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Abstract. Let X be a Hausdorff continuum (a compact connected Hausdorff
space). Let 2X (respectively, Cn(X)) denote the hyperspace of nonempty
closed subsets of X (respectively, nonempty closed subsets of X with at most
n components), with the Vietoris topology. We prove that if X is hereditarily
indecomposable, Y is a Hausdorff continuum and 2X (respectively Cn(X)) is
homeomorphic to 2Y (respectively, Cn(Y )), then X is homeomorphic to Y .

1. Introduction

A Hausdorff continuum is a compact connected Hausdorff space X with more
than one point. A subcontinuum A of X is a closed connected subset of X .

For a Hausdorff continuum X and a positive integer n, define the hyperspaces

2X = {A ⊂ X : A is closed and nonempty},

Cn(X) = {A ∈ 2X : A has at most n components},

C(X) = C1(X),

Fn(X) = {A ∈ 2X : A has at most n points}.

The hyperspace 2X is endowed with the Vietoris topology. That is, the basis
for the topology of 2X is the family B = {〈U1, . . . , Un〉 : n is a positive integer and
U1, . . . , Un are open subsets of X}, where 〈U1, . . . , Un〉 = {A ∈ 2X :A ⊂ U1∪· · ·∪Un

and A ∩ Ui �= ∅, for each i ∈ {1, . . . , n}}.
The Hausdorff continuum X is hereditarily indecomposable provided that given

A, B ∈ C(X), either A ∩ B = ∅ or A ⊂ B or B ⊂ A and X is said to have unique
hyperspace 2X (resp., Cn(X)), provided that, if Y is a Hausdorff continuum and
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2X is homeomorphic to 2Y (resp., Cn(X) is homeomorphic to Cn(Y )), then X is
homeomorphic to Y .

Uniqueness of hyperspaces has been widely studied (see [2], [3, p. 285] and [4]).
Macías proved in [7] and [8, Theorem 6.1] that if X is a metric hereditarily inde-
composable Hausdorff continuum, then X has unique hyperspaces 2X and Cn(X)
(for each n). Lončar [6, Theorem 2.4] proved that rim metrizable hereditarily in-
decomposable continua have unique hyperspace C(X). Using techniques of inverse
limits, Peláez generalized these results by proving that if X is a rim metrizable
(X has a basis of neighborhoods with metrizable boundary) hereditarily indecom-
posable Hausdorff continuum, then X has unique hyperspaces 2X and Cn(X) (for
each n).

In this paper we generalize these results by proving:

Theorem 1.1. If X is a hereditarily indecomposable Hausdorff continuum,
then X has unique hyperspaces 2X and Cn(X) (for each n).

2. Generalized arcs

The proof of Theorem 1.1 is based in an analysis of the generalized arcs (see
below) in the hyperspace 2X .

A generalized arc joining p and q in a topological space Z is a subcontinuum α
of Z such that p, q ∈ α and each point z ∈ α−{p, q}, separates p and q in α. Given
z ∈ α − {p, q}, let α − {z} = Uz ∪ Vz , where Uz and Vz are disjoint open subsets of
α such that p ∈ Uz and p ∈ Vz. Let Up = ∅ = Vq, Vp = α − {p} and Uq = α − {q}.
If z, w ∈ α and z �= w, define z < w if and only if z ∈ Uw.

The following lemma summarizes the basic facts about generalized arcs. For
the proof of (b), see Theorem 6.16 of [10]. The rest of Lemma 2.1 is easy to prove.

Lemma 2.1. Let α be a generalized arc joining points p and q in a topological
space Z. Then:
(a) the relation < is a well defined linear order,
(b) α has the topology induced by <,
(c) given z, w ∈ α, the intervals [z, w), (z, w), (z, w] and [z, w], defined in the nat-

ural way, are connected subsets of α,
(d) (α, <) has the property of the supremum (every nonempty subset of α has a

supremum in α),
(e) the relation � defined in Z by z � w if an only if there exists a generalized

arc joining z and w in Z, is an equivalence relation; the equivalence classes are
called g-arcwise components.

Let X be a Hausdorff continuum. Given A, B ∈ 2X , with A � B, an order arc
in 2X, from A to B is a subcontinuum α of 2X such that A ⊂ C ⊂ B for each
C ∈ α and, for every C, D ∈ α, either C ⊂ D or D ⊂ C. The fundamental theorem
for order arcs in hyperspaces is the following.

Theorem 2.2. [5, Theorem 15.3] Let X be a Hausdorff continuum and let
A, B ∈ 2X be such that A � B. Then there exists an order arc in 2X, from A to B
if and only if each component of B intersects A.
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Lemma 2.3. Let X be a Hausdorff continuum, A, B ∈ 2X and let α be and
order arc in 2X, from A to B. Then α is a generalized arc joining A and B in 2X.

Proof. It is enough to show that for each C ∈ α − {A, B}, C separates A and
B in α. Let A = {D ∈ α : D ⊂ C} and B = {D ∈ α : C ⊂ D}. It is easy to
show that A and B are closed subsets of α. By the definition of order arc, we have
α = A ∪ B, A ∈ A − {C}, B ∈ B − {C} and A ∩ B = {C}. This proves that C
separates A and B in α. �

3. Property of Kelley

A Hausdorff continuum X is said to have the Property of Kelley (see [1, p. 115]),
provided that for every p ∈ X , A ∈ C(X) and open subset U of C(X) such that
p ∈ A ∈ U , there exists an open subset T of X such that p ∈ T and, for each q ∈ T ,
there exists B ∈ C(X) such that q ∈ B ∈ U .

For metric Hausdorff continua, property of Kelley has been widely studied, see
([5, pp. 167 and 405] and [9, Chapter XIV]). In [9, Theorem 16.27] it is proved that
hereditarily indecomposable Hausdorff metric continua have property of Kelley.
Next, we extend this result to Hausdorff continua.

Theorem 3.1. Let X be a hereditarily indecomposable Hausdorff continuum.
Then X has property of Kelley.

Proof. Suppose that X does not have the property of Kelley. Then there
exist p ∈ X , A ∈ C(X) and V = 〈V1, . . . , Vm〉 ∩ C(X), a basic set in C(X), such
that p ∈ A ∈ V and for each open subset T of X such that p ∈ T there exists
a point q ∈ T for which there is no element B ∈ C(X) with the property that
q ∈ B ∈ V . Note that A �= X .

Let W be an open subset of X such that A ⊂ W ⊂ clX(W ) ⊂ V1 ∪ · · · ∪ Vm

and W �= X . Let T = {T ⊂ X : T is an open subset of X such that p ∈ T ⊂ W }.
For each T ∈ T , choose a point qT ∈ T for which there is no element B ∈ C(X)
with the property that qT ∈ B ∈ V and let DT be the component of clX(W ) such
that qT ∈ DT . Since DT ⊂ V1 ∪ · · · ∪ Vm and DT /∈ V , there exists i ∈ {1, . . . , m}
such that DT ∩ Vi = ∅. Let E = {qT ∈ X : T ∈ T }. Then p ∈ clX(E). For each
i ∈ {1, . . . , m}, let Ti = {T ∈ T : DT ∩ Vi = ∅} and Ei = {qT ∈ X : T ∈ Ti}. Then
T = T1 ∪ · · · ∪ Tm and E = E1 ∪ · · · ∪ Em. Thus, there exists i ∈ {1, . . . , m} such
that p ∈ clX(Ei). We may assume that p ∈ clX(E1).

For each Q ∈ T , let F (Q) = clX
( ⋃

{DT : T ∈ T1 and qT ∈ Q}
)
. Since

p ∈ clX(E1), it follows that p ∈ F (Q). Thus, F (Q) is a nonempty compact subset
of X . Let F =

⋂
{F (Q) : Q ∈ T } and let G be the component of F such that

p ∈ G.
We need to show that FrX(W )∩G �= ∅. Suppose to the contrary that FrX(W )∩

G = ∅. By [5, Theorem 12.9], there exist disjoint compact subsets K and L of X
such that F = K ∪ L, G ⊂ K and K ∩ FrX(W ) = ∅. Let R and S be disjoint open
subsets of X such that K ⊂ R and FrX(W ) ∪ L ⊂ S. Since F ⊂ R ∪ S, there exist
k � 1 and elements Q1, . . . , Qk ∈ T of X such that F ⊂ F (Q1)∩· · ·∩ F (Qk) ⊂ R∪S.
Let Q0 = Q1∩· · ·∩Qk. Then Q0 is an open subset of X such that p ∈ Q0 ⊂ W and
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F (Q0) ⊂ R ∪ S. Since p ∈ R ∩ Q0 and p ∈ clX(E1), there exists T ∈ T1 such that
qT ∈ R ∩ Q0 ∩ DT . Then DT ⊂ F (Q0) ⊂ R ∪ S. Since DT is connected, DT ⊂ R,
so FrX(W ) ∩ DT = ∅, this contradicts [5, Theorem 12.10]. We have shown that
FrX(W ) ∩ G �= ∅.

Recall that G ∈ C(X) and p ∈ G ∩ A. Since X is hereditarily indecomposable,
G ⊂ A or A ⊂ G. Since FrX(W ) ∩ G �= ∅ and FrX(W ) ∩ A = ∅, we obtain that
A ⊂ G. Since A ∩ V1 �= ∅, we can choose a point x ∈ A ∩ V1 ⊂ F ∩ V1. Then
x ∈ V1∩ F (W ). Thus, there exists T ∈ T1 such that V1∩ DT �= ∅. This contradicts
the definition of T1 and ends the proof of the theorem. �

4. Main results

Lemma 4.1. Let X be a hereditarily indecomposable Hausdorff continuum. Sup-
pose that A, B ∈ 2X, C ∈ C(X), A ⊂ C, B � C and α is a generalized arc joining
A and B in 2X. Then C ∈ α.

Proof. Let D = {D ∈ α : D ⊂ C}. Then D is a nonempty proper closed
subset of α. Since α is connected, there exists D0 ∈ Frα(D). Since D is closed in α,
D0 ⊂ C. Let < be the order defined, as in the paragraph previous to Lemma 2.1,
for α satisfying A < B. We claim that D0 = C. Suppose to the contrary that
D0 �= C. Fix a point x0 ∈ C − D0. Since 〈X − {x0}〉 ∩ α is an open subset
of α containing D0, by Lemma 2.1(b), we may assume that there exists an element
D1 ∈ α, such that D0 < D1 such that [D0, D1] ⊂ 〈X − {x0}〉 and [D0, D1] � D.
Let E =

⋃
{F : F ∈ [D0, D1]}. Notice that D0 ⊂ E, x0 /∈ E and E � C. We check

that E is closed in X . Let x ∈ X − E. Then {〈X − clX(U)〉 : x ∈ U and U is an
open subset of X} is an open cover of the compact set [D0, D1]. Thus, there exists
an open subset U0 of X such that x ∈ U0 and [D0, D1] ⊂ 〈X − clX(U0)〉. Hence,
U0∩ E = ∅. This proves that E is closed in X . Fix a point y0 ∈ E − C.

We claim that the component G of E that contains y0 intersects C. Suppose
to the contrary that G ∩ C = ∅. By [5, Theorem 12.9], there exists an open and
closed subset K of E such that y0 ∈ K and K ∩ C = ∅. Let L = E − K. Then
L is a compact subset of X and D0 ⊂ L. Let E = {F ∈ [D0, D1] : F ⊂ L} and
F = {F ∈ [D0, D1] : F ∩ K �= ∅}. Clearly, E and F are closed disjoint subsets of
[D0, D1], D0 ∈ E , F �= ∅ and [D0, D1] = E ∪ F . This contradicts the connectedness
of [D0, D1] and completes the proof that G ∩ C �= ∅.

Since X is hereditarily indecomposable, G and C are subcontinua of X and
G ∩ C �= ∅, we have G ⊂ C or C ⊂ G. Since y0 ∈ G − C and G ⊂ E ⊂ X − {x0},
we obtain a contradiction. This ends the proof that C = D0 ∈ α. �

The following lemma can be proved imitating the proof of Theorem 11.3 of [9]
and using Theorem 2.2.

Lemma 4.2. Let Y be a Hausdorff continuum, n � 1 and A ∈ 2Y − C(Y ).
Then 2Y − {A} and Cn(Y ) − {A} are arcwise connected.

Lemma 4.3. Let X be a hereditarily indecomposable continuum and n � 1. Let
A ∈ C(X) − ({X} ∪ F1(X)). Let E be the g-arcwise component of Cn(X) − {A}
that contains X. Then E is the only dense g-arcwise component of Cn(X) − {A}.
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Proof. Let F be a g-arcwise component of Cn(X) − {A} such that F �= E .
Given B ∈ Cn(X) − {A} such that B � A, taking an order arc from B to X , we
obtain that B ∈ E . This implies that F ⊂ Cn(A). Since Cn(A) is compact and
Cn(A) �= Cn(X), we conclude that F is not dense in Cn(X) − {A}.

Now we check that E is dense in Cn(X) − {A}. Let B ∈ Cn(X) − {A} and
U = 〈U1, . . . , Um〉∩Cn(X) be a basic set in Cn(X) such that B ∈ U , where each Ui

is a nonempty open subset of X . We may assume that B /∈ E . Then B � A. Let
B1, . . . , Bk be the components of B. Then k � n. Fix points p1 ∈ B1, . . . , pk ∈ Bk.
For each i ∈ {1, . . . , k}, let Fi = {j ∈ {1, . . . , m} : Bi ∩ Uj �= ∅} and Ui = {C ∈
C(X) : C ⊂

⋃
{Uj : j ∈ Fi} and C ∩ Uj �= ∅ for each j ∈ Fi}. Then Ui is open in

C(X) and Bi ∈ Ui. By Theorem 3.1, there exists an open subset Vi of X such that
pi ∈ Vi and, if u ∈ Vi, then there exists Q ∈ C(X) such that u ∈ Q ∈ Ui.

Fix a point x ∈ X −A. Let α be an order arc in C(X) joining {x} to X . Notice
that α ⊂ E . Let E0 ∈ α be the first element of α containing A, that is E0 ∈ α,
A ⊂ E0 and, if E � E0 and E ∈ α, then A � E. Since the set 〈V1, . . . , Vk, X〉∩C(X)
is an open subset of C(X) containing E0, there exists E ∈ α such that E � E0 and
E ∈ 〈V1, . . . , Vk, X〉. For each i ∈ {1, . . . , k}, choose a point ui ∈ E ∩ Vi. By the
choice of Vi, there exists Qi ∈ C(X) such that ui ∈ Qi ∈ Ui. Let D = {u1, . . . , uk}.

Since x ∈ E, E � A. Since X is hereditarily indecomposable and E ∈ C(X),
E ∩ A = ∅. Thus, D ∩ A = ∅. Let Q = Q1 ∪ · · · ∪ Qk, since D ⊂ Q, we have that
Q ∈ E . It is easy to show that Q ∈ U . This completes the proof of the lemma. �

Theorem 4.4. If X is a hereditarily indecomposable Hausdorff continuum,
then X has unique hyperspaces 2X and Cn(X), for each n.

Proof. Let Y be a Hausdorff continuum. Let K(X) denote one of the hyper-
spaces 2X or Cn(X) of X and let K(Y ) be the correspondig hyperspace of Y . Sup-
pose that K(X) is homeomorphic to K(Y ). Let h : K(X) → K(Y ) be a homeomor-
phism. Since F1(X) (respectively F1(Y )) is homeomorphic to X (respectively Y )
it is enough to show that h(F1(X)) = F1(Y ).

Using Proposition 6.3 of [9], it is easy to show that every proper subcontinuum
of X has empty interior.

Claim 1. Let A ∈ C(X) − ({X} ∪ F1(X)). Let E be the g-arcwise component
of K(X) − {A} that contains X . Then E is the only dense g-arcwise component of
K(X) − {A}.

We prove Claim 1. By Lemma 4.3, Claim 1 holds for the case that K(X) =
Cn(X). Thus, in the proof of Claim 1, we assume that K(X) = 2X . Let F be a
g-arcwise component of 2X − {A} such that F �= E . Given B ∈ 2X − {A} such
that B � A, taking an order arc from B to X , we obtain that B ∈ E . This implies
that F ⊂ 2A. Since 2A is compact and 2A �= 2X , we conclude that F is not dense
in 2X − {A}. Now we check that E is dense in 2X − {A}. Let B ∈ 2X − {A} and
let U = 〈U1, . . . , Um〉 be a basic set in 2X such that B ∈ U , where each Ui is a
nonempty open subset of X . Since intX(A) = ∅, for each i ∈ {1, . . . , m}, Ui � A.

Given i ∈ {1, . . . , m}, fix a point pi ∈ Ui − A. Let G = {p1, . . . , pm}. Then
G ∈ U ∩ E . This completes the proof of Claim 1.



54 ILLANES

Claim 2. h(C(X)) ⊂ C(Y ).

In order to prove Claim 2, take an element A ∈ C(X) − ({X} ∪ F1(X)). By
Lemma 4.1, K(X) − {A} is not g-arcwise connected. By Lemma 4.2, if h(A) is
not connected, then K(Y ) − {h(A)} is g-arcwise connected. Since h is a homeo-
morphism, we conclude that h(A) is connected. That is, h(A) ∈ C(Y ). Therefore,
h(C(X) − ({X} ∪ F1(X))) ⊂ C(Y ). Since cl2X (C(X) − ({X} ∪ F1(X))) = C(X)
and C(Y ) is compact, we conclude that h(C(X)) ⊂ C(Y ).

Claim 3. Let A ∈ C(X) − {X} and let B ∈ K(X) be such that B ⊂ A. Then
h(B) ⊂ h(A).

We prove Claim 3. In the case that A ∈ F1(X), B = A and h(B) = h(A).
Thus, suppose that A /∈ F1(X). By Claim 2, h(A) is connected. We can suppose
that h(A) �= Y . Let E (respectively, F) be the g-arcwise component of K(X)−{A}
(respectively, K(Y ) − {h(A)}) that contains X (respectively, Y ). By Lemma 4.1,
B /∈ E . If h(B) � h(A), then taking an order arc from h(B) to Y in K(Y ) we can
prove that h(B) ∈ F . Since h is a homeomorphism, h(E) �= F , so h(E) ∩ F = ∅.
Since K(Y ) − (2h(A) ∩ K(Y )) ⊂ F , h(E) ⊂ 2h(A) ∩ K(Y ). Since h(A) �= Y , 2h(A) ∩
K(Y ) is a proper compact subset of K(Y ). Thus, h(E) is not dense in K(Y )−{h(A)}.
This implies that E is not dense in K(X) − {A}, contrary to Claim 1. This proves
that h(B) ⊂ h(A).

Claim 4. h(F1(X)) ⊂ F1(Y ).

Suppose, contrary to Claim 4, that there exists a point p ∈ X such that
h({p}) /∈ F1(Y ). Since F1(Y ) is compact, there exists an open subset U of X
such that p ∈ U and 〈U〉 ⊂ K(X) − h−1(F1(Y )). Taking an order arc from {p} to
X in C(X), it is possible to find two nondegenerate proper subcontinua A and B
of X such that p ∈ A � B ⊂ U . Let E be the g-arcwise connected component of
K(X) − {B} such that {p}, A ∈ E . By Lemma 4.1, E ⊂ K(X) ∩ 2B ⊂ 〈U〉. Thus
h(E) ⊂ K(Y ) − F1(Y ). Since h is a homeomorphism, h(E) is a g-arcwise compo-
nent of K(Y ) − {h(B)}. By Claims 2 and 3, h(A) ∈ C(Y ) and h(A) � h(B). Fix
a point y ∈ h(A) and take an order arc β from {y} to h(A) in C(Y ). Notice that
β ⊂ K(Y ) − {h(B)}. Since h(A) ∈ h(E), β ⊂ h(E). Hence, {y} ∈ h(E) ∩ F1(Y ), a
contradiction. Claim 4 is proved.

Claim 5. Let A ∈ C(X). Then h(A) =
⋃

{h({p}) ∈ K(Y ) : p ∈ A}.

Let B =
⋃

{h({p}) ∈ K(Y ) : p ∈ A}. By [1, Lemma 2.1], B is a subcontinuum
of Y . In the case that A �= X , by Claim 3, B ⊂ h(A). Now, we see that, in
the case that A = X , we also have that B ⊂ h(A). It is enough to show that, if
p ∈ X , then h({p}) ⊂ h(X). Suppose to the contrary that there exists a point
y ∈ h({p}) − h(X). Let W = h−1(〈Y − {y}〉). Then W is an open subset of K(X)
such that X ∈ W . Let λ be an order arc from {p} to X in C(X). Then there
exists E ∈ λ such that E �= X and E ∈ W . By Claim 3, h({p}) ⊂ h(E). Thus,
y ∈ h(E) ∈ 〈Y − {y}〉. This contradiction proves that, in every case, B ⊂ h(A).

Suppose that B �= h(A). Let V = K(Y ) − (2B ∩ K(Y )) and U = h−1(V). Then
U is an open subset of K(X) such that A ∈ U . Fix a point p0 ∈ A and let α be an
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order arc from {p0} to A in C(X). Then there exists C ∈ α − {A, {p0}} such that
C ∈ U . Then {p0} � C � A. Fix a point q0 ∈ A − C. Since h({p0}), h({q0}) ⊂ B,
taking order arcs in C(Y ), it is possible to construct a generalized arc β joining
h({p0}) and h({q0}) in 2B ∩ K(Y ). Thus, h−1(β) is a generalized arc in K(X)
joining {p0} and {q0}. By Lemma 4.1, C ∈ h−1(β). Thus, h(C) ∈ β ⊂ 2B ∩ K(Y ).
Hence, h(C) ∈ 2B ∩ K(Y ) ∩ V , a contradiction. We have shown that B = h(A).
This ends the proof of Claim 5.

Claim 6. Let A ∈ K(X). Then h(A) ⊂ h(X).

In order to prove claim 6, we may assume that A �= X . By Claim 2, h(X) is
connected. In order to prove Claim 6, since 2h(X) ∩ K(Y ) is compact, it is enough
to show that h(A) ∈ cl2Y (2h(X) ∩ K(Y )). Let V be an open subset of K(Y ) such
that h(A) ∈ V . Let U = 〈U1, . . . , Um〉 ∩ K(X) be a basic open subset of K(X)
such that A ∈ U ⊂ h−1(V) and X /∈ U , where each Ui is open in X . Note that
X � U1∪ · · · ∪ Um. Fix a point p ∈ X and let α be an order arc from {p} to X in
C(X). We analyze two cases:

Case 1. K(X) = 2X . Since X ∈ 〈U1, . . . , Um, X〉, there exists B ∈ α ∩
〈U1, . . . , Um, X〉 such that B �= X . For each i ∈ {1, . . . , m}, choose a point pi ∈
B ∩ Ui. Let C = {p1, . . . , pm}. Then C ⊂ B, C ∈ U and h(C) ∈ V . By Claim 3,
h(C) ⊂ h(B). By Claim 5, h(B) =

⋃
{h({b}) ∈ 2Y : b ∈ B} ⊂

⋃
{h({x}) ∈ 2Y :

x ∈ X} = h(X). Hence, h(C) ∈ 2h(X). Hence, h(A) ∈ cl2Y (2h(X) ∩ K(Y )) =
2h(X) ∩ K(Y ).

Case 2. K(X) = Cn(X). Let A1, . . . , Ak be the components of A. Then
k � n. For each i ∈ {1, . . . , k}, choose a point ai ∈ Ai, let Fi = {j ∈ {1, . . . , m} :
Ai ∩ Uj �= ∅} and Ui = {C ∈ C(X) : C ⊂

⋃
{Uj : j ∈ Fi} and C ∩ Uj �= ∅

for each j ∈ Fi}. Then Ui is open in C(X) and Ai ∈ Ui. By Theorem 3.1,
there exists an open subset Vi of X such that ai ∈ Vi and, if u ∈ Vi, then there
exists Q ∈ C(X) such that u ∈ Q ∈ Ui. Since X ∈ 〈V1, . . . , Vk, X〉 ∩ K(X),
there exists B ∈ (α − {X}) ∩ 〈V1, . . . , Vk, X〉. For each i ∈ {1, . . . , k}, fix a point
bi ∈ B ∩ Vi and let Qi ∈ C(X) be such that bi ∈ Qi ∈ Ui. Let Q = Q1 ∪ · · · ∪ Qk.
Then Q ∈ Cn(X) and Q ∈ U . Since Q ⊂ U1 ∪ · · · ∪ Um, Q �= X . Since X is
hereditarily indecomposable and B �= X , we obtain that B ∪ Q �= X . Notice that
B ∪ Q is a subcontinuum of X . By Claim 3, h(Q) ⊂ h(B ∪ Q) and, by Claim 5,
h(B ∪Q) =

⋃
{h({b}) ∈ 2Y : b ∈ B ∪Q} ⊂

⋃
{h({x}) ∈ 2Y : x ∈ X} = h(X). Thus,

h(Q) ⊂ h(X) and h(Q) ∈ V . Therefore, h(A) ∈ cl2Y (2h(X) ∩K(Y )) = 2h(X) ∩K(Y ).
Claim 6 is proved.

We are ready to show that h(F1(X)) = F1(Y ). Let y ∈ Y and B = h−1({y}).
By Claim 6, {y} = h(B) ⊂ h(X). By Claim 5, h(X) =

⋃
{h({x}) ∈ 2Y : x ∈ X}.

Thus, there exists x ∈ X such that y ∈ h({x}). By Claim 4, h({x}) is a one-
point set. Hence, {y} = h({x}) ∈ h(F1(X)). We have shown that F1(Y ) ⊂
h(F1(X)). Thus, Claim 4 implies that h(F1(X)) = F1(Y ). This ends the proof of
the theorem. �

Question 1. (see [3, Problem 37]) Let X be a hereditarily indecomposable
Hausdorff continuum. Is it true that X has a unique hyperspace Fn(X), for each
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n � 2? That is, suppose that Y is a Hausdorff continuum such that Fn(X) is
homeomorphic to Fn(Y ), does it follows that X is homeomorphic to Y ?

The answer to this question is not known even for the case that X is a metric
continuum and n = 2.
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