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Abstract. In the literature one can find links between the 2k-th moment of
the Riemann zeta-function and averages involving dk(n), the divisor function
generated by ζk(s). There are, in fact, two bounds: one for the 2k-th moment
of ζ(s) coming from a simple average of correlations of the dk ; and the other,
which is a more recent approach, for the Selberg integral involving dk(n), ap-
plying known bounds for the 2k-th moment of the zeta-function. Building
on the former work, we apply an elementary approach (based on arithmetic
averages) in order to get the reverse link to the second work; i.e., we obtain
(conditional) bounds for the 2k-th moment of the zeta-function from the Sel-
berg integral bounds involving dk(n).

1. Introduction and statement of the result

We shall link the 2k-th moment of the Riemann ζ-function ζ(s) on the (critical)
line (σ = Re s = 1

2 ), see [10]:

Ik(T ) def=
∫ T

0
|ζ(1

2 + it)|2kdt

(which we shall abbreviate with Ik, not to be confused with the similar 2k-th
moment off the line, i.e.,

Ik(σ, T ) def=
∫ T

0
|ζ(σ + it)|2kdt (1

2 < σ < 1),
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compare with [10]), with the Selberg integral of the k-divisor function, dk(n) (hav-
ing the generating Dirichlet series ζk(s))

Jk(x, h) def=
∫ x

hxε

∣∣∣∣ ∑
t<n�t+h

dk(n) − Mk(t, h)
∣∣∣∣2

dt,

(compare with [1]; henceforth we abbreviate Jk(x, h) by Jk) where, say, Mk(t, h) is
the “expected value” of the (inner) sum.

This gives dk over the (say) “short interval" [t, t + h] (as h = o(t) ∀t ∈ [hxε, x]);
here and in the sequel ε > 0 may be arbitrarily small, but not necessarily the same
at each occurrence.

Actually, Ivić gave in [12] a nontrivial bound for Jk(x, h) when the width of the
s.i. (abbreviation for short interval), namely θ := log h

log xn is greater than θk
def= 2σk −1

(with σk the Carlson’s abscissa, i.e., inf{σ ∈ ]1/2, 1[ : Ik(σ, T ) � T }, here):

θ > θk ⇒ ∃δ = δ(k) > 0 : Jk(x, h) � xh2

xδ

(with the trivial bound: Jk(x, h) � xh2(log x)c, where c = c(k) > 0, see the
following).

This result clearly gives nontrivial bounds for Jk, using the information for
zeta-moments off the critical line. For example, θ3 = 1

6 , θ4 = 1
4 , θ5 = 11

30 , . . . (from
the known values of σk).

Thus the knowledge of the moments of ζ(s) provides information on dk(n) in
almost all short intervals (a.a.s.i.).(

See: Jk nontrivial ⇒
∑

t<n�t+h

dk(n) ∼ Mk(t, h), a.a.s.i.
)

However, we can also go in the opposite direction: if we have some kind of nontrivial
information about the distribution of dk(n), we can improve our knowledge (at least,
on the 2k-th moments) of the Riemann ζ-function. Actually, this idea is due to
Ivić, who linked Ik to the “(auto-)correlation” of dk with “shift-parameter” a, i.e.,

Ck(a) def=
∑
n�x

dk(n)dk(n + a), a ∈ N (here x ∈ N, x → ∞)

(the shift is a positive integer: Ck(−a) is close enough to Ck(a) and Ck(0) is rela-
tively easy to compute).

Here it comes into play the idea of Ivić (see [11]) of linking the estimate of the
2k-th moment, Ik(T ), to a sum of correlations Ck(a) performed over a (the shift),
up to (roughly, we avoid technicalities), say, h := x

T (the s.i. comes in!), where
x � T k/2.

In order to be more precise, we need to abbreviate (with x, X or even T our
main variables, all independent and → ∞):

A ≪ B
def⇐⇒ ∀ε > 0 A �ε xεB

i.e., the modified Vinogradov notation ≪ allows us to ignore all the arbitrarily
small powers. We shall also say that the arithmetic function (a.f.) f : N → R is
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essentially bounded, write f ≪ 1, when ∀ε > 0 f(n) �ε nε (as n → ∞). For
example, all the dk (∀k ∈ N) are essentially bounded:

∀k ∈ N dk ≪ 1,

whence they contribute individually small powers, which for our purposes may be
ignored. Shiu [19] obtains (see Jk for trivial estimate above) a kind of Brun–
Titchmarsh estimate for (suitable multiplicative a.f., like) dk, and these give, on
average over (all) s.i., powers of log. By the way,

L := log T (or L := log x)

is the abbreviation for the logarithm of our main variable.
We quote the formula (proved ∀k � 2, see §3) for the dk correlations:

(1.1) Ck(a) = xP2k−2(log x) + Δk(x, a), Δk(x, a) = o(x);

here, the (conjectured, ∀k > 2) main term is xP2k−2(log x) �k xL2k−2 ≪ x (since
P2k−2(z) is a polynomial of degree 2k − 2 in z, see the following).

Here, it seems that the first to propose explicitly this form for (1.1) is Ivić, who
also gave explicitly the polynomial P2k−2, that is essentially bounded (w.r.t. x).
However, as we shall see in a moment, it depends, also, on the shift a > 0.

We shall sketch now, avoiding technicalities, Ivić’ s argument. After some work
(expand the square & mollify, take relevant ranges, . . .) he gets that Ik(T ) is

Ik(T ) = I ′′
k (T ) + Oε(T εT )

with

I ′′
k (T ) def= 1

M

∑
a�h

∑
M<n�M ′

dk(n)dk(n + a)
∫ 2T

T/2
φ(t)eita/ndt,

where M < M ′ � 2M , with M ≪ T k/2, say h ≪ M/T , the smooth (i.e., ∈ C∞)
test-function φ has support in ]T/2, 2T [, φ([3T/4, 4T/3]) ≡ 1, and has good decay

φ(R)(t) �R T −R, ∀R ∈ N.

From now on (see the reason in next section) we can ignore (in bounds for Ik) all
terms which are ≪ T .

We give an idea of the shape of P2k−2, given by Ivić, before we proceed. It is
(see [11] for details)

P2k−2(log x) def= 1
x

∫ x

0

∞∑
q=1

cq(a)
q2 R2

k(log t)dt,

with, say,

Rk(log t) def= C−k(q)
(k − 1)!

logk−1 t + C1−k(q)
(k − 2)!

logk−2 t + · · · + C−2(q)
1!

log t + C−1(q)

depending on q, but not on a (this is vital); also, w.r.t. x, Rk(log t) ≪ 1 and this
is very useful. We shall see in a moment that the shape of these Cj(q) is important
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only in the case q = 1. By the way, here cq(a) is the Ramanujan sum, defined as
(
∑∗ denotes summation over j (< q) coprime with q)

cq(a) def=
∑∗

j (mod q)

eq(ja) =
∑
d|q
d|a

dμ
( q

d

)
.

Hence, say, S(a) def= max(0, h − |a|) (Ŝ is Fejér’s kernel) gives (Jk is coming soon)

Ŝ
( j

q

)
def=

∑
a

S(a)eq(ja) � 0 ⇒
∑

a

S(a)cq(a) � 0

and from the elementary identity, ∀d ∈ N, (hereon n ≡ r(q) is n ≡ r (mod q)
abbreviation)∑

a
a≡0 (d)

S(a) = h + 2
∑

b�h/d

(h − db) =
h2

d
+ d

{h

d

}(
1 −

{h

d

})
,

we get (apply cq(a), above), writing 1℘ = 1 if ℘ holds, = 0 else:∑
a

S(a)cq(a) = 1q=1h2 +
∑
d|q

d2μ
( q

d

){h

d

}(
1 −

{h

d

})
.

(It is here evident that q = 1 has a greater importance.) Thus, (see Ivić [11] and
compare [1]):

(1.2)
∑

a

S(a)xP2k−2(log x) = h2
∫ x

hxε

R2
k(1, log t)dt + tails,

where we mean, by “tails", remainders which are ≪ h3. Here, the part of Rk(log t)
term with q = 1 is, say,

Rk(1, log t) def= C−k(1)
(k − 1)!

logk−1 t + C1−k(1)
(k − 2)!

logk−2 t + · · · + C−2(1)
1!

log t + C−1(1)

and gives (see the above) the term Mk(log t) into the Selberg integral; as it should
be, since (from an elementary version of Linnik’s Dispersion method, compare [1,
Lemmas]), assuming (1.1) with this P2k−2, we get

(1.3) Jk(x, h) ∼
∑

a

S(a)Ck(a) − h2
∫ x

hxε

M2
k (log t) dt ∼

∑
a

S(a)Δk(x, a),

where ∼ means ignoring “tails" (see above) and “diagonals" i.e., remainders ≪ xh.
We remark that both these errors are negligible (at least, for k = 3, 4, see Section
5), since they both contribute ≪ T to Ik(T ).

Then, due to the expression for I ′′
k , Ivić [11] made a hypothesis about (avoiding

technicalities) the sums of Δk(x, a) (remainders into (1.1) above), performed over
the shift a, say Gk, which implies the bound Ik(T ) ≪ T (for the same k > 2).
Henceforth we assume that k > 2.

Of course, he does not need (1.1) to hold individually ∀a (� h, here), but he
observes that he is summing up, into Gk, without the modulus over the remainder,
Δk(x, a), so some a-cancellation can take place.
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So far, he passes from an asymptotic formula (1.1) to an a-averaged form of it,
which is easier to prove (however, nobody has done it yet!).

Here, with applications in mind, we pass from a single average to a double
average.

Building on his expression for I ′′
k , it is possible to make a less stringent hypoth-

esis, to have a more flexible procedure for the remainders Δk(x, a).
We use, also, our previous work on the Selberg integral of the a.f. f (essentially

bounded and real), compare [1], in order to let the Selberg integral of dk, i.e.,
Jk(x, h), come into play. (It is a kind of “double average" of Δk(x, a).)

Unfortunately, due to an exponential factor multiplying dk(n)dk(n + a) into
Ck(a) we cannot get a link with Ik(T ) using only Jk(x, h) (with h ≪ x

T , x ≪ T k/2),
but we also need to make a hypothesis on another double average of remainders
Δk(x, a). Furthermore, our bounds are also affected by the limitation k � 4, due to
some error terms arising from the Linnik method (compare (5.1) proof in Section
5).

We shall formulate our original Theorem in Section 4, and then present its
proof.

There is a way to improve the result (with a different proof, see Section 5) as
follows.

Theorem 1.1. Let T → ∞ and, ∀ε > 0, T 1+ε � M � T k/2. Then ∀k > 2 we
have

Ik(T ) ≪ T

(
1 + max

T≪M�T k/2

T

M2 max
0<h�M/T

Jk(M, h)
)

.

In the next two sections we shall briefly mention some history of Ik and the
(related) additive divisor problems. Then, we shall prove our result in the subse-
quent section, before some remarks, and in the concluding section we shall prove
Theorem 1.1.

Acknowledgement. The author wishes to express his gratitude to the referee
for pointing out how to obtain the improved version of Theorem 1.1.

2. A concise history of moments of the Riemann zeta-function

We should keep in mind, here, that for fixed k ∈ N we seek the bound

Ik(T ) =
∫ T

0
|ζ(1

2 + it)|2kdt ≪ T (2k-th moment problem)

(it is “on the line", since σ = 1
2 is the critical line: “off the line" means with

1
2 < σ � 1) that (for k > 2) is our aim; in fact, the English school gave first
2 cases: first Hardy and Littlewood [5] in 1916 gave asymptotics for k = 1 (not
too difficult!) and then Ingham [8] in 1927 for k = 2 (actually, for both k = 1, 2
he gave only P2k−2 leading term, hence error log x better than main term); then,
Heath-Brown in 1979 [7] gave, for k = 2 (solved 2-add.div.pbm., i.e., the binary
additive divisor problem, see Section 3, using Weil’s bound for the Kloosterman
sums), P6 (not explicitly!) plus error E2 ≪ T 7/8.
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In a series of papers from the early ’90’s, Ivić and Motohashi (applying consid-
erations from SL(Z, 2) for the binary add.div.pbm.) obtained E2 � T 2/3Lc and,
in the mean-square, even E2(T ) � √

T logC T . Ivić explicited P2k−2 (when k = 2).
Like the binary additive divisor problem, this is not the whole story.

The case k = 3 (recall C3(a) problem), is again unsolved.
The bound I3(T ) ≪ T is called the “sixth moment" problem (actually, this

is the weak version and has a link (see Ivić [13]) with the ternary additive divisor
problem.

Another interesting result on higher moments is (Heath-Brown [6]): I6(T ) �
T 2Lc.

One glimpse at the higher moments (for k � 2, see [14]): the predicted asymp-
totics is Ik ∼ C(k)T Lk2 , ∀k � 1 by applying the methods from Random Matrix
Theory in the 2000’s seminal works (early 2000’s) of Keating and Snaith [15] (at
Bristol); many others (Conrey, Ghosh [2] to name two).

3. A history of some additive divisor problems

The problem of proving (1.1) (at least fixed a > 0) is called the k-ary additive
divisor problem: trivial case k = 1 (C1(a) = x ∀a ∈ Z) and the binary additive
divisor problem, k = 2, are the only solved problems.

The case k = 3 is the ternary additive divisor problem (sometimes called Lin-
nik problem): some time ago, Vinogradov and Takhtadzhjan (see below k = 2)
announced its solution but with, as yet, unfilled holes in their (very technical)
“proof". Their approach still suffers from our lack of information about SL(Z, 3);
while our (enough good) state of the art about, instead, SL(Z, 2) (actually, through
the application of the Kuznetsov trace formula, see [20]) allowed (starting from [18]
approach) Ivić, Motohashi and Jutila to solve satisfactorily, see especially [14] (and
recent Meurman’s [16]), the binary additive divisor problem (different approaches
work, with weaker remainders). We mention (still k = 2), in passing, Kloosterman
sums bounds (like Weil’s) in the δ-method of Duke–Friedlander–Iwaniec for “deter-
minantal equations" (especially [4]). An even more general problem than this last
one has been solved by Ismoilov [9].

Thus, so far, no one has proved (for k > 2), given a ∈ N,
Ck(a) = xP2k−2(log x) + Δk(x, a), Δk(x, a) = o(x),

as x → ∞ (the k-ary additive divisor problem), not even for a single shift a > 0
(already k = 2 has delicate “uniformity" issues: see [14]).

4. Statement and proof of the original theorem

We state here our original theorem, together with its proof.

Theorem 4.1. Let M < M ′ � 2M , T 1+ε � M � T k/2 and H = M1+ε/T ,
with double average G̃k = G̃k(M, T ) defined as

G̃k
def= sup

M�x�M ′, t�H

(
1
t
Jk(x, t) + 1

t

∣∣∣∣∑
h�t

∑
h<a�t

Δk(x, a)
∣∣∣∣
)

.
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Then for k = 3, 4 we have

Ik(T ) ≪ T
(

1 + sup
T≪M�T k/2

G̃k(M, T )/M
)

.

Proof. First of all, the main terms in (1.2), with P2k−2, are treated like Ivić
does [11]; actually, since his Gk is the supremum (see [11, Theorem 1]) of (the
absolute value of) ∑

a�t

Δk(x, a),

we split it as
1
t

∑
h�t

∑
a�h

Δk(x, a) + 1
t

∑
h�t

∑
h<a�t

Δk(x, a),

whence ∣∣∣∣∑
a�t

Δk(x, a)
∣∣∣∣ �

∣∣∣∣1
t

∑
h�t

∑
a�h

Δk(x, a)
∣∣∣∣ +

∣∣∣∣1
t

∑
h�t

∑
h<a�t

Δk(x, a)
∣∣∣∣,

where the second (double) sum is in our G̃k; in the sequel, we shall let the Selberg
integral appear from the other term; that is, in fact, the arithmetic mean

1
t

∑
h�t

∑
a�h

Δk(x, a)

(a kind of average, something like the C1 process in Fourier series) and can be
expressed as (on exchanging summations)

1
t

∑
a�t

(t − a + 1)Δk(x, a) = 1
t

∑
a�t

(t − a)Δk(x, a) + 1
t

∑
a�t

Δk(x, a).

Before we proceed further, we need to express how the diagonal remainders into
the estimate of Jk(x, t), i.e., the terms ≪ xt, and the tails, i.e., ≪ t3, appear in
our final estimate for Ik: compare the calculations soon after this proof. This last
equation especially has a term

1
t

∑
a�t

Δk(x, a) ≪ x,

from the trivial estimate Δk(x, a) ≪ x, giving diagonal terms; and the easily
proved relation Δk(x, −a) = Δk(x, a) + Oε(xεa) gives tails (another diagonal:
Δk(x, 0) ≪ x):

1
t

∑
a�t

(t − a)Δk(x, a) ∼ 1
2t

∑
0�|a|�t

(t − |a|)Δk(x, a)

(the ∼ means “+ diagonals and tails"); in all, the term in G̃k with Jk is
1
t

∑
h�t

∑
a�h

Δk(x, a) ∼ 1
2t

∑
0�|a|�t

(t − |a|)Δk(x, a)
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and, since S(a) = max(t − |a|, 0), ∀0 � |a| � t, applying (1.3) (compare [1]),∑
0�|a|�t

(t − |a|)Δk(x, a) ∼ Jk(x, t),

we obtain the desired bound with the Selberg integral (and the double average). �
We remark that, in spite of the fact that our “new" theorem holds ∀k > 2

(integer), we have here some trouble in handling Selberg’s integral tails, since they
contribute to G̃k as (in the sup above)

≪ 1
t
t3 ≪ H2 ≪ M2

T 2

which gives to Ik(T ) a contribution (the other sup above)

≪ T
(M2

T 2 M−1
)
≪ M

T
≪ T k/2−1.

This is ≪ T only when k/2 � 2, i.e., k � 4 (diagonals give ≪ T , good ∀k.)
The tails arise naturally when applying the Linnik method and even a more

careful analysis will almost surely not eliminate them. While they are negligible
for the Selberg integral, they are not negligible for our present approach.

We remark, in passing, that the “additional" double average, in this approach,
cannot be dispensed with.

5. Proof of Theorem 1.1

First of all, we may restrict ourselves to the following definitions of Ik, Jk :

Ik(T ) :=
∫ T

T/2
|ζ(1

2
+ it)|2kdt, Jk(M, h) :=

∫ 3M

M/2

∣∣∣∣ ∑
t<n�t+h

dk(n) − Mk(t, h)
∣∣∣∣2

dt.

In fact, we can combine a dissection argument (for Ik) and (for Jk) a positivity
and monotonicity argument to reduce these integrals to the ones defined in the
introduction. The logarithmic factor(s) will be in the ≪ (let us fix ε > 0). In
order to keep the exposition clearer, we write ≪ even when it is only �, in the
sequel.

We start by choosing a Dirichlet series (Cj is not to be confused with Cj(q)
above)

fk(s) =
∞∑

n=1
ak(n)n−s def=

k−1∑
j=0

Cjζ(j)(s), with ζk(s) − fk(s) holomorphic at s = 1.

This is done, in order to give the expected main term of the short sum
∑

n dk(n),
that comes from the residue of h

x ζk(s)xs

s at s = 1; like (we shall see in a moment)
for the other short sum

∑
n ak(n), which is this main therm, together with ≪ 1,

remainder terms. Here we obtain the coefficients ak(n) =
∑

j Cj(− log n)j , since
we recall

ζ(j)(s) =
∞∑

n=1
(− log n)jn−s
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and we still have to calculate the coefficients Cj . This can be done using the
Laurent expansion at s = 1 of the Riemann zeta-function:

ζ(s) = 1
s − 1

+
∞∑

n=1
γn(s − 1)n

and (taking k-th powers) we get, from this, that

C0ζ(s) + C1ζ′(s) + · · · + Ck−1ζ(k−1)(s),

here, has to have the same principal at s = 1 as ζk(s). This is accomplished by
studying a linear system in k equations and unknowns C0, . . . , Ck−1, which has a
unique solution.

Then we isolate the mean-square of fk:

Ik(T ) �
∫ T

T/2
|ζ(1

2 + it)k − fk(1
2 + it)|2dt +

∫ T

T/2
|fk(1

2 + it)|2dt,

since it is relatively easy to bound (analogously as the mean square of the zeta-
function, compare with Section 2):∫ T

T/2
|fk(1

2 + it)|2dt ≪ T

and, in the following, we shall ignore (see why in Sections 1 and 2) all such kind
of remainders. We wish to express ζk − fk at s = 1/2 + it, with t  T (i.e.,
T � t � T now on), as ( � log T ) smoothed Dirichlet polynomials such that there
holds (leaving ≪ T )

(5.1)
∫ T

T/2

∣∣∣ζk(1
2 + it) − fk(1

2 + it)
∣∣∣2

dt ≪
∫ T

T/2

∣∣∣∣ ∑
M�n�2M

w(n)dk(n) − ak(n)
n1/2+it

∣∣∣∣2

dt,

where T 1+ε � M � T k/2 and w here is a C1 weight supported in [M, 2M ], with

w(x) � 1, w′(x) ≪ 1
M

∀x ∈ [M, 2M ].

This can be done applying the functional equation (∀k > 2) for ζk, as in [10]; plug
t  T , α = 1

2 + 1/ log T , Y  M  T k/2, h = log2 T (do not confuse with our h at
last), into [10, Theorem 4.4] to obtain

ζk(1
2 + it) =

∑
n�2Y

dk(n)e−(n/Y ) log2 T n−1/2−it + χk(1
2 + it)

∑
n�M

dk(n)n−1/2+it

− 1
2πi

∫
Re(w)=1/ log T

| Im(w)|�log4 T

χk(1
2 + it + w)

∑
n�M

dk(n)nw−1/2+itY wΓ
(

1+ w

log2 T

)dw

w
+ o(1).

Subtracting fk(1/2 + it) from the left-hand side and inserting ak(n) into n−sums
we get that

ζk(1
2 + it) − fk(1

2 + it)



108 COPPOLA

can be expressed (apart from the ≪ 1-terms) by sums of the following types:∑
n�2Y

ak(n)e−(n/Y ) log2 T n−1/2−it − fk(1
2 + it),(5.2)

∑
n�M

ak(n)n−1/2+it,(5.3)

∑
n�M

ak(n)n
1

log T +iu−1/2+it, (|u| � log4 T ),(5.4)

∑
n�2Y

(dk(n) − ak(n))e−(n/Y ) log2 T n−1/2−it,
∑

n�M

(dk(n) − ak(n))n−1/2+it,(5.5)

∑
n�M

(dk(n) − ak(n))n
1

log T +iu−1/2+it (|u| � log4 T ).(5.6)

For our purposes, the bounds χk(1
2 + it) � 1 and χk(1

2 + 1
log T + it) � 1 suffice

(see e.g., [10]), with uniform constants ∀k. Also, we can transform the n-sums into
integrals, which (apart from these sums) give an essentially bounded contribution.
We first treat the terms (5.2), (5.3), (5.4) like remainders, while (5.5) and (5.6) will
be into our final (5.1). Recall that there will be � log T (i.e., ≪ 1) of such sums.
Analogously as in Theorem 4.11 of Titchmarsh’s book [21]∑

n�M

ak(n)n−1/2+it′
= Res

(
fk(s + 1

2 − it′)M s

s
,

1
2

+ it′
)

+ fk(1
2 − it′) + Oε(M ε);

here t′ = t or t′ = t + (1/ log T ) + u, with |u| � log4 T , an eventual perturbation to
w of the kind n1/ log T +iu, which gives w′ � (log T )4/M , into our w′ ≪ 1/M .

We perform k times an M -average over these (5.3), (5.4) terms to let the residue
term Ok(1), while (see above) fk mean-square is negligible, like Oε(M ε) ≪ 1. The
other terms are managed like these, with a (k times) M -average (Y  M), on
writing∑

n�2Y

ak(n)e−(n/Y ) log2 T n−1/2−it − fk(1
2 + it) =

∑
n�A

ak(n)n−1/2−it − fk(1
2 + it)

+
∑
n�A

ak(n)O
( n

Y log2 T

)
n−1/2−it +

∑
A<n�2Y

ak(n)e−(n/Y ) log2 T n−1/2−it,

where the difference on the right-hand side is treated as above; also,∑
n�A

ak(n)O
( n

Y log2 T

)
n−1/2−it ≪

∑
n�A

√
n

Y log2 T
≪ A

√
A

Y
,

while partial summation allows to isolate the exponential factor, in order to average
(like before) the inner sums, and, with the choice A  Y 2/3, we get ≪ 1, so that
even (5.2) can be neglected. Next, we M -average and use a dyadic dissection
(to arrive to [M, 2M ], there) for the remaining sums. (In the other proof, not-
averaged residue terms in (5.2)–(5.4) correspond to tails, giving the limit k � 4,
see Section 4.) Collecting all these sums and estimates, we get (5.1).
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Now we apply Gallagher’s Lemma (see e.g., Lemma 1.10 in [17]) to the sum∑
n w(n)(dk(n) − ak(n)) n−1/2−it, to obtain∫ T

−T

∣∣∣∣∑
n

w(n)√
n

(dk(n) − ak(n))n−it

∣∣∣∣2

dt � T 2
∫ ∞

0

∣∣∣∣
τy∑
y

w(n)√
n

(dk(n) − ak(n))
∣∣∣∣2

dy

y
,

with τ := exp(1/T ) (see that τ − 1  1/T ). Here, since w is supported in [M, 2M ],

(5.7) Ik(T ) ≪ max
T 1+ε�M�T k/2

T 2

M

∫ 3M

M/2

∣∣∣∣ ∑
y<n�τy

w(n)√
n

(dk(n) − ak(n))
∣∣∣∣2

dy

(again, leaving ≪ T ). Let us now denote ρ := τ − 1 ∼ 1/T .
In order to avoid the inner dependence on y, applying the partial summation

we have∑
y<n�y+ρy

c(n)f(n) � max
h�max(ρy)

∣∣∣∣ ∑
y<n�y+h

c(n)
∣∣∣∣
(

|f(y + ρy)| +
∫ y+ρy

y

|f ′(v)|dv

)

(where we can assume y integer, the difference giving ≪ 1 in the sum), with the
(local) definitions c(n) := dk(n) − ak(n) and f(v) := w(v)/

√
v, where

|f(v)| � 1√
v

and |f ′(v)| ≪ 1
v
√

v
+ 1

M
√

v
∀v ∈ [y, y + ρy] (M < y � 2M)

we have∣∣∣∣ ∑
y<n�y+ρy

w(n)n−1/2(dk(n) − ak(n))
∣∣∣∣2

≪ max
h�M/T

1
M

∣∣∣∣ ∑
y<n�y+h

(dk(n) − ak(n))
∣∣∣∣2

.

Finally, inserting this in (5.7) we obtain

Ik(T ) ≪ T max
T 1+ε�M�T k/2

max
0<h�M/T

T

M2

∫ 3M

M/2

∣∣∣∣ ∑
x<n�x+h

dk(n) − Mk(x, h)
∣∣∣∣2

dx,

where it is evident that the main term Mk(x, h) is the ak(n)−short sum in ]x, x+h].
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