soc. 64 (1968), 251-264
[5] J. Coykendall, A characterization of polynomial rings with the Half-Factorial Property, Factorization in integral domains, Lect. Notes Pure Appl. Math. 189, Marcel Dekker, New York 1997, 291-294
[6] A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Camb. Phil. Soc. 75 (1974), 321-329
[7] G. Picavet and M. Picavet, Trigonometric polynomial rings. Commutative ring theory, Lect. Notes Pure Appl. Math. 231, Marcel Dekker, 2003, 419-433
[8] N. Radu, S. O. I. Al-Salihi, and T. Shah, Ascend and descend of factorization properties, Rev. Roum. Math. Pures Appl. 45 (2000), 659-669
[9] J. F. Ritt, A factorization theory for functions $\sum_{i=1}^{n} a_{i} e^{\alpha_{i} x}$, Trans. Amer. Math. Soc. 29 (1987), 584-596
[10] P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301
[11] T. Shah and E. Ullah, On trigonometric polynomial rings, submitted
[12] A. Zaks, Half-factorial domains, J. Israel Math. 37 (1980), 281-302
[13] A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982), 223-231
[14] O. Zariski and P. Sammuel, Commutative algebra, Vol. 1, Springer-Verlag, New York, Heidelberg, Berlin, 1958

Department of Mathematics
(Received 2902 2008)
Quaid-i-Azam University
(Revised 3011 2008)
Islamabad, Pakistan
stariqshah@gmail.com
Fakultät für Informatik und Mathematik
Passau Universität
Passau, Germany
ehsanu01@stud.uni-passau.de

