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Abstract. We offer extended completeness theorem for probabilistic logic
that combines higher-order probabilities (nesting of probability operators) and
the qualitative probability operator.

1. Introduction

Qualitative reasoning uses binary relations on events (formulas) instead of exact
numerical representations of realizations of events (probabilities, degrees of belief
etc). For example, an agent (or expert in some field) will often state something
like “𝐴 is at least as probable as 𝐵", or “𝐴 is more probable than 𝐵" without any
explicit reference to the values of probabilities corresponding to 𝐴 and 𝐵.

There are many relevant papers regarding the subject of qualitative reasoning.
For the possibility theory (qualitative possibility and necessity relations), we refer
the reader to [1, 2, 3, 5, 8]; for qualitative probability and probabilistic logic in
general, we refer the reader to [4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20,
21, 22, 23, 24].

Here we present a probabilistic logic that combines higher order probabilities
(nesting of probability operators) and the qualitative probability operator. The
main result is the proof of the extended completeness theorem (every consistent
set of formulas is satisfiable) for the introduced logic. Our methodology is based
on the results presented in [12, 15, 16]. Syntactically, instead of countably many
probability operators of the form 𝑃>𝑟𝐴 (it reads “the probability of 𝐴 is at least 𝑟"),
we use rational numbers from the real unit interval as truth constants (similarly as
in [18]) and the qualitative probability operator ⪰. For instance, the above 𝑃>𝑟𝐴
we formally express by 𝐴 ⪰ 𝑟, where 𝑟 is the name for 𝑟 ∈ [0, 1] ∩ Q. Due to the
modal nature of ⪰, the standard probabilistic Kripke structures were used for the
definition of satisfiability.
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The rest of the paper is organized as follows: syntax and semantics are dis-
cussed in Section 2; axioms and inference rules are given in Section 3; extended
completeness theorem is proved in Section 4; decidability of the introduced logic is
proved in Section 5; concluding remarks are in the last section.

2. Syntax and semantics

Let 𝐼 denotes the set of all rational numbers from the unit interval. We use
𝐿⪰ to denote our logic. The language of the logic consists of:

∙ a denumerable set Var = {𝑝, 𝑞, 𝑟 . . .}
∙ classical connectives ¬ and ∧
∙ a binary operator ⪰

The set For𝐿⪰ of formulas is defined as follows:

Definition 2.1. (For𝐿⪰)
∙ If 𝑝 ∈ Var, then 𝑝 is formula.
∙ If 𝛼, 𝛽 are formulas and 𝑟 ∈ 𝐼, then (¬𝛼), (𝛼 ∧ 𝛽), (𝛼 ⪰ 𝑟) and (𝛼 ⪰ 𝛽)

are formulas.

The other classical connectives (∨,→,↔) can be defined as usual. We use
notation 𝑟 ⪯ 𝛼 for 𝛼 ⪰ 𝑟. We also denote (¬𝛼) ⪰ 1− 𝑟 by 𝛼 ⪯ 𝑟, 𝛼 ⪯ 𝑟 ∧¬(𝑟 ⪯ 𝛼)
by 𝛼 ≺ 𝑟 and ¬(𝛼 ⪯ 𝑟) by 𝛼 ≻ 𝑟. Therefore, 𝑟 ⪰ 𝛼 means 𝛼 ⪯ 𝑟. Similarly if 𝛼 and
𝛽 are formulas, then we use notation 𝛼 ⪯ 𝛽 for 𝛽 ⪰ 𝛼, 𝛼 ≻ 𝛽 denotes ¬(𝛼 ⪯ 𝛽)
and 𝛼 ≺ 𝛽 means 𝛽 ≻ 𝛼. We also denote 𝛼 ⪰ 𝛽 ∧ 𝛽 ⪰ 𝛼 by 𝛼 ≍ 𝛽. Finally, we use
⊥ do denote 𝛼 ∧ ¬𝛼.

Definition 2.2. An 𝐿⪰ model is a structure 𝑀 = ⟨𝑊,Prob, 𝑣⟩ where:
∙ 𝑊 is a nonempty set of elements called worlds.
∙ Prob is probability assignment which assigns to every 𝑤 ∈𝑊 a probability

space Prob(𝑤) = ⟨𝑊 (𝑤), 𝐻(𝑤), 𝜇(𝑤)⟩, where:
− 𝑊 (𝑤) is a nonempty subset of 𝑊
− 𝐻(𝑤) is an algebra of subsets of 𝑊 (𝑤) and
− 𝜇(𝑤) : 𝐻(𝑤)→ [0, 1] is a finitely additive probability measure, and

∙ 𝑣 : 𝑊 × Var → {⊤,⊥} is a valuation which associates with every world
𝑤 ∈𝑊 a truth assignment 𝑣(𝑤) on the propositional letters.

Definition 2.3. Let 𝑀 = ⟨𝑊,Prob, 𝑣⟩ be an 𝐿⪰ model and 𝑤 ∈ 𝑊 . The
satisfiability relation is inductively defined as follows:

∙ If 𝑝 ∈ Var, then (𝑤,𝑀) � 𝑝 iff 𝑣(𝑤)(𝑝) = ⊤.
∙ If 𝛼 ∈ For𝐿⪰ , then (𝑤,𝑀) � ¬𝛼 iff it is not (𝑤,𝑀) � 𝛼.
∙ If 𝛼, 𝛽 ∈ For𝐿⪰ , then (𝑤,𝑀) � 𝛼 ∧ 𝛽 iff (𝑤,𝑀) � 𝛼 and (𝑤,𝑀) � 𝛽.
∙ If 𝛼 ∈ For𝐿⪰ and 𝑟 ∈ 𝐼, then (𝑤,𝑀) � 𝛼 ⪰ 𝑟 iff

𝜇(𝑤)({𝑤′ ∈𝑊 (𝑤) | 𝑤′ � 𝛼}) > 𝑟.
∙ If 𝛼, 𝛽 ∈ For𝐿⪰ , then (𝑤,𝑀) � 𝛼 ⪰ 𝛽 iff

𝜇(𝑤)({𝑤′ ∈𝑊 (𝑤) | 𝑤′ � 𝛼}) > 𝜇(𝑤)({𝑤′ ∈𝑊 (𝑤) | 𝑤′ � 𝛽})
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In the sequel, we will omit 𝑀 from (𝑤,𝑀) � 𝛼 and write 𝑤 � 𝛼 if 𝑀 is clear
from the context. In an 𝐿⪰ model 𝑀 = ⟨𝑊,Prob, 𝑣⟩ the set {𝑤′ ∈𝑊 (𝑤) | 𝑤′ � 𝛼}
is denoted by [𝛼]𝑀,𝑤 or just by [𝛼]𝑤.

A set of formulas 𝑇 is 𝐿⪰ satisfiable if there is a world 𝑤 in an 𝐿⪰ model 𝑀
such that for every formula 𝛼 ∈ 𝑇 , 𝑤 � 𝛼. A formula 𝛼 is 𝐿⪰ satisfiable if the set
{𝛼} is 𝐿⪰ satisfiable. A formula 𝛼 is 𝐿⪰ valid in an 𝐿⪰ model 𝑀 = ⟨𝑊,Prob, 𝑣⟩
(denoted by �𝑀 𝛼) if it is satisfiable in each world of 𝑀 . A formula 𝛼 is 𝐿⪰ valid
(denoted by � 𝛼) if it is satisfiable in each world in each model.

3. Axiomatization

The axiom system 𝐴𝑋𝐿⪰ involves eleven axiom schemas:
A1: Substitutional instances of tautologies.
A2: 𝛼 ⪰ 0
A3: 𝛼 ⪰ 𝑠→ 𝛼 ⪰ 𝑟, 𝑠 > 𝑟
A4: 𝛼 ⪰ 𝛽 ∨ 𝛽 ⪰ 𝛼
A5: 𝛼 ⪰ 𝛽 ∧ 𝛽 ⪰ 𝛾 → 𝛼 ⪰ 𝛾
A6: 𝛼 ⪰ 𝛽 ∧ 𝛽 ≻ 𝛾 → 𝛼 ≻ 𝛾
A7: (𝛼 ⪰ 𝑟 ∧ 𝛽 ⪰ 𝑠 ∧ (𝛼 ∧ 𝛽 ≍ 0))→ (𝛼 ∨ 𝛽 ⪰ 𝑟 + 𝑠)
A8: 𝛼 ⪯ 𝑟 ∧ 𝛽 ⪯ 𝑠→ 𝛼 ∨ 𝛽 ⪯ 𝑟 + 𝑠
A9: 𝛼 ⪯ 𝑟 ∧ 𝛽 ≺ 𝑠→ 𝛼 ∨ 𝛽 ≺ 𝑟 + 𝑠, 𝑟 + 𝑠 6 1

A10: 𝛼 ≺ 𝑟 → 𝛼 ⪯ 𝑟
A11: 𝛼 ⪰ 𝑠→ 𝛼 ≻ 𝑟, 𝑠 > 𝑟

and inference rules:
(1) From 𝛼 and 𝛼→ 𝛽 infer 𝛽
(2) From 𝛼 infer 𝛼 ≍ 1
(3) From 𝛼→ (𝛽 ⪰ 𝑟 − 1/𝑛), for every 𝑛 ∈ N, 𝑛 > 1

𝑟 , infer 𝛼→ (𝛽 ⪰ 𝑟)
(4) From 𝛾 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟), for every 𝑟 ∈ 𝐼, infer 𝛾 → (𝛼 ⪰ 𝛽)

We denote this axiomatic system by 𝐴𝑥𝐿⪰ . A formula 𝛼 is a theorem (⊢ 𝛼) if
there is an at most denumerable sequence (called proof) of formulas 𝛼0, 𝛼1, . . . , 𝛼
such that every 𝛼𝑖 is an axiom or it is derived from the preceding formulas by
an inference rule. A formula 𝛼 is deducible from the set 𝑇 of formulas (denoted
𝑇 ⊢𝐴𝑥𝐿⪰ 𝛼) if there is an at most denumerable sequence (called proof) of formulas
𝛼0, 𝛼1, . . . , 𝛼 such that every 𝛼𝑖 is an axiom or a formula from the set 𝑇 , or it is
derived from the preceding formulas by an inference rule, with the exception that
Rule 2 can be applied only to theorems. 𝑇 0𝐴𝑥𝐿⪰ 𝛼 means that 𝑇 ⊢𝐴𝑥𝐿⪰ 𝛼 does
not hold. A set of formulas 𝑇 is consistent if there is at least one formula 𝛼 such
that 𝑇 0𝐴𝑥𝐿⪰ 𝛼. A consistent set 𝑇 of formulas is said to be maximal consistent
if for every formula 𝛼 either 𝛼 ∈ 𝑇 or ¬𝛼 ∈ 𝑇 . A set 𝑇 is deductively closed if for
every formula 𝛼 if 𝑇 ⊢ 𝛼, then 𝛼 ∈ 𝑇 .

4. Soundness and completeness

Theorem 4.1 (Deduction theorem). If 𝑇 is a set of formulas and 𝑇 ∪{𝛼} ⊢ 𝛽,
then 𝑇 ⊢ 𝛼→ 𝛽
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Proof. We use transfinite induction of the length of the inference. There are
the following cases:

Case 1: 𝛽 is obtained from 𝛾 and 𝛾 → 𝛽 by an application of Rule 1. Then, by
induction hypothesis 𝑇 ⊢ 𝛼 → 𝛾 and 𝑇 ⊢ 𝛼 → (𝛾 → 𝛽). Since (𝛼 → (𝛾 → 𝛽)) →
((𝛼→ 𝛾)→ (𝛼→ 𝛽)) is tautology, using Rule 1 two times we obtain 𝑇 ⊢ 𝛼→ 𝛽.

Case 2: Let 𝛽 be formula (𝛾 ≍ 1) obtained from 𝛾. In that case 𝛾 must be a
theorem and therefore 𝛽 is theorem. Then, from ⊢ 𝛽 → (𝛼→ 𝛽), using Rule 1 we
obtain 𝑇 ⊢ 𝛼→ 𝛽.

Case 3: Suppose that 𝛽 = 𝛾 → (𝛿 ⪰ 𝑟) is obtained from 𝑇, 𝛼 by an application
of Rule 3. Then:
𝑇, 𝛼 ⊢ 𝛾 → (𝛿 ⪰ 𝑟 − 1/𝑛) for every 𝑛 > 1

𝑟

𝑇 ⊢ 𝛼→ (𝛾 → (𝛿 ⪰ 𝑟 − 1/𝑛)) for every 𝑛 > 1
𝑟 , by the induction hypothesis

𝑇 ⊢ (𝛼 ∧ 𝛾)→ (𝛿 ⪰ 𝑟 − 1/𝑛) for every 𝑛 > 1
𝑟

by classical tautology (𝛼→ (𝛽 → 𝛾))↔ ((𝛼 ∧ 𝛽)→ 𝛾)
𝑇 ⊢ (𝛼 ∧ 𝛾)→ (𝛿 ⪰ 𝑟), by Rule 3.
𝑇 ⊢ 𝛼→ (𝛾 → 𝛿 ⪰ 𝑟)
𝑇 ⊢ 𝛼→ 𝛽.
Case 4: Suppose that 𝛽 = 𝛾 → (𝛿 ⪰ 𝜖) is obtained from 𝑇, 𝛼 by an application

of Rule 4. Then:
𝑇, 𝛼 ⊢ 𝛾 → (𝛿 ⪰ 𝑟 → 𝜖 ⪰ 𝑟) for every 𝑟 ∈ 𝐼
𝑇, 𝛼 ⊢ (𝛾 ∧ (𝛿 ⪰ 𝑟))→ 𝜖 ⪰ 𝑟 for every 𝑟 ∈ 𝐼
𝑇 ⊢ 𝛼→ ((𝛾 ∧ (𝛿 ⪰ 𝑟))→ 𝜖 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, by the case 3
𝑇 ⊢ 𝛼→ (𝛾 → (𝛿 ⪰ 𝑟 → 𝜖 ⪰ 𝑟)) for every 𝑟 ∈ 𝐼
𝑇 ⊢ (𝛼 ∧ 𝛾)→ (𝛿 ⪰ 𝑟 → 𝜖 ⪰ 𝑟) for every 𝑟 ∈ 𝐼
𝑇 ⊢ (𝛼 ∧ 𝛾)→ (𝛿 ⪰ 𝜖) by the Rule 4.
𝑇 ⊢ 𝛼→ (𝛾 → (𝛿 ⪰ 𝜖))
𝑇 ⊢ 𝛼→ 𝛽 �

Theorem 4.2. Every consistent set can be extended to a maximal consistent
set.

Proof. Let 𝑇 be a consistent theory (set of formulas) and let 𝜃0, 𝜃1, . . . be an
enumeration of all formulas. We define a sequence of theories 𝑇𝑖 in the following
way:

(1) 𝑇0 = 𝑇
(2) For every 𝑛 > 0,
(a) If 𝑇𝑛 ∪ 𝜃𝑛 is consistent, then 𝑇𝑛+1 = 𝑇𝑛 ∪ 𝜃𝑛.
(b) Otherwise, if 𝜃𝑛 is formula 𝜃 → 𝐴 ⪰ 𝑟, then 𝑇𝑛+1 = 𝑇𝑛 ∪ {¬𝜃𝑛, 𝜃 →
𝐴 ≺ 𝑟 − 1/𝑛}, for some integer 𝑛, 𝑛 > 1

𝑟 so that 𝑇𝑛+1 is consistent.
(c) Otherwise, if 𝜃𝑛 is formula 𝛾 → (𝜖 ⪰ 𝛿), then 𝑇𝑛+1 = 𝑇𝑛 ∪ {¬𝜃𝑛, 𝛾 →

(𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟)}, for some 𝑟 ∈ 𝐼 so that 𝑇𝑛+1 is consistent.
(d) Otherwise, 𝑇𝑛+1 = 𝑇𝑛 ∪ {¬𝜃𝑛}.

The sets obtained by the steps 1 and 2a are obviously consistent. The step 2d
produces consistent sets, too. For, if 𝑇𝑛, 𝜃𝑛 ⊢⊥, by Deduction Theorem we have
𝑇𝑛 ⊢ ¬𝜃𝑛, and since 𝑇𝑛 is consistent so is 𝑇𝑛 ∪ {¬𝜃𝑛}.
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Let us first consider step 2b. Suppose that for every integer 𝑛, 𝑛 > 1
𝑟 , 𝑇𝑛+1 =

𝑇𝑛 ∪ {¬(𝜃 → 𝛼 ⪰ 𝑟), 𝜃 → 𝛼 ≺ 𝑟 − 1/𝑛} is inconsistent. Then:
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟), 𝜃 → 𝛼 ≺ 𝑟 − 1/𝑛 ⊢⊥ for every integer 𝑛, 𝑛 > 1

𝑟 .
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ (𝜃 → 𝛼 ≺ 𝑟 − 1/𝑛)→⊥ for every integer 𝑛, 𝑛 > 1

𝑟 ,
by Deduction theorem.
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ ¬(𝜃 → 𝛼 ≺ 𝑟 − 1/𝑛) for every integer 𝑛, 𝑛 > 1

𝑟 .
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ 𝜃 ∧ ¬(𝛼 ≺ 𝑟 − 1/𝑛) for every integer 𝑛, 𝑛 > 1

𝑟 ,
by classical reasoning.
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ 𝜃 ∧ (𝛼 ⪰ 𝑟 − 1/𝑛) for every integer 𝑛, 𝑛 > 1

𝑟 .
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ 𝜃 → (𝛼 ⪰ 𝑟 − 1/𝑛) for every integer 𝑛, 𝑛 > 1

𝑟 ,
by classical tautology 𝛼 ∧ 𝛽 → (𝛼→ 𝛽)
𝑇𝑛,¬(𝜃 → 𝛼 ⪰ 𝑟) ⊢ 𝜃 → (𝛼 ⪰ 𝑟) by Rule 3
𝑇𝑛 ⊢ ¬(𝜃 → 𝛼 ⪰ 𝑟)→ (𝜃 → (𝛼 ⪰ 𝑟)), by Deduction theorem.
𝑇𝑛 ⊢ (𝜃 → 𝛼 ⪰ 𝑟), by classical reasoning, which contradicts consistency of 𝑇𝑛

since 𝑇𝑛 ∪ {𝜃 → (𝛼 ⪰ 𝑟)} is not consistent.
Next, consider step 2c. Suppose that for every 𝑟 ∈ 𝐼 set

𝑇𝑛+1 = 𝑇𝑛 ∪ {¬(𝛾 → (𝜖 ⪰ 𝛿)), 𝛾 → (𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟)}

is inconsistent. Then:
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)), {𝛾 → (𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟)} ⊢⊥, for every 𝑟 ∈ 𝐼, 𝑟 > 0.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ (𝛾 → (𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟))→⊥, for every 𝑟 ∈ 𝐼, 𝑟 > 0,
by Deduction theorem.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ ¬(𝛾 → (𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟)), for every 𝑟 ∈ 𝐼, 𝑟 > 0.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ (𝛾 ∧ ¬(𝛿 ⪰ 𝑟 ∧ 𝜖 ≺ 𝑟)) for every 𝑟 ∈ 𝐼, 𝑟 > 0.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ (𝛾 ∧ (¬(𝛿 ⪰ 𝑟) ∨ ¬(𝜖 ≺ 𝑟))) for every 𝑟 ∈ 𝐼, 𝑟 > 0.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ 𝛾 ∧ (𝛿 ⪰ 𝑟 → 𝜖 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, 𝑟 > 0,
by classical reasoning.
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ 𝛾 → (𝛿 ⪰ 𝑟 → 𝜖 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, 𝑟 > 0,
by classical tautology (𝛼 ∧ 𝛽)→ (𝛼→ 𝛽)
𝑇𝑛,¬(𝛾 → (𝜖 ⪰ 𝛿)) ⊢ 𝛾 → (𝜖 ⪰ 𝛿), by Rule 4
𝑇𝑛 ⊢ ¬(𝛾 → (𝜖 ⪰ 𝛿))→ (𝛾 → (𝜖 ⪰ 𝛿)), by Deduction theorem.
𝑇𝑛 ⊢ 𝛾 → (𝜖 ⪰ 𝛿), by classical reasoning, which contradicts consistency of 𝑇𝑛

since 𝑇𝑛 ∪ {𝛾 → (𝜖 ⪰ 𝛿)} is not consistent.
Let 𝑇 * =

⋃︀
𝑛<𝜔 𝑇𝑛. We have to prove that 𝑇 * is maximal consistent.

The steps 2a–2d guarantee that for every formula 𝜃, 𝜃 or ¬𝜃 belongs to 𝑇 *, i.e.,
that 𝑇 * is maximal. On the other hand, there is no formula 𝜃, such that 𝜃 and ¬𝜃
belongs to 𝑇 *. To prove that, suppose that 𝜃 = 𝜃𝑛 and ¬𝜃 = 𝜃𝑚 for some 𝑛 and 𝑚.
If 𝜃, ¬𝜃 ∈ 𝑇 *„ then also 𝜃,¬𝜃 ∈ 𝑇max(𝑛,𝑚)+1, a contradiction with the consistency
if 𝑇max(𝑛,𝑚)+1.

We continue by showing that 𝑇 * is deductively closed, and since it does not
contain all formulas, it follows that 𝑇 * is consistent.

Next, we can show that if for some 𝑛, 𝑇𝑛 ⊢ 𝜃, it must be 𝜃 ∈ 𝑇 *. Suppose that
it is not the case. Then, ¬𝜃 ∈ 𝑇 * so there must be some 𝑘 such that 𝑇𝑘 ⊢ 𝜃 and
𝑇𝑘 ⊢ ¬𝜃 which contradicts the consistency of 𝑇𝑘.



102 ILIĆ-STEPIĆ

Let the sequence 𝜃1, 𝜃2 . . . 𝜃 form a proof of 𝜃 in 𝑇 *. If the sequence is finite,
there must be a set 𝑇𝑛 such that 𝑇𝑛 ⊢ 𝜃 and 𝜃 ∈ 𝑇 *. Thus suppose that the
sequence is countably infinite. We can show that for every 𝑛, if 𝜃𝑛 is obtained by
an application of an inference rule, and all premises belong to 𝑇 *, then there must
be 𝜃𝑛 ∈ 𝑇 *. If the rule is a finitary one, then there must be a set 𝑇𝑚 which contains
all premises and 𝑇𝑚 ⊢ 𝜃𝑛. Reasoning as above, we conclude that 𝜃𝑛 ∈ 𝑇 *.

So, let us now consider the infinitary rules. Let 𝜃𝑚 = 𝛼→ (𝛽 ⪰ 𝑟) be obtained
from the set of premises {𝜃𝑛𝑚 | 𝑛 > 1/𝑟} by Rule 3, where 𝜃𝑛𝑚 is the formula
𝛼→ (𝛽 ⪰ 𝑟 − 1/𝑛). Suppose that 𝜃𝑚 /∈ 𝑇 *. By the induction hypothesis, 𝜃𝑛𝑚 ∈ 𝑇 *
for every 𝑛. By the step 2b of the construction there must be some 𝑛 and some
𝑙 such that 𝛼 → (𝛽 ≺ 𝑟 − 1/𝑛) belongs to 𝑇𝑙. It follows that there must be some
𝑗 such that 𝛼 → (𝛽 ≺ 𝑟 − 1/𝑛) and 𝛼 → (𝛽 ⪰ 𝑟 − 1/𝑛) belongs to 𝑇𝑗 . Then
𝑇𝑗 ⊢ 𝛼→⊥ and 𝑇𝑗 ⊢ 𝛼→ (𝛽 ⪰ 𝑟). It follows that 𝜃𝑚 ∈ 𝑇 *, a contradiction.

Let 𝜃𝑚 = 𝛾 → (𝛼 ⪰ 𝛽) be obtained from the set of premises {𝜃𝑟𝑚 | 𝑟 ∈ 𝐼} by
Rule 4, where 𝜃𝑟𝑚 is the formula 𝛾 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟). Suppose that 𝜃𝑚 /∈ 𝑇 *. By
the induction hypothesis, 𝜃𝑟𝑚 ∈ 𝑇 * for every 𝑟. By the step 2c of the construction
there must be some 𝑟 and some 𝑙 such that 𝛾 → (𝛽 ⪰ 𝑟 ∧ 𝛼 ≺ 𝑟) belongs to
𝑇𝑙. It follows that there must be some 𝑗 such that 𝛾 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟} and
𝛾 → (𝛽 ⪰ 𝑟 ∧ 𝛼 ≺ 𝑟) belongs to 𝑇𝑗 . Then 𝑇𝑗 ⊢ 𝛾 →⊥ and 𝑇𝑗 ⊢ 𝛾 → (𝛼 ⪰ 𝛽). It
follows that 𝜃𝑚 ∈ 𝑇 *, a contradiction. �

Theorem 4.3. Let 𝛼, 𝛽 ∈ For𝐿⪰ , 𝑟, 𝑠 ∈ 𝐼 and suppose that 𝑇 is a maximal
consistent set of formulas. Then:

(1) 𝑇 ⊢ 𝛼 ⪰ 𝛽 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟); (2) 𝛼 ∧ 𝛽 ∈ 𝑇 iff 𝛼 ∈ 𝑇 and 𝛽 ∈ 𝑇.

Proof. (1) 𝑇 ⊢ 𝛼 ⪰ 𝛽 ∧ 𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟 by 𝐴5
𝑇 ⊢ ¬(𝛼 ⪰ 𝛽 ∧ 𝛽 ⪰ 𝑟) ∨ 𝛼 ⪰ 𝑟
𝑇 ⊢ ¬(𝛼 ⪰ 𝛽) ∨ (¬(𝛽 ⪰ 𝑟) ∨ 𝛼 ⪰ 𝑟)
𝑇 ⊢ 𝛼 ⪰ 𝛽 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟) by classical reasoning.

(2) Suppose that 𝛼 ∈ 𝑇 and 𝛽 ∈ 𝑇 . Then:
𝑇 ⊢ 𝛼
𝑇 ⊢ 𝛽
𝑇 ⊢ 𝛼 ∧ 𝛽 and since 𝑇 is deductively closed 𝛼 ∧ 𝛽 ∈ 𝑇 .

Let 𝛼 ∧ 𝛽 ∈ 𝑇 . Then:
𝑇 ⊢ 𝛼 ∧ 𝛽
𝑇 ⊢ (𝛼 ∧ 𝛽)→ 𝛼
𝑇 ⊢ (𝛼 ∧ 𝛽)→ 𝛽 and using Rule 1
𝑇 ⊢ 𝛼
𝑇 ⊢ 𝛽 and since 𝑇 is deductively closed 𝛼 ∈ 𝑇 and 𝛽 ∈ 𝑇 . �

Let the tuple 𝑀 = ⟨𝑊,Prob, 𝑣⟩ be defined as follows:
∙ 𝑊 is the set of all maximal consistent set of formulas,
∙ If 𝛼 ∈ For𝐿⪰ , then [𝛼] = {𝑤 ∈𝑊 | 𝛼 ∈𝑊}
∙ 𝑣 is a valuation which associated with every world 𝑤 ∈ 𝑊 a truth assignment
𝑣(𝑤) : Var→ {⊤,⊥} such that for every 𝑝 ∈ Var, 𝑣(𝑤)(𝑝) = ⊤ iff 𝑝 ∈ 𝑤.
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∙ For every world 𝑤 ∈𝑊 , Prob(𝑤) is defined as follows:
− 𝑊 (𝑤) =𝑊
− 𝐻(𝑤) is a class of all sets of the form [𝛼] = {𝑤 ∈𝑊 | 𝛼 ∈ 𝑤} for all 𝛼 ∈ For𝐿⪰
− 𝜇(𝑤)([𝛼]) = sup{𝑟 | 𝛼 ⪰ 𝑟 ∈ 𝑤}

Theorem 4.4. Let 𝑀 = ⟨𝑊,Prob, 𝑣⟩ be defined as above. Then the following
hold for every 𝑤 ∈𝑊 .

(1) if ⊢ 𝛼 ≍ 𝛽, then 𝜇(𝑤)([𝛼]) = 𝜇(𝑤)([𝛽]).
(2) 𝜇(𝑤)([𝛼]) > 0, 𝛼 ∈ For𝐿⪰
(3) 𝜇(𝑤)([¬𝛼]) = 1− 𝜇(𝑤)([𝛼])
(4) if ⊢ 𝛼 ∧ 𝛽 ≍ 0, then 𝜇(𝑤)([𝛼 ∨ 𝛽]) = 𝜇(𝑤)([𝛼]) + 𝜇(𝑤)([𝛽]).
(5) If ⊢ 𝛼→ 𝛽, then 𝜇(𝑤)([𝛼]) 6 𝜇(𝑤)([𝛽]).
(6) ⊢ 𝛼 ⪰ 𝛽 iff 𝜇(𝑤)([𝛼]) > 𝜇(𝑤)([𝛽]).
(7) If ⊢ (𝛼↔ 𝛽) ≍ 1, then 𝜇(𝑤)([𝛼]) = 𝜇(𝑤)([𝛽]).
(8) If [𝛼] = [𝛽], then ⊢ 𝛼↔ 𝛽.
(9) If [𝛼] = [𝛽], then 𝜇(𝑤)([𝛼]) = 𝜇(𝑤)([𝛽]).

Proof. (1) ⊢ 𝛼 ≍ 𝛽 i.e.,
⊢ 𝛼 ⪰ 𝛽 ∧ 𝛽 ⪰ 𝛼
⊢ 𝛼 ⪰ 𝛽 by classical reasoning.
⊢ 𝛼 ⪰ 𝛽 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, by Theorem 4.3, so
⊢ 𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟, for every 𝑟 ∈ 𝐼.

Therefore if 𝛽 ⪰ 𝑟 ∈ 𝑤, then 𝛼 ⪰ 𝑟 ∈ 𝑤. In the same way we can conclude the
opposite, i.e., if 𝛼 ⪰ 𝑟 ∈ 𝑤, then 𝛽 ⪰ 𝑟 ∈ 𝑤. Thus {𝑟 |𝛼 ⪰ 𝑟 ∈ 𝑤} = {𝑟 | 𝛽 ⪰ 𝑟 ∈ 𝑤}
and consequently sup{𝑟 | 𝛼 ⪰ 𝑟 ∈ 𝑤} = sup{𝑟 | 𝛽 ⪰ 𝑟 ∈ 𝑤}.

(2) Obvious, according to A2.
(3) Let 𝑟 = sup{𝑡 | 𝛼 ⪰ 𝑡 ∈ 𝑤}. If 𝑟 = 1, then 𝛼 ⪰ 1 ∈ 𝑤, i.e., (¬𝛼) ⪯ 0 ∈ 𝑤.

Then, by A2, (¬𝛼) ⪰ 0 ∈ 𝑤. If for some 𝑠 > 0, (¬𝛼) ⪰ 𝑠 ∈ 𝑤, then by A11
(¬𝛼) ≻ 0 ∈ 𝑤, a contradiction. Therefore 𝜇(𝑤)[¬𝛼] = 0.

Suppose that 𝑟 < 1. Then, for every 𝑟′ ∈ (𝑟, 1], ¬(𝛼 ⪰ 𝑟′) ∈ 𝑤, i.e., 𝛼 ≺ 𝑟′ ∈ 𝑇 .
By A10, 𝛼 ⪯ 𝑟′ ∈ 𝑤 so (¬𝛼) ⪰ 1 − 𝑟′ ∈ 𝑤. If there exists 𝑟′′ ∈ [0, 𝑟) such that
(¬𝛼) ⪰ 1 − 𝑟′′ ∈ 𝑤, then ¬(𝛼 ≻ 𝑟′′) ∈ 𝑤 which is a contradiction. Therefore,
sup{𝑡 | (¬𝛼) ⪰ 𝑡 ∈ 𝑤} = 1− sup{𝑡 | 𝛼 ⪰ 𝑡 ∈ 𝑤}.

(4) By A7, 𝜇(𝑤)([𝛼 ∨ 𝛽]) > 𝑟 + 𝑠 for any 𝑟 and 𝑠 such that 𝛼 ⪰ 𝑟 ∈ 𝑤 and
𝛽 ⪰ 𝑠 ∈ 𝑤. Therefore 𝜇(𝑤)([𝛼 ∨ 𝛽]) > sup{𝑟 | 𝛼 ⪰ 𝑟 ∈ 𝑤}+ sup{𝑠 | 𝛽 ⪰ 𝑠 ∈ 𝑤} so
𝜇(𝑤)([𝛼 ∨ 𝛽]) > 𝜇(𝑤)([𝛼]) + 𝜇(𝑤)([𝛽]).

Suppose that 𝜇(𝑤)([𝛼]) = 𝑟0 and 𝜇(𝑤)([𝛽]) = 𝑠0. If 𝑟0 + 𝑠0 = 1, then equality
obviously hold. Let 𝑟0 + 𝑠0 < 1. Suppose that 𝑟0 + 𝑠0 < 𝜇(𝑤)([𝛼 ∨ 𝛽]). Then,
𝑟0 + 𝑠0 < 𝑡0 = sup{𝑡 | 𝛼 ∨ 𝛽 ⪰ 𝑡 ∈ 𝑤}. If 𝑡′ ∈ (𝑟0 + 𝑠0, 𝑡0) is any rational number,
then 𝛼 ∨ 𝛽 ⪰ 𝑡′ ∈ 𝑤. Let 𝑟′ > 𝑟0 and 𝑠′ > 𝑠0 be rational numbers such that
𝑟′ + 𝑠′ = 𝑡′ < 1, 𝛼 ≺ 𝑟′ ∈ 𝑤 and 𝛽 ≺ 𝑠′ ∈ 𝑤. By A10, 𝛼 ⪯ 𝑟′ ∈ 𝑤 and finally, by
A9, 𝛼 ∨ 𝛽 ≺ 𝑟′ + 𝑠′ ∈ 𝑤, i.e., 𝛼 ∨ 𝛽 ≺ 𝑡′ ∈ 𝑤, which is a contradiction.

(5) Let ⊢ 𝛼→ 𝛽. Suppose the contrary, i.e., 𝜇(𝑤)([𝛼]) > 𝜇(𝑤)([𝛽]). Then there
exists 𝑟 ∈ 𝐼 such that 𝛼 ⪰ 𝑟 ∈ 𝑤 and 𝛽 ⪰ 𝑟 /∈ 𝑤. Therefore 𝛽 ≺ 𝑟 ∈ 𝑤. Then:
⊢ 𝛼→ 𝛽 by assumption
⊢ 𝛼→ 𝛽 ≍ 1 by Rule 2.
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⊢ ¬𝛼 ∨ 𝛽 ⪰ 1 by classical tautology ⊢ 𝛼 ∧ 𝛽 → 𝛼.
Therefore
⊢ ¬𝛼 ∨ 𝛽 ⪰ 1 ∧ ¬𝛼 ⪯ 1− 𝑟 ∧ 𝛽 ≺ 𝑟
⊢ ¬𝛼 ⪯ 1− 𝑟 ∧ 𝛽 ≺ 𝑟 → ¬𝛼 ∨ 𝛽 ⪰ 1 by classical tautology 𝛼 ∧ 𝛽 → (𝛼→ 𝛽).
Applying A9 we have:
⊢ ¬𝛼 ⪯ 1− 𝑟 ∧ 𝛽 ≺ 𝑟 → ¬𝛼 ∨ 𝛽 ≺ 1, a contradiction.
(6) (⇐) Let 𝜇(𝑤)(𝛼)>𝜇(𝑤)(𝛽). Then sup{𝑟 |𝛼 ⪰ 𝑟 ∈ 𝑤} > sup{𝑟 |𝛽 ⪰ 𝑟 ∈ 𝑤}.

Suppose that 𝛼 ⪰ 𝛽 /∈ 𝑤. Then there exists 𝑟0 ∈ 𝐼 such that 𝛽 ⪰ 𝑟0 ∧ 𝛼 ≺ 𝑟0 ∈ 𝑤.
Therefore, sup{𝑟 | 𝛼 ⪰ 𝑟 ∈ 𝑤} > sup{𝑟 | 𝛽 ⪰ 𝑟 ∈ 𝑤} > 𝑟0, so there exists 𝑟 > 𝑟0
such that 𝛼 ⪰ 𝑟 ∈ 𝑤. However, by A3 ⊢ 𝛼 ⪰ 𝑟 → 𝛼 ⪰ 𝑟0 and therefore by Rule 1,
⊢ 𝛼 ⪰ 𝑟0, a contradiction.

(⇒). Let ⊢ 𝛼 ⪰ 𝛽. Then:
⊢ 𝛼 ⪰ 𝛽 → (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, by Theorem 4.3.
⊢ (𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟) for every 𝑟 ∈ 𝐼, by Rule 1.
So, for every 𝑟 ∈ 𝐼, if 𝛽 ⪰ 𝑟 ∈ 𝑤, then 𝛼 ⪰ 𝑟 ∈ 𝑤 and consequently sup{𝑟 | 𝛼 ⪰

𝑟 ∈ 𝑤} > sup{𝑟 | 𝐵 ⪰ 𝑟 ∈ 𝑤}, i.e., 𝜇(𝑤)(𝛼) > 𝜇(𝑤)(𝛽).
(7) Suppose the contrary, for example 𝜇(𝑤)([𝛼]) > 𝜇(𝑤)([𝛽]). Then there exists

𝑟 ∈ 𝐼 such that 𝛼 ⪰ 𝑟 ∈ 𝑤 and 𝛽 ⪰ 𝑟 /∈ 𝑤. Therefore 𝛽 ≺ 𝑟 ∈ 𝑤. Then:
⊢ 𝛼↔ 𝛽 ≍ 1, i.e., ⊢ 𝛼↔ 𝛽 ⪰ 1 ∧ 1 ⪰ 𝛼↔ 𝛽
⊢ 𝛼↔ 𝛽 ⪰ 1, by classical tautology 𝛼 ∧ 𝛽 → 𝛼
⊢ (¬𝛼 ∨ 𝛽) ∧ (¬𝛽 ∨ 𝛼) ⪰ 1.
Therefore, by (6), 𝜇(𝑤)[((¬𝛼 ∨ 𝛽) ∧ (¬𝛽 ∨ 𝛼))] > 1.
Since ⊢ (¬𝛼 ∨ 𝛽) ∧ (¬𝛽 ∨ 𝛼) → (¬𝛼 ∨ 𝛽), according to (5), we have that

𝜇(𝑤)[((¬𝛼∨ 𝛽)∧ (¬𝛽 ∨𝛼))] 6 𝜇(𝑤)[(¬𝛼∨ 𝛽)]. Therefore, 𝜇(𝑤)(¬𝛼∨ 𝛽) > 1. Now,
according to (6), ⊢ ¬𝛼 ∨ 𝛽 ⪰ 1. The rest of the proof is the same as in (5).

(8) Suppose that [𝛼] ⊆ [𝛽]. Then {𝑤 | 𝛼 ∈ 𝑤} ⊆ {𝑤 | 𝛽 ∈ 𝑤}, i.e., for every 𝑤,
if 𝛼 ∈ 𝑤, then 𝛽 ∈ 𝑤. Therefore, if 𝑤 is a maximal consistent set, then, if 𝑤 ⊢ 𝛼,
then 𝑤 ⊢ 𝛽, i.e., 𝑤 ⊢ 𝛼→ 𝛽. According to this, there is no maximal consistent set
𝑤 such that ¬(𝛼 → 𝛽) ∈ 𝑤. Therefore, 𝛼 ∧ ¬𝛽 is inconsistent so 𝛼 ∧ ¬𝛽 ⊢ ⊥ i.e.,
⊢ 𝛼 → 𝛽. If [𝛼] = [𝛽], then [𝛼] ⊆ [𝛽] and [𝛽] ⊆ [𝛼] so ⊢ 𝛼 → 𝛽 and 𝛽 → 𝛼 and
therefore ⊢ 𝛼↔ 𝛽.

(9) If [𝛼] = [𝛽], then by 8, ⊢ 𝛼↔ 𝛽, so applying Rule 2 we have ⊢ 𝛼↔ 𝛽 ≍ 1.
Therefore, according to (7) we have 𝜇(𝑤)([𝛼]) = 𝜇(𝑤)([𝛽]). �

Theorem 4.5. A set of formulas is consistent with respect to 𝐿⪰ iff it has an
𝐿⪰ model.

Proof. (⇐) Since 𝐿⪰ is sound, a satisfiable set of formulas is consistent.
(⇒). In order to prove this direction we construct a canonical model 𝑀 =

⟨𝑊,Prob, 𝑣⟩ as above and show, by induction on complexity of formulas, that for
every world 𝑤 and every formula 𝛼, 𝑤 � 𝛼 iff 𝛼 ∈ 𝑤.
∙ 𝑤 � 𝑝 iff 𝑣(𝑤)(𝑝) = ⊤ iff 𝑝 ∈ 𝑤 (by definition of canonical model).
∙ 𝑤 � ¬𝛼 iff it is not 𝑤 � 𝛼 iff 𝛼 /∈ 𝑤 iff ¬𝛼 ∈ 𝑤.
∙ 𝑤 � 𝛼∧ 𝛽 iff 𝑤 � 𝛼 and 𝑤 � 𝛽 iff 𝛼 ∈ 𝑤 and 𝛽 ∈ 𝑤 iff 𝛼∧ 𝛽 ∈ 𝑤 (by Theorem 3).
∙ Let 𝛼 ⪰ 𝑟 ∈ 𝑤. Then sup{𝑠 | 𝛼 ⪰ 𝑠 ∈ 𝑤} > 𝑟, i.e., 𝜇(𝑤)[𝛼] > 𝑟 and therefore
𝑤 � 𝛼 ⪰ 𝑟. Let 𝑤 � 𝛼 ⪰ 𝑟. Then sup{𝑠 | 𝛼 ⪰ 𝑠 ∈ 𝑤} > 𝑟. If sup{𝑠 |𝛼 ⪰ 𝑠 ∈ 𝑤} = 𝑟,
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then according to Rule 3 and the fact that 𝑤 is deductively closed, 𝑤 ⊢ 𝛼 ⪰ 𝑟, i.e.,
𝛼 ⪰ 𝑟 ∈ 𝑤. Otherwise, if sup{𝑠 | 𝛼 ⪰ 𝑠 ∈ 𝑤} = 𝜇(𝑤)([𝛼]) > 𝑟, then according to
the properties of supremum and monotonous of function 𝜇(𝑤), 𝛼 ⪰ 𝑟 ∈ 𝑤.
∙ Suppose that 𝛼 ⪰ 𝛽 ∈ 𝑤. Then 𝑤 ⊢ 𝛼 ⪰ 𝛽 and according to Theorem 4.3 and
Rule 1 for every 𝑟 ∈ 𝐼, 𝑤 ⊢ 𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟. Then, for every 𝑟 ∈ 𝐼, if 𝛽 ⪰ 𝑟 ∈ 𝑤,
then 𝛼 ⪰ 𝑟 ∈ 𝑤. Therefore, sup{𝑠 | 𝛼 ⪰ 𝑠 ∈ 𝑤} > sup{𝑠 | 𝛽 ⪰ 𝑠 ∈ 𝑤}, i.e.,
𝜇(𝑤)([𝛼]) > 𝜇(𝑤)([𝛽]) so 𝑤 � 𝛼 ⪰ 𝛽.

Let 𝑤 � 𝛼 ⪰ 𝛽. Therefore 𝜇(𝑤)([𝛼]) > 𝜇(𝑤)([𝛽]), i.e., sup{𝑠 | 𝛼 ⪰ 𝑠 ∈ 𝑤} >
sup{𝑠 | 𝛽 ⪰ 𝑠 ∈ 𝑤}. Then, according to the properties of supremum, for every
𝑟 ∈ 𝐼, if 𝛽 ⪰ 𝑟 ∈ 𝑤, then 𝛼 ⪰ 𝑟 ∈ 𝑤. Now, for every, 𝑟 ∈ 𝐼, 𝑤 ⊢ 𝛽 ⪰ 𝑟 → 𝛼 ⪰ 𝑟.
Therefore, according to Rule 4, 𝑤 ⊢ 𝛼 ⪰ 𝛽, i.e., 𝛼 ⪰ 𝛽 ∈ 𝑤. �

5. Decidability

In this section we are analyzing decidability of the satisfiability problem for the
class 𝐿⪰.

Theorem 5.1. If a formula 𝛼 is satisfiable, then it is satisfiable in an 𝐿⪰ model
with a finite number of worlds. The number of worlds in that model is at most 2𝑘,
where 𝑘 denotes the number of subformulas of 𝛼.

Proof. Suppose that 𝛼 holds in a world of an 𝐿⪰ model M= ⟨𝑊,Prob, 𝑣⟩. Let
Subf(𝛼) denote the set of all subformulas of 𝛼 and 𝑘 = |Subf(𝛼)|. Let ≈ denote
the equivalence relation over 𝑊 2, such that 𝑤 ≈ 𝑢 iff for every 𝛽 ∈ Subf(𝛼), 𝑤 � 𝛽
iff 𝑢 � 𝛽. The quotient set 𝑊/≈ is finite. From every class 𝐶𝑖 we choose an element
and denote it 𝑤𝑖. We consider the model M* = ⟨𝑊 *,Prob*, 𝑣*⟩, where:
∙ 𝑊 * = {𝑤𝑖}.
∙ Prob* is defined as follows:
− 𝑊 * = {𝑤𝑗 ∈𝑊 * : (∃𝑢 ∈ 𝐶𝑤𝑗 )𝑢 ∈𝑊 (𝑤𝑖)}
− 𝐻*(𝑤𝑖) is the powerset of 𝑊 *(𝑤𝑖),
− 𝜇*(𝑤𝑖)(𝑤𝑗) = 𝜇(𝑤𝑖)(𝐶𝑤𝑗 ), and for any 𝐷 ⊂ 𝐻*(𝑤𝑖), 𝜇*(𝑤𝑖)(𝐷) =∑︀

𝑤𝑗∈𝐷 𝜇
*(𝑤𝑖)(𝑤𝑗),

∙ 𝑣*(𝑤𝑖)(𝑝) = 𝑣(𝑤𝑖)(𝑝), for every 𝑝 ∈ Var.
For every 𝑤𝑖, 𝜇*(𝑤𝑖) is finitely additive probability measure, since
𝜇*(𝑤𝑖)(𝑊 *(𝑤𝑖)) =

∑︀
𝑤𝑗∈𝑊*(𝑤𝑖) 𝜇

*(𝑤𝑖)(𝑤𝑗) =
∑︀
𝐶𝑤𝑗∈𝑊/≈

𝜇*(𝑤𝑖)(𝐶𝑤𝑗 ) = 1.
According to the definition of model 𝑀*, it is obvious that it is an 𝐿⪰ model.
We can now show that for every 𝛽 ∈ Subf(𝛼), 𝛽 is satisfiable in 𝑀 iff it

is satisfiable in 𝑀*. If 𝛽 ∈ Var, (𝑀,𝑤) � 𝛽 iff for 𝑤𝑖 ∈ 𝐶𝑤, (𝑀,𝑤𝑖) � 𝛽 iff
(𝑀*, 𝑤𝑖) � 𝛽. The cases related to ∧ and ¬ can be proved as usual. We will prove
the cases when 𝛽 is a formula of the form 𝛾 ⪰ 𝑟 and 𝛾 ⪰ 𝛿.
∙ (𝑀,𝑤) � 𝛾 ⪰ 𝑟 iff for 𝑤𝑖 ∈ 𝐶𝑤, (𝑀,𝑤𝑖) � 𝛾 ⪰ 𝑟 iff

𝑟 6 𝜇(𝑤𝑖)([𝛾]𝑀,𝑤) =
∑︀

𝐶𝑢:(𝑀,𝑢)�𝛾
𝜇(𝑤𝑖)(𝐶𝑢) =

∑︀
𝐶𝑢:(𝑀*,𝑢)�𝛾

𝜇*(𝑤𝑖)(𝐶𝑢) = 𝜇*(𝑤𝑖)([𝛾]𝑀*,𝑤)

iff (𝑀*, 𝑤𝑖) � 𝛾 ⪰ 𝑟.
∙ (𝑀,𝑤) � 𝛾 ⪰ 𝛿 iff

for 𝑤𝑖 ∈ 𝐶𝑤, (𝑀,𝑤𝑖) � 𝛾 ⪰ 𝛿 iff 𝜇(𝑤𝑖)([𝛿]𝑀,𝑤) 6 𝜇(𝑤𝑖)([𝛾]𝑀,𝑤) iff
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𝐶𝑢:(𝑀,𝑢)�𝛿 𝜇(𝑤𝑖)(𝐶𝑢) 6

∑︀
𝐶𝑢:(𝑀,𝑢)�𝛾 𝜇(𝑤𝑖)(𝐶𝑢) iff∑︀

𝐶𝑢:(𝑀*,𝑢)�𝛿 𝜇
*(𝑤𝑖)(𝐶𝑢) 6

∑︀
𝐶𝑢:(𝑀*,𝑢)�𝛾 𝜇

*(𝑤𝑖)(𝐶𝑢) iff
𝜇*(𝑤𝑖)([𝛿]𝑀*,𝑤) 6 𝜇*(𝑤𝑖)([𝛾]𝑀*,𝑤) iff (𝑀*, 𝑤𝑖) � 𝛾 ⪰ 𝛿.

Finally, it is clear that the number of different classes in 𝑊/≈ is at most 2𝑘, and
the same holds for the number of worlds in 𝑀*. �

Theorem 5.2 (Decidability theorem). The logic 𝐿⪰ is decidable.

Proof. As it is noted above, a formula 𝛼 is 𝐿⪰-satisfiable iff it is satisfiable in
an 𝐿⪰ model with at most 2𝑘 world, where 𝑘 denotes the numbers of subformulas
of 𝛼. The next procedure decides the satisfiability problem.

Let Subf(𝛼) = {𝛽1, . . . , 𝛽𝑛, 𝛾1, . . . , 𝛾𝑚}, and 𝑘 = 𝑛+𝑚. In every world 𝑤 from
𝑀 exactly one of the formulas of the form 𝛿𝑤 = 𝛽1 ∧ · · · ∧ 𝛽𝑛 ∧ ¬𝛾1 ∧ · · · ∧ ¬𝛾𝑚
holds. For every 𝑙 6 2𝑘 we will consider 𝑙 formulas of the above form. The
chosen formulas are not necessarily different, but at least one of the formulas must
contain the examined formula 𝛼. Using probabilistic constraints (i.e., formulas of
the form 𝛽 ⪰ 𝑟, ¬(𝛽 ⪰ 𝑟), 𝛽 ⪰ 𝛾, ¬(𝛽 ⪰ 𝛾)) from the formulas we shall examine
whether there is an 𝐿⪰ model 𝑀 with 𝑙 worlds such that for some world 𝑤 from
the model 𝑤 � 𝛼. We do not try to determine probabilities precisely, we just check
whether there are probabilities such that probabilistic constraints are satisfied in
the corresponding world. To do that, for every world 𝑤𝑖, 𝑖 < 𝑙, we consider a system
of linear equalities and inequalities of the form (we write 𝛽 ∈ 𝛿𝑤 to denote that 𝛽
occurs positively in the top conjunction of 𝛿𝑤, i.e., if 𝛿𝑤 can be seen as

⋀︀
𝑖 𝛿𝑖, then

for some 𝑖, 𝛽 = 𝛿𝑖):∑︀𝑙
𝑗=1 𝜇(𝑤𝑖)(𝑤𝑗) = 1
𝜇(𝑤𝑖)(𝑤𝑗) > 0 for every world 𝑤𝑗∑︀𝑙
𝑤𝑗:𝛽∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) > 𝑟 for every 𝛽 ⪰ 𝑟 ∈ 𝛿𝑤𝑖∑︀𝑙
𝑤𝑗:𝛽∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) < 𝑟 for every ¬(𝛽 ⪰ 𝑟) ∈ 𝛿𝑤𝑖∑︀𝑙
𝑤𝑗:𝛽∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) >
∑︀𝑙
𝑤𝑗:𝛾∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) for every 𝛽 ⪰ 𝛾 ∈ 𝛿𝑤𝑖∑︀𝑙
𝑤𝑗:𝛽∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) <
∑︀𝑙
𝑤𝑗:𝛾∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) for every ¬(𝛽 ⪰ 𝛾) ∈ 𝛿𝑤𝑖
The first two rows correspond to the general constraints: the probability of the

set of all worlds must be 1, while the probability of every measurable set of worlds
must be nonnegative. The last four rows correspond to the probabilistic constraints
because

∑︀𝑙
𝑤𝑗:𝛽∈𝛿𝑤𝑗

𝜇(𝑤𝑖)(𝑤𝑗) = 𝜇(𝑤𝑖)([𝛽]𝑤𝑖).
Such a system is solvable iff there is a probability 𝜇(𝑤𝑖) satisfying all prob-

abilistic constraints that appear in 𝛿𝑤𝑖 . Note that there are finitely many such
systems that can be solved in a finite number of steps.

If the above test is positively solved, there is an 𝐿⪰ model in which every world
𝑤𝑖 � 𝛿𝑤𝑖 . Since 𝛼 belongs to at least one of the formulas 𝛿𝑤𝑖 , we have that 𝛼 is
satisfiable. If the test fails, and there is another possibility of choosing 𝑙 and the
set of formulas 𝛿𝑤, we continue with the procedure, otherwise we conclude that 𝛼
is not satisfiable.
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It is easy to see that the procedure terminates in a finite number of steps.
Thus the satisfiability problem for the class 𝐿⪰ is decidable. Since, � 𝛼 iff ¬𝛼 is
not satisfiable, the 𝐿⪰- validity problem is also decidable. �

6. Concluding remarks

We have introduced a probabilistic logic that combines higher order probabil-
ities and the qualitative probability operator. The main result is the proof of the
extended completeness theorem for the introduced logic.

Our work is closely related to the methodology presented in [12, 15, 16]. The
first two of those papers provide formalism that can handle higher-order probabili-
ties and the technique for construction of the canonical model. The last paper gives
the formalism that can handle simple probabilities and the qualitative probability,
where nesting of operators is not allowed.

The results presented here can be generalized in such a way that they will
allow a complete axiomatization of both qualitative probability and higher-order
conditional probabilities.
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