THE SCALAR CURVATURE OF THE TANGENT BUNDLE OF A FINSLER MANIFOLD

Aurel Bejancu and Hani Reda Farran

Communicated by Darko Milinković

Abstract

Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold and G be the SasakiFinsler metric on the slit tangent bundle $T M^{0}=T M \backslash\{0\}$ of M. We express the scalar curvature $\tilde{\rho}$ of the Riemannian manifold $\left(T M^{0}, G\right)$ in terms of some geometrical objects of the Finsler manifold \mathbb{F}^{m}. Then, we find necessary and sufficient conditions for $\widetilde{\rho}$ to be a positively homogenenous function of degree zero with respect to the fiber coordinates of $T M^{0}$. Finally, we obtain characterizations of Landsberg manifolds, Berwald manifolds and Riemannian manifolds whose $\tilde{\rho}$ satisfies the above condition.

Introduction

The geometry of the tangent bundle $T M$ of a Riemannian manifold (M, g) goes back to Sasaki [10], who constructed on TM a Riemannian metric G which in our days is called the Sasaki metric. Then, several papers on the interrelations between the geometries of (M, g) and $(T M, G)$ have been published (see Gudmundsson and Kappos [6] for results and references). The extension of the study from Riemannian manifolds to Finsler manifolds is not an easy task. This is because a Finsler manifold $\mathbb{F}^{m}=(M, F)$ does not admit a canonical linear connection on M, that plays the role of the Levi-Civita connection on a Riemannian manifold. Recently, the first author (cf. (3) has initiated a study of the interrelations between the geometries of both the tangent bundle and indicatrix bundle of a Finsler manifold on one side, and the geometry of the manifold itself, on the other side. The main tool in the study was the Vrănceanu connection induced by the Levi-Civita connection on $\left(T M^{0}, G\right)$, where G is the Sasaki-Finsler metric on $T M^{0}$.

We study the geometry of a Finsler manifold $\mathbb{F}^{m}=(M, F)$ under the assumption that the scalar curvature $\widetilde{\rho}$ of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree zero with respect to the fiber coordinates $\left(y^{i}\right)$ of $T M^{0}$. In the first part

[^0]we present some geometric objects from the geometries of \mathbb{F}^{m} and $\left(T M^{0}, G\right)$ and following [3] we give some structure equations which relate the curvature tensor fields of the Levi-Civita connection and the Vrănceanu connection on $\left(T M^{0}, G\right)$. In the second part we express $\widetilde{\rho}$ in terms of some geometric objects of the Finsler manifold \mathbb{F}^{m} (cf. Theorem [2.1) and obtain necessary and sufficient conditions for $\widetilde{\rho}$ to be positively homogeneous of degree zero with respect to $\left(y^{i}\right)$ (cf. Theorem 2.2). In particular, we prove that such an \mathbb{F}^{m} is locally Minkowskian, provided M is a compact connected boundaryless manifold (cf. Corollary 2.1). Finally, we show that if \mathbb{F}^{m} is a Berwald manifold (cf. Corollary 2.4) or a Riemannian manifold (cf. Corollary 2.5) and $\widetilde{\rho}$ satisfies the above condition, then \mathbb{F}^{m} must be locally Minkowskian or locally Euclidean, respectively. In case of a Riemannian manifold, our result improves a well known result of Musso-Tricerri $\mathbf{9}$.

1. Preliminaries

Let $\mathbb{F}^{m}=(M, F)$ be an m-dimensional Finsler manifold, where F is the fundamental function of \mathbb{F}^{m} that is supposed to be of class C^{∞} on the slit tangent bundle $T M^{0}=T M \backslash\{0\}$. Denote by $\left(x^{i}, y^{i}\right), i \in\{1, \ldots, m\}$, the local coordinates on $T M$, where $\left(x^{i}\right)$ are the local coordinates of a point $x \in M$ and $\left(y^{i}\right)$ are the coordinates of a vector $y \in T_{x} M$. Then, F is positively homogeneous of degree 1 with respect to $\left(y^{i}\right)$ and the functions

$$
g_{i j}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}},
$$

define a symmetric Finsler tensor field of type $(0,2)$ on $T M^{0}$. We suppose that the $m \times m$ matrix $\left[g_{i j}\right]$ is positive definite and denote its inverse by $\left[g^{i j}\right]$.

Next, we consider the vertical bundle VTM ${ }^{0}$ over $T M^{0}$, which is the kernel of the differential of the projection map $\Pi: T M^{0} \rightarrow M$. Denote by $\Gamma\left(V T M^{0}\right)$ the $\mathcal{F}\left(T M^{0}\right)$-module of sections of $V T M^{0}$, where $\mathcal{F}\left(T M^{0}\right)$ is the algebra of smooth functions on $T M^{0}$. The same notation will be used for any other vector bundle. Locally, $\Gamma\left(V T M^{0}\right)$ is spanned by the natural vector fields $\left\{\partial / \partial y^{1}, \ldots, \partial / \partial y^{m}\right\}$. Then, we define the vector fields

$$
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-G_{i}^{j} \frac{\partial}{\partial y^{j}}, \quad i \in\{1, \ldots, m\}
$$

where we put

$$
G_{i}^{j}=\frac{\partial G^{j}}{\partial y^{i}} \quad \text { and } \quad G^{j}=\frac{1}{4} g^{j k}\left\{\frac{\partial^{2} F^{2}}{\partial y^{k} \partial x^{i}} y^{i}-\frac{\partial F^{2}}{\partial x^{k}}\right\}
$$

Thus, we obtain the horizontal bundle $H T M^{0}$ over $T M^{0}$, which is locally spanned by $\left\{\delta / \delta x^{1}, \ldots, \delta / \delta x^{m}\right\}$. Moreover, we have the decomposition

$$
T T M^{0}=H T M^{0} \oplus V T M^{0}
$$

which enables us to define the Sasaki-Finsler metric G on $T M^{0}$ as follows (cf. Be-jancu-Farran 4, p. 35])

$$
\begin{equation*}
G\left(\frac{\delta}{\delta x^{j}}, \frac{\delta}{\delta x^{i}}\right)=G\left(\frac{\partial}{\partial y^{j}}, \frac{\partial}{\partial y^{i}}\right)=g_{i j}(x, y), G\left(\frac{\delta}{\delta x^{j}}, \frac{\partial}{\partial y^{i}}\right)=0 \tag{1.1}
\end{equation*}
$$

Now, we define some geometric objects of Finsler type on $T M^{0}$. First, we express the Lie brackets of the above vector fields as follows:

$$
\left[\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta x^{j}}\right]=\mathbf{R}^{k}{ }_{i j} \frac{\partial}{\partial y^{k}}, \quad\left[\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{j}}\right]=G_{i}{ }^{k}{ }_{j} \frac{\partial}{\partial y^{k}}
$$

where we put

$$
\mathbf{R}_{i j}^{k}=\frac{\delta G_{i}^{k}}{\delta x^{j}}-\frac{\delta G_{j}^{k}}{\delta x^{i}}, \quad G_{i}{ }^{k}{ }_{j}=\frac{\partial G_{j}^{k}}{\partial y^{i}}
$$

If $\mathbf{R}^{k}{ }_{i j}=0$ for all $i, j, k \in\{1, \ldots, m\}$, we say that \mathbb{F}^{m} is a flat Finsler manifold. This name is justified by the fact that in this case the flag curvature of \mathbb{F}^{m} vanishes identically on $T M^{0}$. Also, the functions

$$
F_{i}^{k}{ }_{j}=\frac{1}{2} g^{k h}\left\{\frac{\delta g_{h i}}{\delta x^{j}}+\frac{\delta g_{h j}}{\delta x^{i}}-\frac{\delta g_{i j}}{\delta x^{h}}\right\}
$$

represent the local coefficients of Chern-Rund connection. Then, we define a Finsler tensor field of type $(1,2)$ whose local components are given by $B_{i}{ }^{k}{ }_{j}=F_{i}{ }^{k}{ }_{j}-G_{i}{ }^{k}{ }_{j}$. Finally, the Cartan tensor field is given by its local components

$$
C_{i}^{k}{ }_{j}=\frac{1}{2} g^{k h} \frac{\partial g_{i j}}{\partial y^{h}}
$$

Next, we denote by h and v the projection morphisms of $T T M^{0}$ on $H T M^{0}$ and $V T M^{0}$, respectively. Then, by using the above Finsler tensor fields $\mathbf{R}^{k}{ }_{i j}, C_{i}{ }^{k}{ }_{j}$ and $B_{i}{ }^{k}{ }_{j}$ we define the following adapted tensor fields:

$$
\begin{align*}
& \mathbf{R}: \Gamma\left(H T M^{0}\right) \times \Gamma\left(H T M^{0}\right) \rightarrow \Gamma\left(V T M^{0}\right), \tag{1.2}\\
& C: \Gamma(h X, h Y)=\mathbf{R}^{k}{ }_{i j} Y^{i} X^{j} \frac{\partial}{\partial y^{k}} \tag{1.3}\\
& C\left(H T M^{0}\right) \times \Gamma\left(H T M^{0}\right) \rightarrow \Gamma\left(V T M^{0}\right), \tag{1.4}\\
& B(h X, h Y)=C_{i}{ }^{k}{ }_{j} Y^{i} X^{j} \frac{\partial}{\partial y^{k}} \\
& B: \Gamma\left(V T M^{0}\right) \times \Gamma\left(V T M^{0}\right) \rightarrow \Gamma\left(H T M^{0}\right),
\end{align*} \quad B(v U, v W)=B_{i}{ }_{j}{ }_{j} W^{i} U^{j} \frac{\delta}{\delta x^{k}}, ~ l
$$

where we set

$$
h X=X^{j} \frac{\delta}{\delta x^{j}}, h Y=Y^{i} \frac{\delta}{\delta x^{i}}, v U=U^{j} \frac{\partial}{\partial y^{j}}, v W=W^{i} \frac{\partial}{\partial y^{i}}
$$

For each of the above tensor fields \mathbf{R}, C and B we define a twin (denoted by the same symbol) as follows:

$$
\begin{gather*}
\mathbf{R}: \Gamma\left(H T M^{0}\right) \times \Gamma\left(V T M^{0}\right) \rightarrow \Gamma\left(H T M^{0}\right) \tag{1.5}\\
g(\mathbf{R}(h X, v Y), h Z)=G(\mathbf{R}(h X, h Z), v Y) \\
C: \Gamma\left(H T M^{0}\right) \times \Gamma\left(V T M^{0}\right) \rightarrow \Gamma\left(H T M^{0}\right) \\
B: \Gamma(h, v Y), h Z)=G(C(h X, h Z), v Y) \tag{1.6}\\
\quad G(B(h X, v Y), v Z)=G(B(v Y, v Z), h X)
\end{gather*}
$$

Locally, we have the following formulas:

$$
\begin{gather*}
\text { (a) } \mathbf{R}\left(\frac{\delta}{\delta x^{j}}, \frac{\delta}{\delta x^{i}}\right)=\mathbf{R}^{k}{ }_{i j} \frac{\partial}{\partial y^{k}}, \text { (b) } C\left(\frac{\delta}{\delta x^{j}}, \frac{\delta}{\delta x^{i}}\right)=C_{i}{ }^{k}{ }_{j} \frac{\partial}{\partial y^{k}} \\
\text { (c) } B\left(\frac{\partial}{\partial y^{j}}, \frac{\partial}{\partial y^{i}}\right)=B_{i}{ }^{k}{ }_{j} \frac{\delta}{\delta x^{k}} \tag{1.8}
\end{gather*}
$$

(a) $\mathbf{R}\left(\frac{\delta}{\delta x^{j}}, \frac{\partial}{\partial y^{i}}\right)=\overline{\mathbf{R}}^{k}{ }_{i j} \frac{\delta}{\delta x^{k}}, \quad$ (b) $C\left(\frac{\delta}{\delta x^{j}}, \frac{\partial}{\partial y^{i}}\right)=\bar{C}_{i}{ }^{k}{ }_{j} \frac{\delta}{\delta x^{k}}$,

$$
\text { (c) } B\left(\frac{\delta}{\delta x^{j}}, \frac{\partial}{\partial y^{i}}\right)=\bar{B}_{i}{ }^{k}{ }_{j} \frac{\partial}{\partial y^{k}}
$$

(a) $\overline{\mathbf{R}}^{k}{ }_{i j}=g_{i h} \mathbf{R}^{h}{ }_{t j} g^{t k}$,
(b) $\bar{C}_{i}{ }^{k}{ }_{j}=C_{i}{ }^{k}{ }_{j}$,
(c) $\bar{B}_{i}{ }^{k}{ }_{j}=B_{i}{ }^{k}{ }_{j}$.

Now, let $\widetilde{\nabla}$ be the Levi-Civita connection on $\left(T M^{0}, G\right)$ and ∇ be the Vrănceanu connection induced by $\widetilde{\nabla}$ given by (cf. Ianus $[7$)

$$
\nabla_{X} Y=v \widetilde{\nabla}_{v X} v Y+h \widetilde{\nabla}_{h X} h Y+v[h X, v Y]+h[v X, h Y]
$$

It is important to note that the Vrănceanu connection is locally given by the local coefficients of the classical Finsler connections as follows:

$$
\begin{array}{ll}
\nabla_{\frac{\delta}{\delta x^{j}}} \frac{\delta}{\delta x^{i}}=F_{i}^{k}{ }_{j} \frac{\delta}{\delta x^{k}}, & \frac{\nabla_{\partial}}{\partial y^{j}} \\
\frac{\nabla^{j}}{\partial y^{i}}=C_{i}^{k}{ }_{j} \frac{\partial}{\partial y^{k}} \tag{1.11}\\
\frac{\delta}{\delta x^{i}}=0, & \frac{\nabla_{\delta}}{\delta x^{j}}
\end{array} \frac{\partial}{\partial y^{i}}=G_{i}^{k}{ }_{j} \frac{\partial}{\partial y^{k}} .
$$

Moreover, the curvature tensor field \widetilde{R} of the Levi-Civita connection $\widetilde{\nabla}$ is completely determined by the curvature tensor field R of the Vrănceanu connection on $\left(T M^{0}, G\right)$ and the adapted tensor fields \mathbf{R}, C and B (cf. Bejancu [3]). We recall here only the following relations:

$$
\begin{align*}
\widetilde{R}(h X, h Y, h Z)= & R(h X, h Y, h Z)+B(h Z, \mathbf{R}(h X, h Y)) \\
& +C(h Z, \mathbf{R}(h X, h Y))+\frac{1}{2} \mathbf{R}(h Z, \mathbf{R}(h X, h Y)) \\
& -\mathcal{A}_{(h X, h Y)}\left\{\left(\nabla_{h X} C\right)(h Y, h Z)+\frac{1}{2}\left(\nabla_{h X} \mathbf{R}\right)(h Y, h Z)\right. \\
& +B(h X, C(h Y, h Z))+\frac{1}{2} B(h X, \mathbf{R}(h Y, h Z)) \tag{1.12}\\
& +C(h X, C(h Y, h Z))+\frac{1}{2} C(h X, \mathbf{R}(h Y, h Z)) \\
& \left.+\frac{1}{2} \mathbf{R}(h X, C(h Y, h Z))+\frac{1}{4} \mathbf{R}(h X, \mathbf{R}(h Y, h Z))\right\}
\end{align*}
$$

$$
\begin{array}{r}
\widetilde{R}(h X, v Y, v Z)=R(h X, v Y, v Z)-\left(\nabla_{h X} B\right)(v Y, v Z) \\
-\left(\nabla_{v Y} B\right)(h X, v Z)-\left(\nabla_{v Y} C\right)(h X, v Z)-\frac{1}{2}\left(\nabla_{v Y} \mathbf{R}\right)(h X, v Z) \\
+C(h X, B(v Y, v Z))+\frac{1}{2} \mathbf{R}(h X, B(v Y, v Z))+B(v Y, B(h X, v Z)) \\
-C(C(h X, v Z), v Y)-\frac{1}{2} C(\mathbf{R}(h X, v Z), v Y) \\
-\frac{1}{2} \mathbf{R}(C(h X, v Z), v Y)-\frac{1}{4} \mathbf{R}(\mathbf{R}(h X, v Z), v Y) \\
-B(C(h X, v Z), v Y)-\frac{1}{2} B(\mathbf{R}(h X, v Z), v Y) \\
\widetilde{R}(v X, v Y, v Z)=R(v X, v Y, v Z)-\mathcal{A}_{(v X, v Y)}\left\{\left(\nabla_{v X} B\right)(v Y, v Z)\right. \tag{1.14}\\
\left.+C(B(v Y, v Z), v X)+\frac{1}{2} \mathbf{R}(B(v Y, v Z), v X)+B(B(v Y, v Z), v X)\right\}
\end{array}
$$

where $\mathcal{A}_{(h X, h Y)}$ means that in the expression that follows this symbol we interchange $h X$ and $h Y$, and then subtract, as in the following formula

$$
\mathcal{A}_{(h X, h Y)}\{f(h X, h Y)\}=f(h X, h Y)-f(h Y, h X) .
$$

In a similar way, we use the symbol $\mathcal{A}_{(v X, v Y)}$. Finally, we present some local components of the curvature tensor field of the Vrănceanu connection on $\left(T M^{0}, G\right)$:

$$
\begin{align*}
& \text { (a) } R\left(\frac{\delta}{\delta x^{k}}, \frac{\delta}{\delta x^{j}}\right) \frac{\delta}{\delta x^{i}}=K_{i}{ }_{j k k} \frac{\delta}{\delta x^{h}} \\
& \text { (b) } R\left(\frac{\partial}{\partial y^{k}}, \frac{\partial}{\partial y^{j}}\right) \frac{\partial}{\partial y^{i}}=S_{i}^{h}{ }_{j k} \frac{\partial}{\partial y^{h}} \tag{1.15}
\end{align*}
$$

where we set

$$
\begin{align*}
& \text { (a) } K_{i}{ }^{h}{ }_{j k}=\frac{\delta F_{i}{ }^{h}{ }_{j}}{\delta x^{k}}-\frac{\delta F_{i}{ }^{h} k}{\delta x^{j}}+F_{i}{ }_{j}{ }_{j} F_{t}{ }^{h}{ }_{k}-F_{i}{ }^{t}{ }_{k} F_{t}{ }^{h}{ }_{j}, \\
& \text { (b) } \quad S_{i}{ }^{h}{ }_{j k}=\frac{\partial C_{i}{ }_{j}{ }_{j}}{\partial y^{k}}-\frac{\partial C_{i}{ }^{h} k}{\partial y^{j}}+C_{i}{ }_{j} C_{t}{ }^{h}{ }_{k}-C_{i}{ }_{k} C_{t}{ }^{h}{ }_{j} . \tag{1.16}
\end{align*}
$$

We note that (1.16a) and (1.16b) give the local components of the $h h$-curvature and $v v$-curvature tensor fields of the Chern-Rund connection and Cartan connection, respectively.

2. Scalar curvature of $\left(T M^{0}, G\right)$

Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold and $\left(T M^{0}, G\right)$ be its slit tangent bundle endowed with the Sasaki-Finsler metric G given by (1.1). Consider the local orthonormal fields of frames $\left\{H_{a}\right\}$ and $\left\{V_{a}\right\}$, such that $H_{a} \in \Gamma\left(H T M^{0}\right)$ and $V_{a} \in \Gamma\left(V T M^{0}\right)$ for any $a \in\{1, \ldots, m\}$. Next, we set

$$
\begin{equation*}
H_{a}=H_{a}^{i} \frac{\delta}{\delta x^{i}} \quad \text { and } \quad V_{a}=V_{a}^{i} \frac{\partial}{\partial y^{i}} \tag{2.1}
\end{equation*}
$$

Then, by using (1.1), we deduce that the inverse matrix of $\left[g_{i j}\right]$ has the entries given by

$$
\begin{equation*}
g^{i j}=\sum_{a=1}^{m} H_{a}^{i} H_{a}^{j}=\sum_{a=1}^{m} V_{a}^{i} V_{a}^{j}, \quad i, j \in\{1, \ldots, m\} \tag{2.2}
\end{equation*}
$$

Now we denote by $\widetilde{\rho}$ the scalar curvature of the Riemannian manifold ($T M^{0}, G$). As $\left\{H_{a}, V_{a}\right\}, a \in\{1, \ldots, m\}$, is a local orthonormal frame field on $T M^{0}$ with respect to G, we have

$$
\begin{equation*}
\widetilde{\rho}=\alpha+2 \beta+\gamma \tag{2.3}
\end{equation*}
$$

where we put

$$
\begin{align*}
& \text { (a) } \alpha=\sum_{a, b=1}^{m}\left\{G\left(\widetilde{R}\left(H_{a}, H_{b}\right) H_{b}, H_{a}\right)\right\} \\
& \text { (b) } \beta=\sum_{a, b=1}^{m}\left\{G\left(\widetilde{R}\left(H_{a}, V_{b}\right) V_{b}, H_{a}\right)\right\} \tag{2.4}\\
& \text { (c) } \gamma=\sum_{a, b=1}^{m}\left\{G\left(\widetilde{R}\left(V_{a}, V_{b}\right) V_{b}, V_{a}\right)\right\}
\end{align*}
$$

In what follows we will express the above three functions α, β, γ in terms of the local components of some important Finsler tensor fields.

First, by using (1.5) and (1.6) and taking into account that \mathbf{R} and C are skew-symmetric and symmetric adapted tensor fields respectively, we obtain
(a) $G\left(C\left(H_{a}, C\left(H_{b}, H_{b}\right)\right), H_{a}\right)=G\left(C\left(H_{a}, H_{a}\right), C\left(H_{b}, H_{b}\right)\right)$,
(b) $G\left(C\left(H_{b}, C\left(H_{a}, H_{b}\right)\right), H_{a}\right)=\left\|C\left(H_{a}, H_{b}\right)\right\|^{2}$,
(c) $G\left(C\left(H_{b}, \mathbf{R}\left(H_{a}, H_{b}\right)\right), H_{a}\right)=-G\left(\mathbf{R}\left(H_{b}, C\left(H_{a}, H_{b}\right)\right), H_{a}\right)$

$$
\begin{equation*}
=G\left(C\left(H_{a}, H_{b}\right), \mathbf{R}\left(H_{a}, H_{b}\right)\right) \tag{2.5}
\end{equation*}
$$

(d) $\quad G\left(\mathbf{R}\left(H_{a}, C\left(H_{b}, H_{b}\right)\right), H_{a}\right)=G\left(\mathbf{R}\left(H_{a}, H_{a}\right), C\left(H_{b}, H_{b}\right)\right)=0$,
(e) $\quad G\left(\mathbf{R}\left(H_{b}, \mathbf{R}\left(H_{a}, H_{b}\right)\right), H_{a}\right)=-\left\|\mathbf{R}\left(H_{a}, H_{b}\right)\right\|^{2}$,

$$
\begin{equation*}
\sum_{a, b=1}^{m}\left\{G\left(C\left(H_{a}, H_{b}\right), \mathbf{R}\left(H_{a}, H_{b}\right)\right)\right\}=0 \tag{f}
\end{equation*}
$$

where the norm $\|\cdot\|$ is taken with respect to G. Then, by direct calculations using (2.4a), (1.12) and (2.5), we deduce that

$$
\begin{array}{rlr}
\alpha= & \sum_{a, b=1}^{m}\left\{G\left(h \widetilde{R}\left(H_{a}, H_{b}\right) H_{b}, H_{a}\right)\right\} & \\
=\sum_{a, b=1}^{m}\left\{G\left(R\left(H_{a}, H_{b}\right) H_{b}, H_{a}\right)-\frac{3}{4}\left\|\mathbf{R}\left(H_{a}, H_{b}\right)\right\|^{2}+\left\|C\left(H_{a}, H_{b}\right)\right\|^{2}\right. \tag{2.6}\\
& \left.-G\left(C\left(H_{a}, H_{a}\right), C\left(H_{b}, H_{b}\right)\right)\right\} .
\end{array}
$$

THE SCALAR CURVATURE OF THE TANGENT BUNDLE OF A FINSLER MANIFOLD 63

Next, by using (1.5), (1.6) and (1.7), we obtain
(a) $G\left(B\left(V_{b}, B\left(H_{a}, V_{b}\right)\right), H_{a}\right)=\left\|B\left(H_{a}, V_{b}\right)\right\|^{2}$,
(b) $G\left(C\left(C\left(H_{a}, V_{b}\right), V_{b}\right), H_{a}\right)=\left\|C\left(H_{a}, V_{b}\right)\right\|^{2}$,
(c) $\quad G\left(C\left(\mathbf{R}\left(H_{a}, V_{b}\right), V_{b}\right), H_{a}\right)+G\left(\mathbf{R}\left(C\left(H_{a}, V_{b}\right), V_{b}\right), H_{a}\right)=0$,
(d) $\quad G\left(\mathbf{R}\left(\mathbf{R}\left(H_{a}, V_{b}\right), V_{b}\right), H_{a}\right)=-\left\|\mathbf{R}\left(H_{a}, V_{b}\right)\right\|^{2}$.

Then, taking into account (2.4b), (1.13) and (2.7), we infer that

$$
\begin{align*}
\beta & =\sum_{a, b=1}^{m}\left\{\left\|B\left(H_{a}, V_{b}\right)\right\|^{2}-\left\|C\left(H_{a}, V_{b}\right)\right\|^{2}+\frac{1}{4}\left\|\mathbf{R}\left(H_{a}, V_{b}\right)\right\|^{2}\right. \tag{2.8}\\
& \left.-G\left(\left(\nabla_{H_{a}} B\right)\left(V_{b}, V_{b}\right)+\left(\nabla_{V_{b}} C\right)\left(H_{a}, V_{b}\right)+\frac{1}{2}\left(\nabla_{V_{b}} \mathbf{R}\right)\left(H_{a}, V_{b}\right), H_{a}\right)\right\}
\end{align*}
$$

Now, as a consequence of (1.7), we obtain
(a) $G\left(B\left(B\left(V_{b}, V_{b}\right), V_{a}\right), V_{a}\right)=G\left(B\left(V_{a}, V_{a}\right), B\left(V_{b}, V_{b}\right)\right)$
(b) $\quad G\left(B\left(B\left(V_{a}, V_{b}\right), V_{b}\right), V_{a}\right)=\left\|B\left(V_{a}, V_{b}\right)\right\|^{2}$.

Then, by using (2.4c), (1.14) and (2.9), we deduce that

$$
\begin{equation*}
\gamma=\sum_{a, b=1}^{m}\left\{G\left(R\left(V_{a}, V_{b}\right) V_{b}, V_{a}\right)+\left\|B\left(V_{a}, V_{b}\right)\right\|^{2}-G\left(B\left(V_{a}, V_{a}\right), B\left(V_{b}, V_{b}\right)\right)\right\} \tag{2.10}
\end{equation*}
$$

Also, by using $(2.1),(2.2),(1.8),(1.9)$ and (1.10), we obtain

$$
\begin{align*}
& \text { (a) } \sum_{a, b=1}^{m}\left\|\mathbf{R}\left(H_{a}, V_{b}\right)\right\|^{2}=\sum_{a, b=1}^{m}\left\|\mathbf{R}\left(H_{a}, H_{b}\right)\right\|^{2}=g^{i k} g^{j h} g_{s t} \mathbf{R}_{i j}^{s} \mathbf{R}^{t}{ }_{k h}, \\
& \text { (b) } \sum_{a, b=1}^{m}\left\|C\left(H_{a}, V_{b}\right)\right\|^{2}=\sum_{a, b=1}^{m}\left\|C\left(H_{a}, H_{b}\right)\right\|^{2}=g^{i k} g^{j h} g_{s t} C_{i}^{s}{ }_{j} C_{k}{ }^{t}{ }_{h}, \tag{2.11}\\
& \text { (c) } \sum_{a, b=1}^{m}\left\|B\left(H_{a}, V_{b}\right)\right\|^{2}=\sum_{a, b=1}^{m}\left\|B\left(V_{a}, V_{b}\right)\right\|^{2}=g^{i k} g^{j h} g_{s t} B_{i}{ }^{s}{ }_{j} B_{k}{ }^{t}{ }_{h}
\end{align*}
$$

Finally, by using $(2.3),(2.6),(2.8),(2.10)$ and (2.11), we deduce that

$$
\begin{align*}
& \widetilde{\rho}=\sum_{a, b=1}^{m}\{ G\left(R\left(H_{a}, H_{b}\right) H_{b}, H_{a}\right)+G\left(R\left(V_{a}, V_{b}\right) V_{b}, V_{a}\right) \\
&-\frac{1}{4}\left\|\mathbf{R}\left(H_{a}, H_{b}\right)\right\|^{2}-\left\|C\left(H_{a}, H_{b}\right)\right\|^{2}+3\left\|B\left(V_{a}, V_{b}\right)\right\|^{2} \tag{2.12}\\
&-G\left(C\left(H_{a}, H_{a}\right), C\left(H_{b}, H_{b}\right)\right)-G\left(B\left(V_{a}, V_{a}\right), B\left(V_{b}, V_{b}\right)\right) \\
&\left.-2 G\left(\left(\nabla_{H_{a}} B\right)\left(V_{b}, V_{b}\right)+\left(\nabla_{V_{b}} C\right)\left(H_{a}, V_{b}\right)+\frac{1}{2}\left(\nabla_{V_{b}} \mathbf{R}\right)\left(H_{a}, V_{b}\right), H_{a}\right)\right\}
\end{align*}
$$

Next, we want to express the scalar curvature of $\left(T M^{0}, G\right)$ in terms of some geometric objects of Finsler type of \mathbb{F}^{m}. First, by using (2.1), (2.2), (1.15), (1.8b) and
(1.8c), we deduce that
(a) $\sum_{a, b=1}^{m}\left\{G\left(R\left(H_{a}, H_{b}\right) H_{b}, H_{a}\right)\right\}=g^{i k} g^{j h} K_{i j k h}$,
(b) $\sum_{a, b=1}^{m}\left\{G\left(R\left(V_{a}, V_{b}\right) V_{b}, V_{a}\right)\right\}=g^{i k} g^{j h} S_{i j k h}$,
(c) $\sum_{a, b=1}^{m}\left\{G\left(C\left(H_{a}, H_{a}\right), C\left(H_{b}, H_{b}\right)\right)\right\}=g^{i k} g^{j h} g_{s t} C_{i}{ }^{s}{ }_{k} C_{j}{ }^{t}{ }_{h}$,
(d) $\sum_{a, b=1}^{m}\left\{G\left(B\left(V_{a}, V_{a}\right), B\left(V_{b}, V_{b}\right)\right)\right\}=g^{i k} g^{j h} g_{s t} B_{i}{ }^{s}{ }_{k} B_{j}{ }^{t}{ }_{h}$.

Then, by using (2.1), (2.2) and (1.11), we obtain
(a) $\sum_{a, b=1}^{m}\left\{G\left(\left(\nabla_{H_{a}} B\right)\left(V_{b}, V_{b}\right), H_{a}\right)\right\}=g^{j h} B_{j}{ }^{i}{ }_{h \mid i}$,
(b) $\sum_{a, b=1}^{m}\left\{G\left(\left(\nabla_{V_{b}} C\right)\left(H_{a}, V_{b}\right), H_{a}\right)\right\}=g^{j h} C_{h}{ }^{i}{ }_{i \| j}$,
(c) $\sum_{a, b=1}^{m}\left\{G\left(\left(\nabla_{V_{b}} \mathbf{R}\right)\left(H_{a}, V_{b}\right), H_{a}\right)\right\}=g^{j h} \overline{\mathbf{R}}^{i}{ }_{h i \| j}$,
where the covariant derivatives on the right side are defined by the Vrănceanu connection as follows

$$
\begin{align*}
& \text { (a) } B_{j}{ }^{i}{ }_{h \mid i}=\frac{\delta B_{j}{ }^{i}{ }_{h}}{\delta x^{i}}+B_{j}{ }^{k}{ }_{h} F_{k}{ }^{i}{ }_{i}-B_{k}{ }^{i}{ }_{h} G_{j}{ }^{k}{ }_{i}-B_{j}{ }^{i}{ }_{k} G_{h}{ }^{k}{ }_{i}, \\
& \text { (b) } C_{h}{ }_{h}{ }_{i}{ }_{\| j j}=\frac{\partial C_{h}{ }^{i}{ }_{i}}{\partial y^{j}}-C_{k}{ }^{i}{ }_{i} C_{h}{ }^{k}{ }_{j}, \tag{2.15}\\
& \text { (c) } \overline{\mathbf{R}}_{h}{ }_{h}{ }_{i \| j}=\frac{\partial \overline{\mathbf{R}}^{i}{ }_{h i}}{\partial y^{j}}-\overline{\mathbf{R}}^{i}{ }_{k i} C_{h}{ }^{k}{ }_{j} .
\end{align*}
$$

Thus, by using (2.11), (2.13) and (2.14) into (2.12), we deduce that the scalar curvature of $\left(T M^{0}, G\right)$ is given by

$$
\begin{align*}
& \widetilde{\rho}=g^{i k} g^{j h}\left\{K_{i j k h}+S_{i j k h}-\frac{1}{4} g_{s t} \mathbf{R}^{s}{ }_{i j} \mathbf{R}^{t}{ }_{k h}-g_{s t} C_{i}{ }^{s}{ }_{j} C_{k}{ }^{t}{ }_{h}\right. \\
&\left.+3 g_{s t} B_{i}{ }^{s}{ }_{j} B_{k}{ }^{t}{ }_{h}-g_{s t} C_{i}{ }^{s}{ }_{k} C_{j}{ }^{t}{ }_{h}-g_{s t} B_{i}{ }^{s}{ }_{k} B_{j}{ }^{t}{ }_{h}\right\} \tag{2.16}\\
&-2 g^{j h}\left\{B_{j}{ }^{i}{ }_{h \mid i}+C_{h}{ }^{i}{ }_{i\| \| j}+\frac{1}{2} \overline{\mathbf{R}}^{i}{ }_{h i\| \| j}\right\} .
\end{align*}
$$

An interesting formula for $S_{i j k h}$ was given by Matsumoto [8 p. 114]:

$$
\begin{equation*}
S_{i j k h}=g_{s t}\left\{C_{i}{ }^{s}{ }_{h} C_{j}{ }^{t}{ }_{k}-C_{i}{ }^{s}{ }_{k} C_{j}{ }^{t}{ }_{h}\right\} \tag{2.17}
\end{equation*}
$$

Then, by direct calculations, using (2.17) and (2.15b), we obtain

$$
\begin{equation*}
g^{i k} g^{j h}\left\{S_{i j k h}-g_{s t} C_{i}{ }^{s}{ }_{j} C_{k}{ }^{t}{ }_{h}-g_{s t} C_{i}{ }^{s}{ }_{k} C_{j}{ }^{t}{ }_{h}\right\}-2 g^{j h} C_{h}{ }^{i}{ }_{i \| j}=-2 g^{j h} \frac{\partial C_{h}}{\partial y^{j}}, \tag{2.18}
\end{equation*}
$$

where we put

$$
\begin{equation*}
C_{h}=C_{h}{ }_{i}{ }_{i}=g^{k i} C_{h k i} . \tag{2.19}
\end{equation*}
$$

Taking into account of (2.18) into (2.16), we can state the following.
Theorem 2.1. Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold. Then, the scalar curvature $\widetilde{\rho}$ of the Riemannian manifold $\left(T M^{0}, G\right)$ is given by

$$
\begin{align*}
& \widetilde{\rho}= g^{i k} g^{j h}\left\{K_{i j k h}+3 g_{s t} B_{i}{ }^{s}{ }_{j} B_{k}{ }^{t}{ }_{h}-g_{s t}{\left.B_{i}{ }^{s}{ }_{k} B_{j}{ }^{t}{ }_{h}-\frac{1}{4} g_{s t} \mathbf{R}^{s}{ }_{i j} \mathbf{R}^{t}{ }_{k h}\right\}}\right. \\
&-2 g^{j h}\left\{B_{j}{ }^{i}{ }_{h \mid i}+\frac{\partial C_{h}}{\partial y^{j}}+\frac{1}{2} \overline{\mathbf{R}}^{i}{ }_{h i \| j}\right\} . \tag{2.20}
\end{align*}
$$

Next, following Matsumoto [8, p. 176], we call

$$
\begin{equation*}
C^{i}=g^{i h} C_{h}, \tag{2.21}
\end{equation*}
$$

the torsion vector field of \mathbb{F}^{m}. Then, we can prove the following.
THEOREM 2.2. Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold. Then, the scalar curvature of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree zero with respect to $\left(y^{i}\right)$ if and only if the following conditions are satisfied:
(i) \mathbb{F}^{m} is a flat Finsler manifold.
(ii) The torsion vector field of \mathbb{F}^{m} satisfies

$$
\begin{equation*}
\frac{\partial C^{i}}{\partial y^{i}}+2 g_{j k} C^{j} C^{k}=0 \tag{2.22}
\end{equation*}
$$

Proof. First, we express (2.20) as follows

$$
\begin{equation*}
\widetilde{\rho}=A+B+C, \tag{2.23}
\end{equation*}
$$

where

$$
\text { (a) } \begin{array}{r}
A=g^{i k} g^{j h}\left\{K_{i j k h}+3 g_{s t} B_{i}{ }^{s}{ }_{j} B_{k}{ }^{t}{ }_{h}-g_{s t} B_{i}{ }^{s}{ }_{k} B_{j}{ }^{t}{ }_{h}\right\} \\
-2 g^{j h}\left\{B_{j}{ }^{i}{ }_{h \mid i}+\frac{1}{2} \overline{\mathbf{R}}^{i}{ }_{h i\| \| j}\right\}, \tag{2.24}
\end{array}
$$

(b) $B=-\frac{1}{4} g^{i k} g^{j h} g_{s t} \mathbf{R}^{s}{ }_{i j} \mathbf{R}^{t}{ }_{k h}$,
(c) $C=-2 g^{j h} \frac{\partial C_{h}}{\partial y^{j}}$.

By the homogeneity properties of the functions on the right side of (2.24), we conclude that A, B and C are positively homogeneous functions of degrees 0,1 and -2 , respectively. Then, from (2.23) and (2.24), we deduce that $\widetilde{\rho}$ is positively homogeneous of degree 0 if and only if we have

$$
\begin{equation*}
\text { (a) } g^{i k} g^{j h} g_{s t} \mathbf{R}_{i j}^{s} \mathbf{R}_{k h}^{t}=0, \quad \text { (b) } \quad g^{j h} \frac{\partial C_{h}}{\partial y^{j}}=0 \tag{2.25}
\end{equation*}
$$

Clearly, (2.25a) holds if and only if $\mathbf{R}^{k}{ }_{i j}=0$, for each $i, j, k \in\{1, \ldots, m\}$, that is, \mathbb{F}^{m} is a flat Finsler manifold. On the other hand, by using (2.21) and (2.19), we deduce that

$$
\begin{aligned}
g^{j h} \frac{\partial C_{h}}{\partial y^{j}} & =g^{j h}\left\{\frac{\partial g_{h k}}{\partial y^{j}} C^{k}+g_{h k} \frac{\partial C^{k}}{\partial y^{j}}\right\} \\
& =\frac{\partial C^{j}}{\partial y^{j}}+2 g^{j h} C_{h k j} C^{k}=\frac{\partial C^{j}}{\partial y^{j}}+2 g_{k h} C^{k} C^{h} .
\end{aligned}
$$

Thus, (2.25b) is equivalent to (2.22). This completes the proof of the theorem.
Next, we recall the following results on the geometry of \mathbb{F}^{m}.
THEOREM 2.3 (Akbar-Zadeh [1]). Let $\mathbb{F}^{m}=(M, F)$ be a compact connected boundaryless flat Finsler manifold. Then, \mathbb{F}^{m} is locally Minkowskian.

Theorem 2.4 (Deicke [5). Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold such that F is positive and C^{4}-differentiable for any nonzero $\left(y^{i}\right)$. If the torsion vector field vanishes on M, then \mathbb{F}^{m} must be Riemannian.

Now, by combining Theorems 2.2 and 2.3 , we obtain the following:
Corollary 2.1. Let $\mathbb{F}^{m}=(M, F)$ be a be a compact connected boundaryless Finsler manifold. If the scalar curvature of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree zero with respect to $\left(y^{i}\right)$, then \mathbb{F}^{m} is locally Minkowskian.

Also, we can prove the following.
Corollary 2.2. Let $\mathbb{F}^{m}=(M, F)$ be a Finsler manifold such that F is positive and C^{4}-differentiable for any nonzero $\left(y^{i}\right)$. Suppose the torsion vector field of \mathbb{F}^{m} satisfies

$$
\begin{equation*}
\operatorname{trace}\left[\frac{\partial C^{i}}{\partial y^{j}}\right] \geqslant 0 \tag{2.26}
\end{equation*}
$$

Then the scalar curvature of $\left(T M^{0}, G\right)$ is positively homogeneous of degree 0 with respect to $\left(y^{i}\right)$ if and only if \mathbb{F}^{m} is locally Euclidean.

Proof. If \mathbb{F}^{m} is locally Euclidean, then both the flag curvature and the torsion vector field of \mathbb{F}^{m} vanish on M, and by Theorem 2.2 we conclude that $\widetilde{\rho}$ is positively homogeneous of degree 0 . Conversely, suppose that $\widetilde{\rho}$ is positively homogeneous of degree 0 . Then, from (2.26) and (2.22), we deduce that the torsion vector field of \mathbb{F}^{m} vanishes on M. Thus, by Theorem [2.4] we conclude that \mathbb{F}^{m} must be Riemannian. Finally, from Theorem 2.2 we see that \mathbb{F}^{m} is a flat Finsler manifold. Hence, F^{m} is locally Euclidean.

Corollary 2.3. Let $\mathbb{F}^{m}=(M, F)$ be a Landsberg manifold. If the scalar curvature of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree 0 with respect to $\left(y^{i}\right)$, then it vanishes on TM.

Proof. Since $B_{j}{ }^{i}{ }_{k}=0$ for all $i, j, k \in\{1, \ldots, m\}$, by (2.23) and (2.24) we deduce that $\widetilde{\rho}=g^{i k} g^{j h} K_{i j k h}$. Also, by assertion (i) of Theorem 2.2 we conclude that \mathbb{F}^{m} is of flag curvature $\lambda=0$. On the other hand, the $h h$-curvature tensor of the Chern-Rund connection for a Landsberg manifold of constant curvature λ is given by (cf. Bao-Chern-Shen [2, p. 314])

$$
K_{i j k h}=\lambda\left(g_{j k} g_{i h}-g_{i k} g_{j h}\right)
$$

Thus, $\widetilde{\rho}$ vanishes on $T M$.
Corollary 2.4. Let $\mathbb{F}^{m}=(M, F)$ be a Berwald manifold. Suppose that the scalar curvature $\tilde{\rho}$ of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree 0 with respect to $\left(y^{i}\right)$. Then $\widetilde{\rho}=0$, and \mathbb{F}^{m} is locally Minkowskian.

Proof. As \mathbb{F}^{m} is a Landsberg manifold, we apply Corollary 2.3 and obtain $\tilde{\rho}=0$. Then, by assertion (iv) of Theorem 8.5 of Bejancu-Farran [4, p. 65], we deduce that the $h v$-curvature tensor field $F_{i j k h}$ of the Chern-Rund connection vanishes on M. Finally, from the proof of Corollary 2.3, we deduce that $K_{i j k h}=0$. Hence, by assertion (iv) of Theorem 8.6 of Bejancu-Farran [4, p. 66], we conclude that \mathbb{F}^{m} is locally Minkowskian.

Corollary 2.5. Let $\mathbb{F}^{m}=(M, F)$ be a Riemannian manifold and $T M$ be equipped with the Sasaki metric G. Suppose that the scalar curvature $\widetilde{\rho}$ of $\left(T M^{0}, G\right)$ is a positively homogeneous function of degree 0 with respect to $\left(y^{i}\right)$. Then $\widetilde{\rho}=0$, and \mathbb{F}^{m} is locally Euclidean.

Proof. By Corollary 2.4 we have $\widetilde{\rho}=0$ and $K_{i j k h}=0$. As in this case $K_{i j k h}$ are the local components of the curvature tensor field of the Levi-Civita connection on (M, g), we conclude that (M, g) is locally Euclidean.

Finally, we note that Corollary 2.5 improves some well-known results of MussoTricerri 9 and Yano-Okubo 11 which state the following:

If the scalar curvature of $(T M, G)$ is constant, then (M, g) is locally Euclidean. and

If the scalar curvature of $(T M, G)$ vanishes, then (M, g) is locally Euclidean.

References

1. H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionelles constantes, Bull. Acad. Roy. Bel. Cl. Sci. (5) 74 (1988), 281-322.
2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, SpringerVerlag, New York, 2000.
3. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math. J. 31 (2008), 272-306.
4. A. Bejancu and H. R. Farran, Geometry of pseudo-Finsler Submanifolds, Kluwer, Dordrecht, 2000.
5. A. Deicke, Über die Finsler-Räume mit $A_{i}=0$, Arch. Math. 4 (1953), 45-51.
6. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expositiones Math. 20 (2002), 1-41.
7. S. Ianuş, Some almost product structures on manifolds with linear connections, Kodai Math. Sem. Rep. 23 (1971), 305-310.
8. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, 1986.
9. E. Musso and F. Triceri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (1988), 1-20.
10. S. Sasaki, On differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.
11. K. Yano and T. Okubo, On tangent bundles with Sasakian metrics of Finslerian and Riemannian manifolds, Ann. Mat. Pura Appl. 87 (1970), 137-162.

Department of Mathematics and Computer Science
Kuwait University
Kuwait
and Institute of Mathematics
Iasi Branch of the Romanian Academy Romania
aurel.bejancu@ku.edu.kw
Department of Mathematics and Computer Science
Kuwait University
Kuwait
hani.farran@ku.edu.kw

[^0]: 2010 Mathematics Subject Classification: Primary 53C60, 53C15.
 Key words and phrases: Berwald manifold, Finsler manifold, Landsberg manifold, Riemannian manifold, scalar curvature, tangent bundle.

