
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 87(101) (2010), 39–58 DOI: 10.2298/PIM1001039K

PARASTROPHICALLY EQUIVALENT
QUASIGROUP EQUATIONS

Aleksandar Krapež and Dejan Živković

Communicated by Žarko Mijajlović

Abstract. Fedir M. Sokhats’kyi recently posed four problems concerning
parastrophic equivalence between generalized quasigroup functional equations.
Sava Krstić in his PhD thesis established a connection between generalized
quadratic quasigroup functional equations and connected cubic graphs. We
use this connection to solve two of Sokhats’kyi’s problems, giving also com-
plete characterization of parastrophic cancellability of quadratic equations and
reducing the problem of their classification to the problem of classification of
connected cubic graphs. Further, we give formulas for the number of quadratic
equations with a given number of variables. Finally, we solve all equations with
two variables.

1. Introduction

We study generalized quadratic functional equations on quasigroups. These
are equations s = t, where each variable appears exactly twice in s = t and each
operational symbol is assumed to be a quasigroup operation on a (fixed) set.

A fundamental problem in this class of equations is to investigate their struc-
ture and classify them accordingly. Our main tool in this endeavor is a cubic graph
representation of the equations. In the first part of the paper we consider paras-
trophic equivalence as one criterion to classify quadratic equations. The second
part of the paper begins a systematic classification of the equations with one and
two variables based on their corresponding graphs.

The paper is organized as follows. We review necessary definitions and facts
about quasigroups, quasigroup functional equations and graphs in Sections 2, 3 and
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4, respectively. In Section 5 we consider a connection between generalized quadratic
quasigroup functional equations and connected cubic graphs. The four problems
of Sokhats’kyi are presented in Section 6. In this section we also prove our main
result about the full characterization of parastrophic (un)cancellability of equations.
Section 7 is devoted to the calculation of the number of generalized quadratic
equations for a given number of variables. Section 8 starts with a brief discussion
of the degenerate case of the equation with one variable, and then proceeds to a
full treatment of the equations with two variables giving general solutions to all
nine of these equations.

2. Quasigroups

A quasigroup is a natural generalization of the concept of group. Quasigroups
differ from groups in that they need not be associative.

Definition 2.1. We say that a groupoid (S; ·) is a quasigroup if for all a, b ∈ S
there are unique solutions x, y ∈ S to the equations x · a = b and a · y = b.

A loop is a quasigroup with an identity element e, which satisfies the identities
e · x = x · e = x. An associative quasigroup is a group.

Quasigroups are important algebraic (combinatorial, geometric) structures aris-
ing in various areas of mathematics and other disciplines. We mention just a few
of their applications:

• in combinatorics (as latin squares, see Dénes and Keedwell [4])
• in geometry (as nets/webs, see Belousov [3] and [4])
• in statistics (see Fisher [6] and [4])
• in coding theory and cryptography (see [4])
• in special theory of relativity (see Ungar [20])

It is well known (see Belousov [3]) that a net can be coordinatized by an
ortogonal system of quasigroups. Closure conditions in nets correspond to some
(systems of) equations in their coordinate quasigroups. The equations are not
always quadratic, the case we are particularly interested in, but when they are,
they can be solved using methods developed mainly by Krstić [14] and described
in this paper.

The other typical application of generalized quasigroup equations is within the
theory of quasigroups. Let s = t be a quadratic equation expressing a property of a
quasigroup ·. We consider the generalized version of s = t in which each occurrence
of operation · (or \, /) is replaced by a new operational symbol so that no symbol
appears more than once. This new equation often gives us important information
about · – usually that it is isotopic to some group.

∗ ∗ ∗
Whenever unambiguous, a term like x · y is shortened to xy. Also, if many

quasigroup operations are defined on the base set S, they are denoted by capital
letters.

A quasigroup operation · is often considered together with its inverse opera-
tions: left (\) and right (/) division. The inverse operations are defined by: xy = z
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iff x\z = y iff z/y = x. Both of the inverse operations are also quasigroups. How-
ever, the inverse operations of a loop (group) operation need not be loops (groups).

It is often convenient to say that the operation · itself is a quasigroup, assuming
the underlying base set S and the division operations.

Definition 2.2. A triple groupoid (S; ·, \, /) is an equational quasigroup (also
known as equasigroup or primitive quasigroup) if it satisfies the following axioms:

x\xy = y, xy/y = x,
x(x\y) = y , (x/y)y = x

If it further satisfies x\x = y/y (i.e., if the operation · is a loop operation) we have
an equational loop.

The systems of quasigroups (loops) and equational quasigroups (loops) are
equivalent, but the advantage of the latter is that it defines a variety.

Definition 2.3. The dual operations of ·, \, / are:
x ∗ y = yx, x\\y = y\x, x//y = y/x

These are also quasigroup operations, and the six operations ·, \, /, ∗, \\, // are
said to be parastrophes (or conjugates) of each other.

We use the notation x ◦ y so that the symbol ◦ stands for either one of the
operations · or ∗. Similarly, in x � y the symbol � stands for one of the operations
·, \, /, ∗, \\, or //.

When we use the prefix notation for operations and a quasigroup operation
is A, we define: A(x1, x2) = x3 iff A(1)(x1, x2) = x3 iff A(12)(x2, x1) = x3 iff
A(13)(x3, x2) = x1 iff A(23)(x1, x3) = x2 iff A(123)(x2, x3) = x1 iff A(132)(x3, x1) =
x2. In general, A(x1, x2) = x3 iff Aσ(xσ(1), xσ(2)) = xσ(3) for σ ∈ S3 (symmetric
group in three elements).

Definition 2.4. If (S; ·) and (T ;×) are quasigroups and f, g, h : S → T are
bijections such that f(xy) = g(x) × h(y), then we say that (S; ·) and (T ;×) are
isotopic and that (f, g, h) is an isotopy.

Isotopy is a generalization of isomorphism. The isotopic image of a quasigroup
is again a quasigroup. Every quasigroup is isotopic to some loop. A loop iso-
topic to a group is isomorphic to it. If two quasigroups are isotopic, so are their
corresponding parastrophes.

Definition 2.5. Two quasigroups are isostrophic if one of them is isotopic to
a parastrophe of the other.

All these relations are equivalences between quasigroups. Isomorphism is a
finer relation than isotopy, which in turn is finer than isostrophy.

3. Functional equations on quasigroups

We use (object) variables x1, x2, . . . . However, we also use x, y, z, u, v, w
in formulas with a small number of variables. Operation symbols (i.e. functional
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variables) are F1, F2, . . . , but we use A,B,C, . . . in formulas with a small number
of operation symbols. We assume that all operation symbols represent quasigroup
operations and that if a symbol A is used, we also have symbols for the parastrophes
of A.

Definition 3.1. A functional equation is an equality s = t, where s and t are
terms with symbols of unknown operations occurring in at least one of them.

We write Eq[F1, . . . , Fn] to emphasize that all operation symbols of the equa-
tion Eq are among F1, . . . , Fn.

Definition 3.2. A solution to the functional equation Eq[F1, . . . , Fn] on a set
S is a sequence Q1, . . . , Qn of quasigroup operations on S such that Eq[Q1, . . . , Qn]
is identically true on S.

A general solution to the equation Eq is a sequence of formulas
Fi = ti(p1, . . . , pm), (1 � i � n),

with parameters p1, . . . , pm, such that Eq[t1, . . . , tn] is identically true on S and
such that every solution to the equation Eq can be obtained by specifying the
values of parameters.

The equation Eq is consistent if it has at least one solution. Obviously, every
functional equation has a solution on any one–element set. This solution is called
trivial and except for proving consistency it is quite uninteresting. We further
assume that solutions of functional equations are algebras of quasigroups on a
given but otherwise unspecified set S with more than one element.

Definition 3.3. The length |t| of the term t is the number of occurrences of
object variables in it. Formally:

– If t is a variable, then |t| = 1.
– If t = t1 � t2, then |t| = |t1|+ |t2|.

The length of the equation s = t is |s|+ |t|.
We define an order between terms that contain only the operation symbol ·.
Definition 3.4. The order � between terms is defined as follows:

– If |s| < |t|, then s � t.
– For variables xi and xj , xi � xj iff i < j.
– If |s| = |t|, s = s1 · s2, t = t1 · t2 and s1 � t1, then s � t.
– If |s| = |t|, s = s1 · s2, t = s1 · t2 and s2 � t2, then s � t.

Additionally, if we use x, y, z, u, v, w as variables, we assume x � y � z � u �
v � w. Note that, if we restrict ourselves to one type of variables (either from the
set {x1, x2, . . . } or from the set {x, y, z, u, v, w}), the relation � is a total order.

Definition 3.5. The term t is linear if every object variable appears exactly
once in t. The functional equation s = t is linear if both s and t are linear.

Definition 3.6. The functional equation s = t is quadratic if every object
variable appears exactly twice in s = t. The equation is balanced if every object
variable appears exactly once in s and once in t.
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Obviously, a quadratic functional equation is balanced iff it is linear.

Definition 3.7. Functional equation s = t is generalized if every functional
variable F of s = t (including all parastrophes of F ) appears only once in s = t.

Example 3.1. The following are various functional equations.

xy · z = x · yz (associativity)
xy · zu = xz · yu (mediality)
xy · zu = (xz · y)u (pseudomediality)
x · yz = xy · xz (left distributivity)
xy · yz = xz (transitivity)

A(B(x, y), z) = C(x,D(y, z)) (generalized associativity)
A(B(x, y), C(z, u)) = D(E(x, z), F (y, u)) (generalized mediality)
A(B(x, y), C(z, u)) = D(E(F (x, z), y), u) (generalized pseudomediality)

A(x,B(y, z)) = D(E(x, y), F (x, z)) (generalized left distributivity)
A(B(x, y), C(y, z)) = D(x, z) (generalized transitivity)

Associativity, mediality and pseudomediality (generalized or not) are balanced,
transitivity is quadratic but not balanced, and left distributivity is not even qua-
dratic.

Investigation of generalized balanced quasigroup equations was initiated in the
important paper [1] by Aczél, Belousov and Hosszú where equations of generalized
associativity and mediality were solved. Alimpić in [2] gave formulas of general
solution to any generalized balanced quasigroup equation. Quadratic quasigroup
equations were defined in Krapež [11] where a fairly wide class of them were solved.
The complete solution to quadratic equations was given in Krstić [14].

Definition 3.8. Let Eq[F1, . . . , Fn] be a generalized quadratic functional equa-
tion on quasigroups. We write Fi ∼ Fj (1 � i, j � n) and say that Fi and Fj are
necessarily isostrophic if in every solution Q1, . . . , Qn of Eq the operations Qi and
Qj are isostrophic.

An operational symbol Fi is {loop, group, abelian} if Qi is always isostrophic
to a {loop, group, abelian group} operation.

Definition 3.9. A ∼–class with one or two elements is called small, otherwise
it is big.

Definition 3.10. Two equations Eq and Eq′ are parastrophically equivalent
(denoted Eq PEEq′) if one of them can be obtained from the other by applying a
finite number of the following steps:

(1) Renaming object and/or functional variables.
(2) Replacing s = t by t = s.
(3) Replacing equation A(t1, t2) = t3 by one of the following equations:
Aσ(tσ(1), tσ(2)) = tσ(3) for some permutation σ ∈ S3.
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(4) Replacing a subterm A(t1, t2) of s or t by A(12)(t2, t1).
(5) Replacing a subterm A(x, t2) by a new variable y and simultaneously

replacing all other occurrences of x by either A(13)(y, t2) or A(123)(t2, y).
(6) Replacing a subterm A(t1, x) by a new variable y and simultaneously

replacing all other occurrences of x by either A(23)(t1, y) or A(132)(y, t1).
Theorem 3.1 (Krstić [14]). Let equations Eq[F1, . . . , Fn] and Eq′[G1, . . . , Gn]

be parastrophically equivalent. For all i (1 � i � n) let Gi be obtained from Fi by
transformations described in Definition 3.10, and let Q1, . . . , Qn and R1, . . . , Rn
be solutions on a set S of Eq,Eq′, respectively. Then the operations Qi and Ri
(1 � i � n) are mutually isostrophic.

This theorem shows why the notion of parastrophic equivalence is so important
– namely, if we have a solution to a quadratic equation, then we can easily produce
solutions to all equations parastrophically equivalent to it.

4. Graphs

Following Krstić [14], functional equations are represented by multigraphs. We
use standard graph–theoretic notions and facts, which we review next for the sake
of completeness.

A multigraph is a triple (V,E; I), where V and E are disjoint sets whose ele-
ments are called vertices and edges, respectively, while I is an incidence relation
I ⊆ V × E. We also assume that for every edge e there are one or two vertices
incident to e. If there is a unique vertex v incident to an edge e, then e is called
a loop (which should not be confused with a loop as a quasigroup with an iden-
tity, see Section 2). A simple graph is a multigraph with no loops and no multiple
edges. In this paper we shall use shorter term graph for multigraph and assume
that all graphs are finite (V and E are both finite) and nontrivial (V and E are
both nonempty).

Definition 4.1. A graph (W,F ; J) is a subgraph of a graph (V,E; I) ifW ⊆ V ,
F ⊆ E and J ⊆ I ∩ (W × F ).

Definition 4.2. Two graphs (V,E; I) and (W,F ; J) are isomorphic ((V,E; I)

 (W,F ; J)) if there are bijections f : V → W and g : E → F such that vertices
v1, v2 ∈ V are incident to an edge e ∈ E iff the vertices f(v1), f(v2) are incident to
the edge g(e).

Two vertices in a graph are adjacent if there is an edge such that both are
incident to it. Two edges are adjacent if there is a vertex incident to both of
them. A path (from v0 to vn) in a graph is an alternating (vertex–edge) sequence
v0, e1, v1, . . . , en, vn such that for i = 1, . . . , n the vertices vi−1 and vi are the
endvertices of the edge ei. If v0 = vn the path is closed. A path is simple if it has
no subpath which is closed. A cycle is a simple closed path. Two paths, one from
v1 to v2 and the other from v3 to v4, are disjoint if they have neither common edges
nor common vertices except perhaps v1, v2, v3, v4.

A graph is connected if for every two vertices there is a path from one to the
other. A bridge of a graph G is an edge whose removal disconnects G. A pair
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of edges is a bridge-couple of G if neither is a bridge and the removal of both
disconnects G. A connectivity c(G) of a graph G is the smallest number such that
removal of some c(G) edges disconnects G.

Theorem 4.1 (Menger). For any two vertices v1, v2 of a graph G there are at
least c(G) disjoint paths from v1 to v2.

Obviously, c(G) = 1 iff there is a bridge in G and c(G) = 2 iff there is no bridge
in G but G contains a bridge-couple.

We are particularly interested in cubic graphs. A graph is cubic if for every
vertex v there are exactly three edges to which v is incident, provided that if an
edge is a loop it is counted twice. In a cubic graph G, c(G) � 3.

Lemma 4.1. If (V,E; I) is a cubic graph, then there is a positive integer n such
that |V | = 2n and |E| = 3n.

Definition 4.3. Two vertices v1 and v2 of a graph G are 3-edge-connected if
v1 = v2 or we need to remove at least three edges in G to disconnect v1 and v2.

The 3-edge-connectivity relation between vertices ofG is an equivalence relation
denoted by the symbol ≡. To see transitivity, if v1 ≡ v2 and v2 ≡ v3, then there are
at least three edge-disjoint paths from v1 to v2 and three edge-disjoint paths from
v2 to v3. But then if we remove any two edges from the graph, we may disconnect
at most two of the three edge-disjoint paths from v1 to v2 and at most two of the
three edge-disjoint paths from v2 to v3. Thus, v1 and v3 remain connected by one
path from v1 to v2 and one path from v2 to v3.

The vertices of a graph G are partitioned by this relationship into equivalence
classes called ≡-classes.

Definition 4.4. A ≡-class with one or two elements is called small, otherwise
it is big.

Definition 4.5. A graph G is 3-edge-connected if c(G) � 3, i.e., we need to
remove at least three edges from G to make G disconnected.

Since we are only interested in the notion of egde-connectivity in a graph (as
oposed to the vertex-connectivity), we call the 3-edge-connectivity property simply
3-connectivity. By Menger Theorem, a graph G is 3-connected iff for any two
vertices v1 and v2 of G there are at least three edge-disjoint paths in G from v1 to
v2. Obviously, a cubic graph G is 3-connected iff c(G) = 3 iff the relation ≡ is the
full relation on the vertices of G.

Definition 4.6. Let vertices v1 and v2 be incident to an edge e in a graph G.
A new graph is said to be obtained by the subdivision of the edge e if it is obtained
from G by the addition of a new vertex v and the replacement of the edge e by two
new edges e1 and e2 such that v1 and v are incident to e1 whereas v2 and v are
incident to e2.

Definition 4.7. A graph G′ is a subdivision of a graph G iff there is a sequence
G1, . . . , Gn of graphs such that G = G1, G′ = Gn, and Gi (1 < i � n) is obtained
from Gi−1 by the subdivision of some edge of Gi−1.
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Definition 4.8. Two graphs G and H are homeomorphic iff there is an iso-
morphism from some subdivision of G to some subdivision of H .

Definition 4.9. A graph G is homeomorphically embeddable into a graph H
iff there is a subgraph H ′ of H homeomorphic to G.

Definition 4.10. A graph G is homeomorphically embeddable into a graph H
within a subgraph H ′ of H iff it is homeomorphically embeddable into H ′.

Definition 4.11. A graph G is planar if it can be represented by points (for
vertices) and lines (for edges) in the Euclidean plane so that lines intersect only at
vertex points.

Figure 1 shows planar cubic graph K4, nonplanar noncubic graph K5, and
nonplanar cubic graph K3,3.
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K3,3

Figure 1. The graphs K4, K5, and K3,3.

Embeddability of these graphs is an important condition for graphs relevant to
the properties of associated equations (see the next section).

Theorem 4.2 (Krstić [14]). A graph G consists of small ≡–classes iff K4
cannot be homeomorphically embedded in G.

Theorem 4.3 (Kuratowski). A graph G is planar iff neither K5 nor K3,3 can
be homeomorphically embedded in G.

5. Functional equations and their graphs

In this section we establish a connection between generalized quadratic quasi-
group functional equations and connected cubic graphs. The results are mainly
from Krstić [14] with occasional improvements. See also Krapež and Taylor [13].

Definition 5.1. Let s = t be a generalized quadratic quasigroup functional
equation. The Krstić graph K(s = t) of the equation s = t is a graph (V,E; I) given
by:

• The vertices of K(s = t) are operation symbols from s = t.
• The edges of K(s = t) are subterms of s and t, including s and t which

are considered a single edge. Likewise, any variable (which appears twice
in s = t) is taken to be a single edge.
• If A(p, q) is a subterm of s or t, then the vertex A is incident to edges
p, q, A(p, q) and no other.
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Note that if an equation s = t has a subterm of the form A(x, x), then there is
a corresponding loop in the graph K(s = t).

Lemma 5.1. For every generalized quadratic functional equation s = t, the
graph K(s = t) is a connected cubic graph.

Observe that Lemma 4.1 implies that if the quadratic equation s = t has n
variables, then the graph K(s = t) has 2(n− 1) vertices and 3(n− 1) edges.

Example 5.1. The parastrophically equivalent equations of generalized asso-
ciativity and generalized transitivity have the same Krstić graphK4, and the Krstić
graph of generalized mediality is K3,3.

The conclusion that the parastrophically equivalent equations have the same
(i.e., isomorphic) Krstić graphs holds also in general.

Lemma 5.2. Let s = t and s′ = t′ be two parastrophically equivalent generalized
quadratic functional equations. Then K(s = t) and K(s′ = t′) are isomorphic
graphs.

Definition 5.2. Given a connected cubic graph G = (V,E; I), we construct
its functional equation QE(G) as follows.

Let Fv (v ∈ V ) be operation symbols and xe (e ∈ E) variables related to G.
For every vertex v write Fv(xp, xq) = xr if vIp, vIq, vIr (we could use any F σv
instead). Choose v1 ∈ V , define V1 = V � {v1} and establish the quasiidentity
(
∧
v∈V1
Fv(xpv , xqv ) = xrv ) ⇒ Fv1 (xp1 , xq1 ) = xr1 . Denote this quasiidentity by

(
∧
v∈V1
Fv(xpv , xqv ) = xrv )⇒ s1 = t1.

Next, given (
∧
v∈Vi Fv(xpv , xqv ) = xrv ) ⇒ si = ti, choose a variable y with

just one occurrence in si = ti (there is always one such because G is connected).
There is a vi+1 ∈ Vi such that Fvi+1 (xpi , xqi) = xri and y is one of xpi , xqi , xri .
Then y = F σvi+1 (x, z) for {x, y, z} = {xpi , xqi , xri} and some σ ∈ S3. Replace y in
si = ti by F σvi+1 (x, z)to obtain si+1 = ti+1. Define Vi+1 = Vi � {vi+1}. We have
(
∧
v∈Vi+1

Fv(xpv , xqv ) = xrv )⇒ si+1 = ti+1.
The equation QE(G) is s|V | = t|V |.

Lemma 5.3. Let G be a connected cubic graph. Then QE(G) is a generalized
quadratic functional equation.

Note that we can ensure the uniqueness of QE(G) if we prescribe the choice of
F1 first, and then if we take variable y in si = ti with the smallest index. However,
in view of the next lemma, it is not necessary to do so.

Lemma 5.4. Let G and H be two isomorphic connected cubic graphs. Then
QE(G) and QE(H) are parastrophically equivalent equations.

Together, Lemmas 5.2 and 5.4 give the following theorem:

Theorem 5.1. Generalized quadratic quasigroup functional equations Eq and
Eq′ are parastrophically equivalent iff their Krstić graphs K(Eq) and K(Eq′) are
isomorphic.
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Theorem 5.2 (Krstić [14]). Let Eq[F1, . . . , Fn] be a generalized quadratic func-
tional equation. Then:

• Fi ∼ Fj in Eq iff Fi ≡ Fj in K(Eq).
• Every Fi is a loop symbol.
• A symbol Fi is a group symbol iff Fi/∼ is big iff Fi/≡ is big iff K4 is

homeomorphically embeddable in K(Eq) within Fi/≡.
• A symbol Fi is abelian iff the subgraph of K(Eq) defined by Fi/≡ is not

planar iff K3,3 is homeomorphically embeddable in K(Eq) within Fi/≡.

Therefore Krstić graphs can be used to determine if equations are parastroph-
ically equivalent or not, but also whether some or all operations occurring in an
equation are necesarilly isostrophic to each other and to some (abelian) groups.
Other questions on quadratic equations can be also answered using corresponding
graph notions (see the next section).

6. The problems of Sokhats’kyi

In this and the next section we use the following convention:
• The difference between operation symbols will not be significant. We shall

therefore use only one, the infix binary symbol ·, to denote any of them.
• All products will be assumed to associate to the left.

For example, using this convention, the equation A(B(x, y), z) = C(x,D(y, z)) of
generalized associativity is represented by the equation xyz = x · yz.

∗ ∗ ∗
Sokhats’kyi formulated in [17] some problems concerning quasigroup functional

equations. We cite verbatim:

Problem 6.1. Construct a complete classification of uncancellable quadratic
functional equations with an arbitrary number of object variables.

Problem 6.2. For parastrophically uncancelablle quadratic equations, deter-
mine visual properties that distinguish equations parastrophically equivalent to
the general identity of mediality from equations parastrophically equivalent to the
general identity of pseudomediality.

Problem 6.3. Construct a complete classification of cancellable quadratic
equations.

Problem 6.4. Find applications of the results obtained to the investigation of
identities on quasigroup algebras, i.e., on algebras whose signature is composed of
quasigroup operations.

Some partial results on the Problem 6.1 were given by Duplák [5] (uncancellable
equations with three variables), Sokhats’kyi [15]–[18] (uncancellable equations with
four variables) and Koval’ [7]–[10] (uncancellable equations with five variables).
The Problem 6.2 is solved in Krapež, Simić and Tošić [12].

The following definition of (parastrophic) cancellability is used in the formula-
tion of the above problems.



PARASTROPHICALLY EQUIVALENT QUASIGROUP EQUATIONS 49

Definition 6.1 (Sokhats’kyi [17]). A quasigroup functional equation is can-
cellable if it has a self-sufficient sequence of subwords (a sequence of subwords of
an equation is called self-sufficient if it contains all appearances of all its variables
in the equation). Otherwise it is uncancellable.

An equation is parastrophically cancellable if it is parastrophically equivalent
to a cancellable equation. Otherwise it is parastrophically uncancellable.

The definition becomes more transparent if we take into account the following
lemmas.

Lemma 6.1 (Sokhats’kyi [17]). If an object variable x has exactly two ap-
pearances in the functional equation s = t, then this equation is parastrophically
equivalent to an equation x = xt0 . . . tn for some subterms t0, . . . , tn of s, t.

The sequence t0, . . . , tn is called the edging of the variable x in the equation
s = t.

For example, the equation A(B(x, y), z) = C(x,D(y, z)) of generalized asso-
ciativity is equivalent to the equation x = C(13)(A(B(x, y), z), D(y, z)), i.e., paras-
trophically equivalent to the equation (represented by) x = xyz · yz. Since the
difference between C and C(13) disappears, it would be, perhaps, more appropriate
to use the symbol � introduced in Section 2, instead of ·, but we keep the notation
as defined by Sokhats’kyi.

Lemma 6.2 (Sokhats’kyi [17]). A cyclic permutation of an edging of the vari-
able x is also an edging of this variable in some functional equation parastrophically
equivalent to the given one.

A subsequence ti+1, . . . , ti+j , where + is the addition modulo n + 1, is called
an edging arc. If an arc contains all appearances of all of its variables, then it is
called self-sufficient.

Lemma 6.3 (Sokhats’kyi [17]). If a variable of the equation s = t has a self-
sufficient edging arc, then this equation is parastrophically cancellable.

Finally, building on work of Sokhats’kyi [17] and Krstić [14] we are able to
look at parastrophic (un)cancellability of equations from different perspective.

Theorem 6.1. The following statements are mutually equivalent:
(1) A generalized quadratic quasigroup functional equation Eq is parastroph-

ically uncancellable.
(2) The relation ≡ is the full relation on vertices of K(Eq).
(3) The relation ∼ is the full relation on operation symbols of Eq.
(4) c(K(Eq)) = 3, i.e., K(Eq) is 3-connected.

Proof. (1 ⇔ 2) To show 2 ⇒ 1, assume that the equation Eq is cancellable.
Then Eq is parastrophically equivalent to some equation x = xt0 · · · tn with a
self-sufficient edging arc ti+1, . . . , tn (i < n). The equivalent equation is just a
shorthand for the equation pictured in Figure 2.

The Krstić graph K(Eq) of Eq is shown in Figure 3, where Tm are graphs of
terms tm (0 � m � n).



50 KRAPEŽ AND ŽIVKOVIĆ

=

x F0

Fn−i−1

Fn−i

Fn

x t0

ti

ti+1

tn

Figure 2. The tree of x = xt0 · · · tn.

Note that some Tj and Tk are connected via common variables of tj and tk but,
because of the self-sufficiency of ti+1, . . . , tn, this never happens for 0 � j � i < k �
n. Therefore, there are only two disjoint paths in K(Eq) from F0 to Fn: the first
one via x and the second through the vertices F1, F2, . . . , Fn−i−1, Fn−i, . . . , Fn−1.

Actually, there are other paths from F0 to Fn (via some of Tm’s) but they all
contain edge y, so cannot be disjoint from the path through the vertices F1, F2, . . . ,
Fn−i−1, Fn−i, . . . , Fn−1. Consequently, F0 ≡ Fn is not true and so ≡ is not the full
relation.

T0 T1 Ti

Fn Fn−1
� � � Fn−i

F0 F1
� � � Fn−i−1

Tn Tn−1 Ti+1

x y

Figure 3. The graph K(Eq).
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To show the other direction 1 ⇒ 2, assume that an equation Eq is given such
that the relation ≡ on vertices of K(Eq) is not full. Then K(Eq) has either a bridge
or a bridge-couple. We show that in both cases the equation Eq is parastrophically
cancellable.

Case (i): There is a bridge in K(Eq).
If we construct QE(K(Eq)) using Definition 5.2 starting from the bridge, then

Eq is parastrophically equivalent to an equation s = t such that the sets of variables
of s and t are disjoint. Since Eq is quadratic, s must be a product pq. Without
loss of generality we may assume that there is a variable in p which also occurs in
q.

If this is not the case, then all variables of p and q are disjoint and equation
pq = t is equivalent to p = q//t. Thus it is parastrophically equivalent to p = qt and
variables of p and qt are also disjoint. This procedure can be repeated if necessary,
until, since regression must be finite, we get the product with a variable in both
factors.

So let us assume that a variable x occurs in both p and q. Equation Eq
is parastrophically equivalent to the equation xs1 . . . si · xsi+1 . . . sj = t for some
subterms s1, . . . , sj (0 � i � j) of s. The last equation is parastrophically equivalent
to x = xsi+1 . . . sjtsi . . . s1 and therefore t is self-sufficient edging arc of the variable
x. By the Lemma 6.3 the equation s = t is parastrophically cancellable and so is
Eq.

Case (ii): There is no bridge but there is a bridge-couple (with edges x, y) in
K(Eq).

Making QE(K(Eq)) as in Definition 5.2 and starting from the variable y, we
get the equation s = t, parastrophically equivalent to Eq and such that the variable
x occurs in both s and t, while all other variables of s and t are disjoint. We can
rewrite s = t in the form xs1 . . . si = xt1 . . . tj for some subterms s1, . . . , si of s and
t1, . . . , tj of t. Consequently, the equation s = t is parastrophically equivalent
to the equation x = xt1 . . . tjsi . . . s1 with the sequence t1, . . . , tj being a self-
sufficient edging arc for x. This proves that both s = t and Eq are parastrophically
cancellable.

(2 ⇔ 3) That the relation ∼ is full iff ≡ is full follows from Theorem 5.2.
(2 ⇔ 4) Obviously, a cubic graph G is 3-connected iff c(G) = 3 iff the relation

≡ is the full relation on V . �

This is our main result. Together with Theorem 5.1, it gives the full char-
acterization of parastrophic (un)cancellability of equations. Therefore, it solves
Sokhat’skyi problems 6.1 and 6.3.

7. How many generalized quadratic functional equations are there?

In this section we give a count of all generalized quadratic equations with n
variables, as well as a count of their normal subset. Normal equations (defined
below) avoid repetitions of equations with nonessential differences such as vari-
able substitution. The numbers of generalized and normal generalized quadratic
equations with n variables are denoted by En and en, respectively.
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We also pose the problem of finding a general formula for the sequence of num-
bers πn of parastrophically nonequivalent generalized quadratic quasigroup equa-
tions with n variables.

Theorem 7.1. The total number of generalized quadratic quasigroup functional
equations with n variables is

En = (4n− 2)!
2n(2n− 1)!

Proof. Let s = t be a quadratic equation with n variables. The equation is
fully determined by the binary tree of the equation s = t and the order in which
variables occur in the equation. The tree and the order are independent of each
other.

i) It is well known that the number of different binary trees with n leaves is
Cn−1, where Cn (n � 0) is the sequence of Catalan numbers. The sequence satisfies
the formula: Cn = (2n)!/(n + 1)!n! and is denoted by A000108 in Sloane’s “The
On-Line Encyclopedia of Integer Sequences” [19]. The first ten members of the
sequence Cn (0 � n � 9) are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862.

The tree of the equation s = t is a binary tree with the root ’=’, its left subtree
being the tree of s and its right subtree being the tree of t. Therefore there are
Tn = C2n−1 different trees of quadratic equations with n variables. The first five
members of the sequence Tn (n � 1) are 1, 5, 42, 429, 4862. This is the Sloane
sequence A024492.

ii) The order of variables in s = t is determined by the word of length 2n in
which every one of the letters x1, . . . , xn appears exactly twice. Let us denote by
Wn the number of such words. It is easy to see that the sequence Wn satisfies the
recurrence relation:

W1 = 1, Wn = n(2n− 1)Wn−1

Wn is the Sloane sequence A000680, and the general formula is Wn = (2n)!/2n.
The first five members of Wn are 1, 6, 90, 2520, 113400.

iii) As noted before, the number of all quadratic equations with n variables
is En = TnWn = C2n−1Wn = (4n − 2)!/2n(2n − 1)!. The recurrence relation is
En+1 = 2(16n2 − 1)En and the first five members of this sequence are 1, 30, 3780,
1081080, 551350800. This sequence of numbers is not listed among the Sloane
sequences. �

There is a vast number of repetitions among above equations – the difference
being just the order of variables which is not essential since any permutation of
variables gives basically the same equation. Likewise, the equations s = t and t = s
are essentially the same so we can choose just one. Note that we cannot delete
equations of the type t = t although they are obviously equivalent to x = x. This
is because our equations just represent generalized equations. For example, the
equation xy = xy stands for the equation A(x, y) = B(x, y) which is not equivalent
to x = x. Instead, it states certain relationship between operations A and B.
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Definition 7.1. A generalized quadratic quasigroup functional equation s = t
is called normal if:

• For 1 � i < j � n, the first occurrence of xi in s = t appears before the
first occurrence of xj .
• If the terms s, t are not identical, then t � s.

Theorem 7.2. The total number of normal generalized quadratic quasigroup
functional equations with n variables is

en = (2n)!
2n+1n!

(C2n−1 + Cn−1)

Proof. The calculations are similar to those in the previous theorem.
i) The sequence tn (n � 1) of numbers of trees we get if we exclude all trees

of equations s = t, where s � t and the formula is: tn = (C2n−1 + Cn−1)/2. We
get it from the following formula for Catalan numbers: Cn =

∑n
i=1 CiCn−i and the

observation that for tn we use only cases with i � n− i.
The first five members of tn are 1, 3, 22, 217, 2438. The sequence is not listed

among the Sloane sequences.
ii) We get the number wn of words of length 2n by taking only words in which

variables occur in fixed order: x1, . . . , xn (ignoring the repetitions). Therefore
wn =Wn/n! = (2n)!/2nn!. This sequence is the Sloane sequence A001147 and the
first five members are 1, 3, 15, 105, 945.

iii) The number en (n � 1) of normal equations is

en = tnwn = (2n)!
2n+1n!

(C2n−1 + Cn−1)

The first five members of the sequence en are 1, 9, 330, 22785, 2303910. This
sequence is not present in the Sloane list of sequences. �

We also define the sequence πn (n � 1), where πn is the number of classes
of parastrophically nonequivalent generalized quadratic quasigroup equations with
n variables. According to Theorem 5.1 πn is also the number of nonisomorphic
connected cubic graphs with 2(n−1) vertices and 3(n−1) edges. By the definition
(see section 8), π1 = 1. We prove that π2 = 2. We know that π3 = 5 and π4 = 17,
but the proof will be published elsewhere. We do not know a general formula for
πn. Therefore:

Problem 7.1. Find a general formula for the sequence πn (n � 1).

8. Equations with one and two variables

As an example of an application of general results, we give solutions of all
normal generalized quadratic quasigroup equations with (one and) two variables.
As for equations with more variables, we can solve any such particular equation
(using methods provided by Krstić), but the complexities of connected cubic graphs
prevent us from producing a formula in closed form giving rise to general solutions
of all such equations. This problem requires further investigation.
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∗ ∗ ∗
The special case of equations with one variable is easy, since there is only one

such equation: x = x. However, there are no operation symbols in x = x so it does
not fit our definition of functional equation. Despite this we define π1 to be 1.

The case of equations with two variables is much more interesting. There are
30 generalized quadratic quasigroup functional equations with two variables, nine
of them normal. They are:

A(x, x) = B(y, y)(8.1)
A(x, y) = B(x, y)(8.2)
A(x, y) = B(y, x)(8.3)
A(x,B(x, y)) = y(8.4)
A(x,B(y, x)) = y(8.5)
A(x,B(y, y)) = x(8.6)
A(B(x, x), y) = y(8.7)
A(B(x, y), x) = y(8.8)
A(B(x, y), y) = x.(8.9)

The following lemmas are useful in solving these equations.

Lemma 8.1. Let S be a nonempty set, e ∈ S and σ a permutation of S. A
general solution to the equation

(8.10) σA(x, x) = e

in the quasigroup A on S is given by:

A(x, y) = σ−1αL(23)(σx, σy)

where:
• L is an arbitrary loop on S with the identity e
• α is an arbitrary permutation of S such that αe = e.

Proof. We prove first that the above formulas always give a solution to the
equation (8.10).

Since L is a loop, we have L(x, e) = x, so L(23)(x, x) = e. It follows that
σA(x, x) = σσ−1αL(23)(σx, σx) = αe = e.

Next, we prove that every solution to equation (8.10) is of the form given in
the statement of the lemma.

Let A be a particular quasigroup on S which satisfies (8.10). Pick any p ∈ S
and define: a = A(p, p), αx = σA(a, σ−1x) and L(x, y) = σA(23)(σ−1x, σ−1αy). It
follows that σa = σA(p, p) = e, function α is permutation and

αe = σA(a, σ−1e) = σA(a, a) = e.
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The operation L is a quasigroup since it is an isostrophe of the quasigroup A.
Moreover, L is a loop with identity e. To see this, first observe that

L(e, x) = σA(23)(σ−1e, σ−1αx) = σA(23)(a, σ−1σA(a, σ−1x))

= σA(23)(a,A(a, σ−1x)) = σσ−1x = x.

On the other hand, A(σ−1x, σ−1x) = σ−1e = a implies A(23)(σ−1x, a) = σ−1x and
thus

L(x, e) = σA(23)(σ−1x, σ−1αe) = σA(23)(σ−1x, σ−1e)

= σA(23)(σ−1x, a) = σσ−1x = x.

From the definition of L it follows that A(x, y) = σ−1αL(23)(σx, σy). This
completes the proof. �

The proofs of the next two lemmas are similar, so we skip them.

Lemma 8.2. Let S be a nonempty set, q ∈ S and σ a permutation of S. A
general solution to the equation

σA(x, q) = x

in the quasigroup A on S is given by:

A(x, y) = σ−1L(x, αy)

where:
• L is an arbitrary loop on S with identity e
• α is an arbitrary permutation of S such that αq = e.

Lemma 8.3. Let S be a nonempty set, p ∈ S and σ a permutation of S. A
general solution to the equation

σA(p, x) = x

in the quasigroup A on S is given by:

A(x, y) = σ−1L(αx, y)

where:
• L is an arbitrary loop on S with identity e
• α is an arbitrary permutation of S such that αp = e.

The graph K(Eq) of an equation Eq with 2 variables has 2 vertices and 3 edges.
There are only two such non-isomorphic graphs shown in Figure 4: the dumbbell
graph and the dipole D3 graph. Therefore, π2 = 2.

The dumbbell graph corresponds to equations (8.1), (8.6) and (8.7). The ∼-
classes are singletons. General solutions to these equations are given in the next
three theorems.
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� �

the dumbbell graph

� �

the dipole D3 graph

Figure 4. Two non-isomorphic graphs with 2 vertices and 3 edges.

Theorem 8.1. A general solution to the equation (8.1) on a set S is given by:

A(x, y) = αL(23)
1 (x, y)

B(x, y) = βL(23)
2 (x, y)

where:
• L1 and L2 are arbitrary loops on S with a common identity e.
• α and β are arbitrary permutations on S such that αe = e, βe = e.

Proof. The equation (8.1) is equivalent to the system

A(x, x) = e, B(y, y) = e

for some e ∈ S. Both equations are special cases of (8.10) for σ = Id, where
Id(x) = x is the identity function on S. By Lemma 8.1, the general solution to
A(x, x) = e is given by A(x, y) = αL(23)

1 (x, y), where L1 is an arbitrary loop on
S with identity e and α is a permutation of S such that αe = e. Analogously,
B(x, y) = βL(23)

2 (x, y), where L2 is an arbitrary loop on S with identity e and β is
a permutation of S such that βe = e.

Combined together, the last two statements complete the proof. �

Proofs of general solutions to equations (8.6) and (8.7) are similar.

Theorem 8.2. A general solution to the equation (8.6) on a set S is given by:

A(x, y) = L1(x, αy),

B(x, y) = α−1βL
(23)
2 (αx, αy),

where:
• L1 and L2 are arbitrary loops on S with a common identity e.
• α and β are arbitrary permutations on S such that βe = e.

Theorem 8.3. A general solution to the equation (8.7) on a set S is given by:

A(x, y) = L1(αx, y)

B(x, y) = α−1βL
(23)
2 (αx, αy)

where:
• L1 and L2 are arbitrary loops on S with a common identity e
• α and β are arbitrary permutations on S such that βe = e.
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As the representative equation for this class of parastrophically equivalent equa-
tions we take the equation (8.1).

The dipole D3 graph corresponds to the rest of the equations: (8.2)–(8.5), (8.8)
and (8.9). The relation ∼ is the full relation, so A ∼ B. General solutions to these
equations are given in the next theorems.

Theorem 8.4. A general solution to the equation (8.2) on a set S is given by:

A(x, y) = L(A1x,A2y)
B(x, y) = L(B1x,B2y)

where:
• L is an arbitrary loop on S
• A1, A2, B1, B2 are arbitrary permutations on S such that A1 = B1, A2 = B2.

The proof of this theorem is only slightly more complicated then the proof of
Theorem 8.1. However, in this and the remaining cases there is a much simpler
form of a general solution – note that equations are just requirements for B to be
a certain parastrophe of A. Therefore, the following theorem is true.

Theorem 8.5. A general solution to the equation { (8.2), (8.3), (8.4), (8.5),
(8.8), (8.9)} on a set S is given by:

• A = Q
• B = Qσ {σ = (1), σ = (12), σ = (23), σ = (132), σ = (123), σ = (13)}.

where Q is an arbitrary quasigroup on S.

We take equation (8.2) as the representative one for this class of parastrophi-
cally equivalent equations.

The results concerning equations with two variables are summarized in Table
1.

PE–class Graph
Number of
∼–classes

Number of
equations

Representative
equation

1 dumbbell 2 3 (8.1)
2 D3 1 6 (8.2)

Table 1. Summary results on equations with two variables

Neither Krapež [11] nor Krstić [14] considered equations (8.1)–(8.9). If they
had done, their solutions would have been similar to those given in Theorem 8.4.
There are two novelties in our approach:

• The use of unipotent quasigroups instead of loops in solutions of (8.1),
(8.6) and (8.7)
• The use of parastrophes of the quasigroup Q in remaining equations

with a result of increased simplicity.
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