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Abstract. By Borel’s description, integral cohomology of the complex Grass-
mann manifold Gk,n is a polynomial algebra modulo a well-known ideal. A
strong Gröbner basis for this ideal is obtained when k = 2 and k = 3.

1. Introduction

Integral cohomology of complex Grassmannian Gk,n = U(n + k)/U(n) × U(k)
is isomorphic to the polynomial algebra on the Chern classes c1, c2, . . . , ck of the
canonical complex vector bundle γk over Gk,n modulo the ideal Ik,n generated by
the dual classes cn+1, cn+2, . . . , cn+k. Unfortunately, this description does not pro-
vide an efficient algorithm for determining whether a certain cohomology class is
zero or not. But, if one has a Gröbner basis for Ik,n, this task is less demanding. In
[5] and [6], the analogous problem for the mod 2 cohomology of real Grassmannians
was considered and Gröbner bases for the corresponding ideals (in the cases k = 2
and k = 3) were presented. The theory of Gröbner bases over rings has complica-
tions that do not appear in the theory over fields. Nevertheless, for principal ideal
domains, the generalization is good enough for our purposes.

In this paper, we show that calculations with Z coefficients, similar to those
with Z2 coefficients in [5] and [6], provide strong Gröbner bases for the ideals Ik,n in
Z[c1, c2, . . . , ck] for k = 2, 3 and all n � k. These results are stated in Theorem 4.1
and Theorem 5.1. As a consequence of Theorem 4.1 (Corollary 4.2), we get the
result of Hoggar (obtained in [3] by a calculation in terms of K-theory) concerning
the structure of H∗(G2,n;Z) as an abelian group. In Corollary 5.1 we establish the
analogous result for H∗(G3,n;Z).
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2. Background on Gröbner bases

In this paper, we denote by N0 the set of all nonnegative integers and the set
of all positive integers is denoted by N.

Let R be a principal ideal domain (PID) and R[x1, x2, . . . , xk] the polynomial
algebra over R on k variables. Different authors define monomials and terms in
R[x1, x2, . . . , xk] in various ways. Our terminology will be as follows. A monomial
on variables x1, x2, . . . , xk is a power product xa1

1 xa2
2 . . . xak

k ∈ R[x1, x2, . . . , xk],
where a1, a2, . . . , ak ∈ N0. The set of all monomials in R[x1, x2, . . . , xk] will be
denoted by M . A term in R[x1, x2, . . . , xk] is a product αm of a coefficient α ∈ R
and a monomial m ∈ M .

Let � be a fixed well ordering on M (a total ordering such that every nonempty
subset of M has a least element) with the property that m1 � m2 implies m1m3 �
m2m3 for all m1, m2, m3 ∈ M .

For a polynomial f =
∑r

i=1 αimi ∈ R[x1, x2, . . . , xk], where mi are pairwise
different monomials and αi ∈ R � {0}, let M(f) := {mi | 1 � i � r}. We define
the leading monomial of f , denoted by LM(f), as max M(f) with respect to �.
The leading coefficient of f , denoted by LC(f), is the coefficient of LM(f) and the
leading term of f is LT(f) := LC(f) · LM(f).

The notion of a strong Gröbner basis (in [2], Becker and Weispfenning use the
phrase D-Gröbner basis) for a given ideal I in R[x1, x2, . . . , xk] can be defined in
a number of equivalent ways. We have chosen the following one, which avoids the
notion of reduction (see [2, p. 455] and [1, p. 251]).

Definition 2.1. Let G ⊂ R[x1, x2, . . . , xk] be a finite set of nonzero polyno-
mials and IG = (G) the ideal in R[x1, x2, . . . , xk] generated by G. We say that G
is a strong Gröbner basis for IG (with respect to �) if for each f ∈ IG � {0} there
exists g ∈ G such that LT(g) | LT(f) (meaning, as usual, that LT(f) = t · LT(g)
for some term t).

Remark 2.1. If G is a strong Gröbner basis for IG and f /∈ IG, then there
may still exist g ∈ G such that LT(g) divides LT(f), but one can see that f ≡ f1
modulo IG for some polynomial f1 with the property that LT(f1) is not divisible by
any of LT(g), g ∈ G. Namely, if some LT(g) divides LT(f), say LT(f) = t · LT(g),
then the polynomial f1 := f − t · g is ≡ f modulo IG and LM(f1) ≺ LM(f). If
f1 does not have the desired property, we continue this process. Since � is a well
ordering, the process must terminate.

Let G be an arbitrary finite subset of R[x1, x2, . . . , xk] � {0} and IG the ideal
generated by G. We now want to formulate a sufficient condition for G to be a
strong Gröbner basis. If m ∈ M is a fixed monomial and if for f ∈ R[x1, x2, . . . , xk]
we have f =

∑s
i=1 tigi, where ti are some terms and gi some (not necessarily

pairwise different) elements of G such that max1�i�s LM(tigi) � m, we say that∑s
i=1 tigi is an m-representation of f with respect to G. An LM(f)-representation

of f w.r.t. G is called a standard representation of f w.r.t. G.
We shall need the following lemma from [2]. We denote by lcm(a, b) and

gcd(a, b) respectively the least common multiple and the greatest common divi-
sor of a and b, where a and b are either monomials or elements of R.
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Lemma 2.1. [2, p. 456] Let G be a finite set of nonzero polynomials from
R[x1, x2, . . . , xk] satisfying the following two conditions:

(i) For all g1, g2 ∈ G there exists h ∈ G (which depends on g1 and g2) such
that LM(h) | lcm(LM(g1), LM(g2)) and LC(h) | gcd(LC(g1), LC(g2));

(ii) Every nonzero f ∈ IG has a standard representation w.r.t. G.
Then G is a strong Gröbner basis.

Note that if LC(g) = 1 for all g ∈ G, then the condition (i) from Lemma 2.1
is certainly satisfied. Namely, one can take h to be g1. Then, LM(h) = LM(g1), so
LM(h) | lcm(LM(g1), LM(g2)). The other condition is clearly satisfied.

In order to formulate an important theorem, we need the following definition.
Recall that we have a fixed ordering � on the monomials.

Definition 2.2. The S-polynomial of polynomials f, g ∈ R[x1, x2, . . . , xk] is
given by

S(f, g) := l

LC(f)
· L

LM(f)
· f − l

LC(g)
· L

LM(g)
· g,

where l = lcm(LC(f), LC(g)) and L = lcm(LM(f), LM(g)).

Let us note that since lcm(LC(f), LC(g)) is not uniquely determined in a PID,
there is some indeterminacy in Definition 2.2, but any two least common multiples
of the same pair of elements are associates and so, this indeterminacy makes no
harm to the following theory. Nevertheless, we shall make the S-polynomial unique
when R = Z, by requiring that lcm(LC(f), LC(g)) > 0. With this convention in
mind, we see that (for R = Z), S-polynomial is antisymmetric, S(g, f) = −S(f, g).

We are now able to formulate the announced theorem.

Theorem 2.1. [2, p. 457] Let G be a finite subset of R[x1, x2, . . . , xk], 0 /∈
G, and let IG be the ideal in R[x1, x2, . . . , xk] generated by G. If condition (i)
from Lemma 2.1 holds and for all g1, g2 ∈ G, S(g1, g2) either equals zero or has a
standard representation with respect to G, then every nonzero f ∈ IG has a standard
representation w.r.t. G.

Remark 2.2. In the statement of this theorem in [2], Becker and Weispfenning
reformulated the condition (i) from Lemma 2.1 in terms of G-polynomial of g1 and
g2, but we do not need this reformulation.

It is obvious from Definition 2.2 that LM(S(g1, g2)) ≺ lcm(LM(g1), LM(g2))
since lcm(LM(g1), LM(g2)) cancels out in the upper expression. This means that
if we have a standard representation of S(g1, g2) w.r.t. G, then we have an m-
representation of S(g1, g2) w.r.t. G for a monomial m ≺ lcm(LM(g1), LM(g2)). By
a careful analysis of the proof of Theorem 2.1 in [2], one observes that the authors
use only this weaker assumption (that S(g1, g2) has an m-representation w.r.t. G for
some monomial m ≺ lcm(LM(g1), LM(g2))). Moreover, the corresponding theorem
when R is a field (see [2, p. 219]) was given in this form.

By summarizing the preceding discussion, we obtain sufficient conditions for
a set G ⊂ R[x1, x2, . . . , xk] to be a strong Gröbner basis. These are stated in the
following theorem which will be the crucial tool in proving our main results.
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Theorem 2.2. Let G be a finite subset of R[x1, x2, . . . , xk], 0 /∈ G, and IG the
ideal in R[x1, x2, . . . , xk] generated by G. If for all g ∈ G, LC(g) = 1 and for all
g1, g2 ∈ G, S(g1, g2) either equals zero or has an m-representation with respect to
G for some m ≺ lcm(LM(g1), LM(g2)), then G is a strong Gröbner basis for IG.

In the rest of the paper, we use the grlex ordering � on the monomials in
R[x1, x2, . . . , xk] with x1 > x2 > · · · > xk. It is defined as follows. The monomials
are compared by the sum of the exponents and if these are equal for the two
monomials, they are compared lexicographically from the left. That is, we shall
write xa1

1 xa2
2 · · · xak

k ≺ xb1
1 xb2

2 · · · xbk

k if either a1 +a2 + · · ·+ak < b1 +b2 + · · ·+bk or
else a1 + a2 + · · · + ak = b1 + b2 + · · · + bk and as < bs, where s = min{i | ai �= bi}.

3. Cohomology of Gk,n

Let Gk,n be the complex Grassmann manifold of k-dimensional complex vector
subspaces in Cn+k and let c1, c2, . . . , ck be the Chern classes of the canonical bundle
γk over Gk,n. It is known that the cohomology algebra H∗(Gk,n;Z) is isomorphic
to the quotient Z[c1, c2, . . . , ck]/Ik,n of the polynomial algebra Z[c1, c2, . . . , ck] by
the ideal Ik,n generated by polynomials cn+1, cn+2, . . . , cn+k. These are obtained
from the equation (1 + c1 + c2 + · · · + ck)(1 + c1 + c2 + · · · ) = 1, that is

1 + c1 + c2 + · · · = 1
1 + c1 + c2 + · · · + ck

=
∑
t�0

(−1)t(c1 + c2 + · · · + ck)t,(3.1)

=
∑
t�0

∑
a1+···+ak=t

(−1)t[a1, a2, . . . , ak]ca1
1 ca2

2 · · · cak

k

=
∑

a1,...,ak�0

(−1)a1+···+ak [a1, a2, . . . , ak]ca1
1 ca2

2 · · · cak

k

where [a1, a2, . . . , ak] (aj ∈ N0) denotes the multinomial coefficient,

[a1, a2, . . . , ak] = (a1 + a2 + · · · + ak)!
a1! · a2! · · · · · ak!

=
(a1 + a2 + · · · + ak

a1

)(a2 + · · · + ak

a2

)
. . .

(ak−1 + ak

ak−1

)
.

By identifying the homogenous parts of (cohomological) degree 2r in formula (3.1),
we obtain the following proposition.

Proposition 3.1. For r ∈ N,

cr =
∑

a1+2a2+···+kak=r

(−1)a1+···+ak [a1, a2, . . . , ak]ca1
1 ca2

2 · · · cak

k .

It is understood that a1, a2, . . . , ak ∈ N0.
Let us add here that H∗(Gk,n;Z) ∼= Z[c1, c2, . . . , ck]/Ik,n is a free (graduated)

abelian group. Namely, the manifold Gk,n has a cell subdivision with no cells in odd
dimensions (see [4, Problem 14-D]). Therefore, the (co)boundary operators in the
cochain complex C∗(Gk,n;Z) are all trivial and H∗(Gk,n;Z) ∼= C∗(Gk,n;Z) is free.
Furthermore, the number of 2i-cells in this CW -decomposition is pk,n(i), where
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pk,n(i) is the number of partitions of integer i into at most n nonnegative integers
each of which is � k, and so the rank of the group H∗(Gk,n;Z) is

∑nk
i=0 pk,n(i).

4. Gröbner basis for I2,n

The binomial coefficient for α ∈ Z, β ∈ N is defined by
(

α
β

)
:= α(α−1)···(α−β+1)

β! .
Also,

(
α
0
)

:= 1. If β is a negative integer, we define
(

α
β

)
to be equal to zero. Then

it is easy to see that the well known formula

(4.1)
(α

β

)
=

(α − 1
β

)
+

(α − 1
β − 1

)

is valid for all α, β ∈ Z.
For k = 2, Proposition 3.1 gives us: cr =

∑
a+2b=r(−1)a+b

(a + b

a

)
ca

1cb
2.

Let n � 2 be a fixed integer. In order to find a Gröbner basis for I2,n =
(cn+1, cn+2), we define polynomials gm (m � 0).

Definition 4.1. For m ∈ N0, let

gm :=
∑

a+2b=n+1+m

(−1)n+1+a+b
(a + b − m

a

)
ca

1cb
2.

As before, it is understood that a, b � 0.
By comparing this definition with the above expression for cr, one observes

that g0 = (−1)n+1cn+1. Also,

c2cn =
∑

a+2b=n

(−1)a+b
(a + b

a

)
ca

1cb+1
2 =

∑
a+2b=n+2

(−1)a+b−1
(a + b − 1

a

)
ca

1cb
2

= (−1)n
∑

a+2b=n+2

(−1)n+1+a+b
(a + b − 1

a

)
ca

1cb
2 = (−1)ng1.

The change of variable b 	→ b − 1 does not affect the requirement that b � 0 since
for b = 0 the binomial coefficient

(
a+b−1

a

)
=

(
n+1
n+2

)
is equal to 0.

From the defining formula for gm, one can see that if m � n + 2, then b
must be such that m � b � n+1+m

2 . Namely, a + b − m cannot be negative since
a + b − m � −1 implies a + 2b � 2(a + b) � 2m − 2 � n + m contradicting the
requirement that a + 2b = n + 1 + m. Now, a + b − m must be � a in order for(

a+b−m
a

)
to be nonzero and we conclude that b � m. The second inequality comes

from the condition a+2b = n+1+m. In particular, gn+2 = 0 and for 0 � m � n+1
we have

(4.2) gm =
[ n+1+m

2 ]∑
b=m

(−1)b−m
(n + 1 − b

b − m

)
cn+1+m−2b

1 cb
2.

Let G := {g0, g1, . . . , gn+1}. We shall prove that, with respect to the grlex
ordering, G is a strong Gröbner basis for I2,n. It is obvious that the summand
in (4.2) obtained for b = m provides the leading monomial LM(gm) = LT(gm) =
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cn+1−m
1 cm

2 . From this it will follow that an additive basis for H∗(G2,n;Z) is the set
of all monomials ca

1cb
2 such that a + b � n.

In order to show that G is a strong Gröbner basis for I2,n, we define the
ideal IG := (G) = (g0, g1, . . . , gn+1) in Z[c1, c2]. As we have already noticed,
cn+1 = (−1)n+1g0 ∈ IG, cn+2 = −c1cn+1 − c2cn = (−1)nc1g0 + (−1)n+1g1 ∈ IG, so
I2,n ⊆ IG.

It remains to prove that IG ⊆ I2,n and that G is a strong Gröbner basis. It
turns out that the following proposition plays the crucial role in proving these facts.

Proposition 4.1. For each m ∈ N0, c2gm − c1gm+1 = −gm+2.

Proof. We proceed directly to the calculation.

c2gm − c1gm+1 =
∑

a+2b=n+1+m

(−1)n+1+a+b
(a + b − m

a

)
ca

1cb+1
2

−
∑

a+2b=n+m+2

(−1)n+1+a+b
(a + b − m − 1

a

)
ca+1

1 cb
2

=
∑

a+2b=n+m+3

(−1)n+a+b
(a + b − m − 1

a

)
ca

1cb
2

−
∑

a+2b=n+m+3

(−1)n+a+b
(a + b − m − 2

a − 1

)
ca

1cb
2

=
∑

a+2b=n+m+3

(−1)n+a+b
(a + b − m − 2

a

)
ca

1cb
2 = −gm+2,

by equality (4.1). We note that, for the similar reasons as above, the change of
variable b 	→ b − 1 (a 	→ a − 1) does not affect the requirement that b � 0 (a � 0).
The proposition follows. �

Corollary 4.1. IG ⊆ I2,n.

Proof. We already know that g0 = (−1)n+1cn+1 ∈ I2,n and g1 = (−1)nc2cn =
(−1)n+1(c1cn+1 + cn+2) ∈ I2,n. Proposition 4.1 applies and by induction on m we
have gm ∈ I2,n (0 � m � n + 1). The Corollary follows. �

Therefore G is a basis for I2,n and we wish to prove that it is a strong Gröbner
basis. We need the following lemma.

Lemma 4.1. For 0 � m < m + s � n + 1, we have

S(gm, gm+s) = −
s−1∑
i=0

ci
1cs−1−i

2 gm+2+i.

Proof. We have that

lcm(LM(gm), LM(gm+s)) = lcm(cn+1−m
1 cm

2 , cn+1−m−s
1 cm+s

2 ) = cn+1−m
1 cm+s

2

and so S(gm, gm+s) = cs
2gm − cs

1gm+s.
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We proceed by induction on s. For s = 1, we need to prove that S(gm, gm+1) =
−gm+2. We calculate: S(gm, gm+1) = c2gm −c1gm+1 = −gm+2, by Proposition 4.1.
For the inductive step, we have
S(gm, gm+s) = cs

2gm − cs
1gm+s = cs

2gm − c2cs−1
1 gm+s−1 + c2cs−1

1 gm+s−1 − cs
1gm+s

= c2S(gm, gm+s−1) + cs−1
1 S(gm+s−1, gm+s)

= −c2

s−2∑
i=0

ci
1cs−2−i

2 gm+2+i − cs−1
1 gm+s+1

= −
s−2∑
i=0

ci
1cs−1−i

2 gm+2+i − cs−1
1 gm+s+1 = −

s−1∑
i=0

ci
1cs−1−i

2 gm+2+i,

again by Proposition 4.1 and the induction hypothesis. �
Theorem 4.1. Let n � 2. Then G = {g0, g1, . . . , gn+1} defined above is a

strong Gröbner basis for the ideal I2,n in Z[c1, c2] with respect to the grlex order-
ing �.

Proof. We have already shown that G is a basis for I2,n. We want to apply
Theorem 2.2. It is immediate from (4.2) that LC(g) = 1 for all g ∈ G. Let gm and
gm+s (0 � m < m + s � n + 1) be two arbitrary elements of G. Since S-polynomial
is antisymmetric, it suffices to show that S(gm, gm+s) has required representation.

If m = n, then m + s must be n + 1 and, using Proposition 4.1, one obtains
S(gm, gm+s) = S(gn, gn+1) = c2gn − c1gn+1 = −gn+2 = 0.

If m � n−1, according to Lemma 4.1, S(gm, gm+s) = − ∑s−1
i=0 ci

1cs−1−i
2 gm+2+i.

Note that for i ∈ {0, 1, . . . , s − 1}, m + 2 + i � m + s + 1 � n + 2 and so, either
gm+2+i ∈ G (if m + 2 + i � n + 1) or gm+2+i = 0 (if m + 2 + i = n + 2). Define
t = t(m, s) := cn−1−m

1 cm+s+1
2 . First of all, observe that

t ≺ cn+1−m
1 cm+s

2 = lcm(LM(gm), LM(gm+s)).
Now, for all i ∈ {0, 1, . . . , s − 1},

LM(ci
1cs−1−i

2 gm+2+i) = ci
1cs−1−i

2 LM(gm+2+i) = ci
1cs−1−i

2 cn+1−m−2−i
1 cm+2+i

2

= cn−1−m
1 cm+s+1

2 = t.

Theorem 2.2 applies and we conclude that G is a strong Gröbner basis for I2,n. �
Corollary 4.2. Let n � 2. If ci is the i-th Chern class of the canonical

complex vector bundle γ2 over G2,n, then the set {ca
1cb

2 | a + b � n} is an additive
basis for the free abelian group H∗(G2,n;Z).

Proof. A monomial ca
1cb

2 corresponds to the partition of the (nonnegative)
integer a + 2b:

1 + 1 + · · · + 1︸ ︷︷ ︸
a

+ 2 + 2 + · · · + 2︸ ︷︷ ︸
b

.

Furthermore, it is obvious that this produces a one-to-one correspondence between
the set {ca

1cb
2 | a + b � n} and the set of all partitions of the nonnegative integers

� 2n into at most n integers each of which is � 2. This means that the cardinality
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of the set {ca
1cb

2 | a + b � n} is equal to rank(H∗(G2,n;Z)) =
∑2n

i=0 p2,n(i). Hence,
it suffices to show that the set {ca

1cb
2 | a + b � n} generates H∗(G2,n;Z).

Let σ ∈ H∗(G2,n;Z) ∼= Z[c1, c2]/I2,n be a nonzero class and f ∈ Z[c1, c2] its
representative. Since G is a strong Gröbner basis for I2,n and f /∈ I2,n, by Re-
mark 2.1 we have that f ≡ f1 modulo I2,n for some f1 ∈ Z[c1, c2] such that LT(f1)
is not divisible by any of LT(g) = LM(g), g ∈ G. Observe that {LM(g) | g ∈ G} is
the set of all monomials ca

1cb
2 such that a + b = n + 1. This means that the sum of

the exponents in LM(f1) and so, in every monomial from M(f1), is � n. Since f1
also represents σ, this concludes the proof. �

Let us remark that our strong Gröbner basis G has some additional nice prop-
erties. It is minimal in the sense of Definition 4.5.6. from [1, p. 251] since no LT(gi)
divides LT(gj) for i �= j. Moreover, it is reduced in the sense of the definition of
this notion for Gröbner bases over fields, meaning that all leading coefficients in
G are equal to 1 and no term of gi is divisible by LT(gj) for i �= j. This follows
from formula (4.2) by observation that all monomials in M(gi) except the leading
one have the sum of the exponents < n + 1. Finally, one can verify that, since
Z[c1, c2]/I2,n is free, G produces unique normal forms (remainders).

Let us now calculate a few elements of the strong Gröbner basis G. By formula
(4.2), gn+1 = cn+1

2 and gn = c1cn
2 . Using this and Proposition 4.1, we obtain

c2gn−1 = c1gn − gn+1 = c2
1cn

2 − cn+1
2 = c2(c2

1cn−1
2 − cn

2 ) and so we deduce that
gn−1 = c2

1cn−1
2 − cn

2 . Continuing in the same manner, one gets:

gn−2 = c3
1cn−2

2 − 2c1cn−1
2 ;

gn−3 = c4
1cn−3

2 − 3c2
1cn−2

2 + cn−1
2 ;

gn−4 = c5
1cn−4

2 − 4c3
1cn−3

2 + 3c1cn−2
2 ;

gn−5 = c6
1cn−5

2 − 5c4
1cn−4

2 + 6c2
1cn−3

2 − cn−2
2 , etc.

5. Gröbner basis for I3,n

We now focus on the case k = 3 and our goal is to find a strong Gröbner basis
for the ideal I3,n in Z[c1, c2, c3] (for all n � 3) and obtain some new information
concerning the cohomology algebra H∗(G3,n;Z).

In the case k = 3, Proposition 3.1 gives us

cr =
∑

a+2b+3c=r

(−1)a+b+c
(a + b + c

a

)(b + c

b

)
ca

1cb
2cc

3, r ∈ N.

Let � be the grlex ordering on the monomials in Z[c1, c2, c3] (with c1 > c2 > c3)
and let n � 3 be a fixed integer. In order to find a strong Gröbner basis for the ideal
I3,n = (cn+1, cn+2, cn+3), we define the polynomials gm,l ∈ Z[c1, c2, c3], m, l ∈ N0.

Definition 5.1. For m, l ∈ N0, let

gm,l :=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l

b

)
ca

1cb
2cc

3.
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As before, it is understood that a, b, c ∈ N0.
Let us remark first that g0,0 = (−1)n+1cn+1. Although in the expression for

cr the product of binomial coefficients reduces to a trinomial coefficient, this is
not the case for polynomials gm,l for m > 0. Therefore, we are not able to use
trinomial coefficients and their properties in the upcoming calculations with these
polynomials.

In addition to that, we note that the coefficient
(

a+b+c−m−l
a

)(
b+c−l

b

)
may be

nonzero when a + b + c − m − l < 0 (or b + c − l < 0). For example, if n = 4 we
have

g5,0 =
∑

a+2b+3c=10

(−1)1+a+b+c
(a + b + c − 5

a

)(b + c

b

)
ca

1cb
2cc

3

= −
(−1

0

)(4
2

)
c2

2c2
3 +

(0
0

)(5
5

)
c5

2 −
(−1

1

)(3
0

)
c1c3

3 = c5
2 − 6c2

2c2
3 + c1c3

3.

However, we can prove the following lemma.

Lemma 5.1. Let a, b, c, m, l be nonnegative integers. Then the following impli-
cation holds:(a + b + c − m − l

a

)(b + c − l

b

)
�= 0

=⇒ a + b + c < m + l or (b + c � m + l and c � l).

Proof. Assume that
(

a+b+c−m−l
a

)(
b+c−l

b

) �= 0 and a + b + c � m + l. Then we
have that

(
a+b+c−m−l

a

) �= 0 and since both a + b + c − m − l and a are nonnegative
we conclude that a + b + c − m − l � a, i.e., b + c � m + l.

If c < l, then b + c − l < b and since
(

b+c−l
b

) �= 0 it must be b + c − l < 0. From
this we have 0 � a+b+c−m−l < a−m � a, but this implies that

(
a+b+c−m−l

a

)
= 0

contradicting the assumption
(

a+b+c−m−l
a

)(
b+c−l

b

) �= 0. This contradiction proves
that c � l. �

Finally, we define the set G ⊆ Z[c1, c2, c3], our candidate for the strong Gröbner
basis.

Definition 5.2. G := {gm,l | m + l � n + 1, m, l ∈ N0}.

We now prove an important property of G.

Proposition 5.1. For m, l ∈ N0 such that m + l � n + 1, we have that the
leading monomial LM(gm,l) = LT(gm,l) = cn+1−m−l

1 cm
2 cl

3 and all other monomials
in M(gm,l) have the sum of the exponents < n + 1.

Proof. Obviously, the (nonnegative) integers a := n + 1 − m − l, b := m,
c := l satisfy the conditions a + 2b + 3c = n + 1 + m + 2l and the coefficient
(−1)n+1+a+b+c

(
a+b+c−m−l

a

)(
b+c−l

b

)
=

(
a
a

)(
b
b

)
= 1. So, the monomial cn+1−m−l

1 cm
2 cl

3
does appear in gm,l with coefficient 1.

Now, it suffices to prove the inequality a+b+c < n+1 for all other monomials
ca

1cb
2cc

3 appearing in gm,l with nonzero coefficient. If ca
1cb

2cc
3 is such a monomial,

then a + 2b + 3c = n + 1 + m + 2l (i.e., a = n + 1 + m + 2l − 2b − 3c) and
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(
a+b+c−m−l

a

)(
b+c−l

b

) �= 0. According to Lemma 5.1, a+b+c < m+ l or b+c � m+ l
and c � l.

In the first case a + b + c < m + l � n + 1 and we are done.
Otherwise, b+c � m+l and c � l give us that b+2c � m+2l, where the equality

holds only if c = l and b = m. But then a = n+1+m+2l −2b−3c = n+1−m− l
and since ca

1cb
2cc

3 �= cn+1−m−l
1 cm

2 cl
3, we actually have b + 2c > m + 2l. This implies

that a + b + c = n + 1 + m + 2l − b − 2c < n + 1. �

Let IG be the ideal in Z[c1, c2, c3] generated by G. Eventually, we shall prove
that IG = I3,n = (cn+1, cn+2, cn+3), but for the moment we prove that IG con-
tains I3,n.

Proposition 5.2. I3,n ⊆ IG.

Proof. As we have already noticed, cn+1 = (−1)n+1g0,0 ∈ IG. Since

−c1g0,0 + g1,0 = −c1
∑

a+2b+3c=n+1

(−1)n+1+a+b+c
(a + b + c

a

)(b + c

b

)
ca

1cb
2cc

3

+
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c − 1

a

)(b + c

b

)
ca

1cb
2cc

3

=
∑

a+2b+3c=n+1

(−1)n+2+a+b+c
(a + b + c

a

)(b + c

b

)
ca+1

1 cb
2cc

3

+
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c − 1

a

)(b + c

b

)
ca

1cb
2cc

3

=
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c − 1

a − 1

)(b + c

b

)
ca

1cb
2cc

3

+
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c − 1

a

)(b + c

b

)
ca

1cb
2cc

3

=
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c

a

)(b + c

b

)
ca

1cb
2cc

3 = (−1)n+1cn+2,

we conclude that cn+2 = (−1)nc1g0,0 + (−1)n+1g1,0 ∈ IG.
In order to show that cn+3 ∈ IG we calculate:

c2
1g0,0 − 2c1g1,0 + g2,0 =

∑
a+2b+3c=n+1

(−1)n+1+a+b+c
(a + b + c

a

)(b + c

b

)
ca+2

1 cb
2cc

3

−2
∑

a+2b+3c=n+2

(−1)n+1+a+b+c
(a + b + c − 1

a

)(b + c

b

)
ca+1

1 cb
2cc

3

+
∑

a+2b+3c=n+3

(−1)n+1+a+b+c
(a + b + c − 2

a

)(b + c

b

)
ca

1cb
2cc

3

=
∑

a+2b+3c=n+3

(−1)n+1+a+b+c
(a + b + c − 2

a − 2

)(b + c

b

)
ca

1cb
2cc

3
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+
∑

a+2b+3c=n+3

(−1)n+1+a+b+c · 2 ·
(a + b + c − 2

a − 1

)(b + c

b

)
ca

1cb
2cc

3

+
∑

a+2b+3c=n+3

(−1)n+1+a+b+c
(a + b + c − 2

a

)(b + c

b

)
ca

1cb
2cc

3.

First, we note that the change of variable a 	→ a − 2 in the first sum does not affect
the requirement that a runs through N0 since for a = 0 and a = 1 the binomial
coefficient

(
a+b+c−2

a−2
)

is equal to zero. Similarly for the second sum. From formula
(4.1) we deduce directly that

(
α
β

)
=

(
α−2

β

)
+ 2

(
α−2
β−1

)
+

(
α−2
β−2

)
for all α, β ∈ Z, so we

have

c2
1g0,0 − 2c1g1,0 + g2,0 =

∑
a+2b+3c=n+3

(−1)n+1+a+b+c
(a + b + c

a

)(b + c

b

)
ca

1cb
2cc

3

= (−1)n+1cn+3

and the proposition is proved. �
In the subsequent calculations, the polynomials gm,l with m + l = n + 2 will

take part. We note that these polynomials are not necessarily elements of G, but,
as Proposition 5.3 below states, they can be written as linear combinations of some
elements of G.

In order to achieve this kind of presentation for gm,l (m + l = n + 2), we prove
the crucial fact which is stated in the following lemma. (We recall that the integer
n � 3 is fixed.)

Lemma 5.2. Let m, l, a, b, c be nonnegative integers such that m + l = n + 2
and a + 2b + 3c = n + 1 + m + 2l. Then the following formula is true.

[ m
2 ]∑

j=0
(−1)j

(m − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)
= 0,

or, singling out the summand for j = 0,
(a + b + c − n − 2

a

)(b + c − l

b

)

=
[ m

2 ]∑
j=1

(−1)j−1
(m − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)
.

Proof. We prove the lemma by induction on m. Let

S(m, l, a, b, c) :=
[ m

2 ]∑
j=0

(−1)j
(m − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)

The induction base will consist of three parts: m = 0, m = 1 and m = 2.
Take m = 0 and nonnegative integers l, a, b, c such that l = n + 2 and a + 2b +

3c = n + 1 + 2l. The statement of the lemma in this case simplifies to:

S(0, l, a, b, c) =
(a + b + c − n − 2

a

)(b + c − n − 2
b

)
= 0.
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Since a + 2b + 3c = n + 1 + 2l = 3n + 5, we have that 3c � a + 2b + 3c = 3n + 5,
so c � n + 5

3 < n + 2, i.e., b + c − n − 2 < b.
If b + c − n − 2 � 0, then

(
b+c−n−2

b

)
= 0 and we are done.

If b+c−n−2 < 0, then a+b+c−n−2 < a. Also, 3(a+b+c) � a+2b+3c = 3n+5
implying a + b + c � n + 5

3 . But since a + b + c is an integer, we actually have
that a + b + c � n + 2. So, 0 � a + b + c − n − 2 < a, and we conclude that(

a+b+c−n−2
a

)
= 0.

For m = 1, take l := n+1 and a, b, c � 0 such that a+2b+3c = n+1+1+2l =
3n + 4. In this case we need to prove

S(1, l, a, b, c) =
(a + b + c − n − 2

a

)(b + c − n − 1
b

)
= 0.

As in the case m = 0, we obtain that a+b+c � n+2 and c � n+1. If c < n+1, the
proof is analogous to that of the first case. If c = n+1, then, since a+2b+3c = 3n+4,
a must be 1 and b must be 0 and we obtain S(1, l, a, b, c) =

(0
1
)(0

0
)

= 0.
If m = 2, then l = n and let a, b, c be nonnegative integers such that a+2b+3c =

n + 1 + 2 + 2l = 3n + 3. Here, the statement of the lemma reduces to
(a + b + c − n − 2

a

)(b + c − n

b

)
−

(a + b + c − n − 1
a

)(b + c − n − 1
b

)
= 0,

since the left-hand side of this equality is S(2, l, a, b, c). In this case, from the
condition a + 2b + 3c = 3n + 3 we can deduce that a + b + c � n + 1 and c � n + 1.

If c = n + 1, then necessarily a = b = 0, and we have

S(2, l, a, b, c) =
(−1

0

)(1
0

)
−

(0
0

)(0
0

)
= 1 − 1 = 0.

If a + b + c = n + 1, since 0 � c � b + c � a + b + c and c + (b + c) + (a + b + c) =
3(n + 1), we conclude that c must be n + 1 and this case reduces to the previous
one.

Suppose now that a + b + c � n + 2 and c � n. If c < n, then by the method of
the case m = 0 one proves that both summands must be zero. If c = n, then there
are two possibilities for the pair (a, b) such that the condition a + 2b + 3c = 3n + 3
is satisfied. First, if a = 3 and b = 0, we have

S(2, l, a, b, c) =
(1

3

)(0
0

)
−

(2
3

)(−1
0

)
= 0 − 0 = 0.

Finally, if a = b = 1, we obtain

S(2, l, a, b, c) =
(0

1

)(1
1

)
−

(1
1

)(0
1

)
= 0 − 0 = 0

and the basis for the induction is completed.
For the induction step take m � 3, nonnegative integers l, a, b, c such that

m + l = n + 2 and a + 2b + 3c = n + 1 + m + 2l and suppose that the statement
of the lemma is true for all nonnegative integers < m. We need to prove that
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S(m, l, a, b, c) is zero. Since
(

m−j
j

)
=

(
m−1−j

j

)
+

(
m−1−j

j−1
)
, we have:

S(m, l, a, b, c) =
[ m

2 ]∑
j=0

(−1)j
(m − 1 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)

+
[ m

2 ]∑
j=0

(−1)j
(m − 1 − j

j − 1

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)
.

Denoting these two sums by S1 and S2, respectively, we have S(m, l, a, b, c) = S1+S2.
Since

(
b+c−l−j

b

)
=

(
b+c−l−j−1

b

)
+

(
b+c−l−j−1

b−1
)
, we obtain:

S1 =
[ m

2 ]∑
j=0

(−1)j
(m − 1 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)

+
[ m

2 ]∑
j=0

(−1)j
(m − 1 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b − 1

)
.

We now denote these two sums by S3 and S4 respectively and obtain S1 = S3 + S4
implying S(m, l, a, b, c) = S2 + S3 + S4.

First, we consider the sum S4. If m is odd, then [m
2 ] = [ m−1

2 ] and if m is even,
say m = 2r (r � 2), then the first binomial coefficient in the last summand of the
sum S4 (for j = [ m

2 ] = r) is
(

r−1
r

)
= 0, so in either case

S4 =
[ m−1

2 ]∑
j=0

(−1)j
(m − 1 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b − 1

)

= S(m − 1, l + 1, a, b − 1, c + 1) = 0,

by the induction hypothesis if b > 0 and if b = 0 it is obvious that S4 = 0.
Now, we have S(m, l, a, b, c) = S2 + S3 and we consider the sum S3. Since(

m−1−j
j

)
=

(
m−2−j

j

)
+

(
m−2−j

j−1
)
, this sum can be written as:

S3 =
[ m

2 ]∑
j=0

(−1)j
(m − 2 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)

+
[ m

2 ]∑
j=0

(−1)j
(m − 2 − j

j − 1

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)
.

As before, we denote these two sums by S5 and S6 respectively and we have the
equality S(m, l, a, b, c) = S2 + S5 + S6.

Consider the sum S5 and its summand for j = [ m
2 ]. The first binomial coef-

ficient in this summand is
(m−2−[m/2]

[m/2]
)
. If m = 3, this binomial coefficient equals(0

1
)

= 0. If m � 4, we have that m − 2 − [ m
2 ] � [ m

2 ] − 2 � 0. Also, m
2 − 1 < [ m

2 ]
implying m − 2 − [ m

2 ] < [ m
2 ]. We conclude that

(
m−2−[m/2]

[m/2]
)

= 0, i.e., the summand
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obtained for j = [ m
2 ] is zero and so

S5 =
[ m

2 ]−1∑
j=0

(−1)j
(m − 2 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)

=
[ m−2

2 ]∑
j=0

(−1)j
(m − 2 − j

j

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)
.

By looking at the sum S2 one easily sees that the first summand (for j = 0)
equals zero (since

(
m−1
−1

)
= 0). This means that

S2 =
[ m

2 ]∑
j=1

(−1)j
(m − 1 − j

j − 1

)(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)

=
[ m

2 ]−1∑
j=0

(−1)j+1
(m − 1 − j − 1

j

)(a + b + c − n − 2 + j + 1
a

)(b + c − l − j − 1
b

)

= −
[ m−2

2 ]∑
j=0

(−1)j
(m − 2 − j

j

)(a + b + c − n − 1 + j

a

)(b + c − l − j − 1
b

)
.

Now the sums S2 and S5 are similar and since
(

a+b+c−n−2+j
a

)−(
a+b+c−n−1+j

a

)
=

−(
a+b+c−n−2+j

a−1
)
, we have that

S5 + S2 = −
[ m−2

2 ]∑
j=0

(−1)j
(m − 2 − j

j

)(a + b + c − n − 2 + j

a − 1

)(b + c − l − j − 1
b

)

= −S(m − 2, l + 2, a − 1, b, c + 1) = 0.

Again, we note that the upper sum is zero if a = 0 and if a > 0 we apply the
induction hypothesis and obtain the latter equality.

We have reduced the sum S(m, l, a, b, c) to S6. Finally, by considering the sum
S6 we see that the summand for j = 0 is zero and so

S6 =
[ m

2 ]∑
j=1

(−1)j
(m − 2 − j

j − 1

)(a + b + c − n − 2 + j

a

)(b + c − l − j − 1
b

)

= −
[ m−2

2 ]∑
j=0

(−1)j
(m − 3 − j

j

)(a + b + c − n − 1 + j

a

)(b + c − l − j − 2
b

)
.

If m − 2 is odd, then [m−2
2 ] = [ m−3

2 ]. If m − 2 is even, then [ m−2
2 ] = [ m−3

2 ] + 1,
but, as in the case of the sum S4, for m − 2 = 2r (r � 1 since m � 3) the first
binomial coefficient in the summand obtained for j = [ m−2

2 ] = r equals
(

r−1
r

)
= 0.

We conclude that S6 is equal to the sum
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−
[ m−3

2 ]∑
j=0

(−1)j
(m − 3 − j

j

)(a + b + c − n − 1 + j

a

)(b + c − l − j − 2
b

)

= −S(m − 3, l + 3, a, b, c + 1) = 0,

by the induction hypothesis. Hence, S(m, l, a, b, c) = 0 and the proof of the
Lemma 5.2 is completed. �

Proposition 5.3. Let m, l ∈ N0 such that m + l = n + 2. Then

gm,l =
[ m

2 ]∑
j=1

(−1)j−1
(m − j

j

)
gm−2j,l+j.

Proof. In a simplified notation, the product
(

a+b+c−n−2+j
a

)(
b+c−l−j

b

)
will

be denoted by λj(a, b, c). Now, the previous lemma asserts that λ0(a, b, c) =∑[ m
2 ]

j=1(−1)j−1(
m−j

j

)
λj(a, b, c) if a, b, c � 0 are such that a+2b+3c = n+1+m+2l.

Using the assumption m + l = n + 2 and Lemma 5.2, we have

gm,l =
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l

b

)
ca

1cb
2cc

3

=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+cλ0(a, b, c)ca
1cb

2cc
3

=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c

[ m
2 ]∑

j=1
(−1)j−1

(m − j

j

)
λj(a, b, c)ca

1cb
2cc

3

=
[ m

2 ]∑
j=1

(−1)j−1
(m − j

j

) ∑
a+2b+3c=n+1+m+2l

(−1)n+1+a+b+cλj(a, b, c)ca
1cb

2cc
3.

It remains to prove that
∑

a+2b+3c=n+1+m+2l(−1)n+1+a+b+cλj(a, b, c)ca
1cb

2cc
3

is equal to gm−2j,l+j . But,

λj(a, b, c) =
(a + b + c − n − 2 + j

a

)(b + c − l − j

b

)

=
(a + b + c − (m − 2j) − (l + j)

a

)(b + c − (l + j)
b

)

and the proposition follows by Definition 5.1. �

In the following three propositions (5.4, 5.5 and 5.6) we give some convenient
presentations for S-polynomials of elements of G. For the first one we need a few
lemmas.

Lemma 5.3. For any integers α, β, γ, δ we have(α

β

)(γ − 1
δ − 1

)
−

(α − 1
β − 1

)(γ

δ

)
=

(α − 1
β

)(γ

δ

)
−

(α

β

)(γ − 1
δ

)
.
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Proof. We calculate(α

β

)(γ − 1
δ − 1

)
−

(α − 1
β − 1

)(γ

δ

)
=

(α

β

)(γ − 1
δ − 1

)
−

(α

β

)(γ

δ

)
+

(α

β

)(γ

δ

)

−
(α − 1

β − 1

)(γ

δ

)
= −

(α

β

)(γ − 1
δ

)
+

(α − 1
β

)(γ

δ

)
,

by formula 4.1. �

Lemma 5.4. Let m, l ∈ N0, r ∈ N and m + l < m + r + l � n + 1. Then

S(gm,l, gm+r,l) =
r−1∑
i=0

ci
1cr−1−i

2 (gm+i,l+1 − gm+2+i,l).

Proof. First, we observe that, according to Proposition 5.1, LM(gm,l) =
cn+1−m−l

1 cm
2 cl

3 and LM(gm+r,l) = cn+1−m−r−l
1 cm+r

2 cl
3, so we have

lcm(LM(gm,l), LM(gm+r,l)) = cn+1−m−l
1 cm+r

2 cl
3,

and since LC(gm,l) = LC(gm+r,l) = 1 (Proposition 5.1), we obtain that
S(gm,l, gm+r,l) = cr

2gm,l − cr
1gm+r,l.

We prove the lemma by induction on r. For r = 1, we need to verify the
equality S(gm,l, gm+1,l) = gm,l+1 − gm+2,l. We have

S(gm,l, gm+1,l) = c2gm,l − c1gm+1,l

=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l

b

)
ca

1cb+1
2 cc

3

−
∑

a+2b+3c=n+1+m+1+2l

(−1)n+1+a+b+c
(a + b + c − m − 1 − l

a

)(b + c − l

b

)
ca+1

1 cb
2cc

3

=
∑

a+2b+3c=n+m+2l+3

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 1
b − 1

)
ca

1cb
2cc

3

−
∑

a+2b+3c=n+m+2l+3

(−1)n+a+b+c
(a + b + c − m − l − 2

a − 1

)(b + c − l

b

)
ca

1cb
2cc

3.

By the previous lemma
(a + b + c − m − l − 1

a

)(b + c − l − 1
b − 1

)
−

(a + b + c − m − l − 2
a − 1

)(b + c − l

b

)

=
(a + b + c − m − l − 2

a

)(b + c − l

b

)
−

(a + b + c − m − l − 1
a

)(b + c − l − 1
b

)
and we obtain:

S(gm,l, gm+1,l)

=
∑

a+2b+3c=n+m+2l+3

(−1)n+a+b+c
(a + b + c − m − l − 2

a

)(b + c − l

b

)
ca

1cb
2cc

3

−
∑

a+2b+3c=n+m+2l+3

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 1
b

)
ca

1cb
2cc

3
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= −(gm+2,l − gm,l+1) = gm,l+1 − gm+2,l.

For the induction step we take r � 2 and calculate:
S(gm,l, gm+r,l) = cr

2gm,l − cr
1gm+r,l

= cr
2gm,l − cr−1

1 c2gm+r−1,l + cr−1
1 c2gm+r−1,l − cr

1gm+r,l

= c2S(gm,l, gm+r−1,l) + cr−1
1 S(gm+r−1,l, gm+r,l)

= c2

r−2∑
i=0

ci
1cr−2−i

2 (gm+i,l+1 − gm+2+i,l) + cr−1
1 (gm+r−1,l+1 − gm+r+1,l)

=
r−1∑
i=0

ci
1cr−1−i

2 (gm+i,l+1 − gm+2+i,l),

by the induction hypothesis. �

Lemma 5.5. Let m, l ∈ N0, s ∈ N and m + l < m + l + s � n + 1. Then

S(gm,l, gm,l+s) = −
s−1∑
j=0

cj
1cs−1−j

3 gm+1,l+1+j .

Proof. Again using Proposition 5.1, we obtain
S(gm,l, gm,l+s) = cs

3gm,l − cs
1gm,l+s.

We proceed by induction on s. For s = 1, the statement of the lemma reduces
to S(gm,l, gm,l+1) = −gm+1,l+1. We have

S(gm,l, gm,l+1) = c3gm,l − c1gm,l+1

=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l

b

)
ca

1cb
2cc+1

3

−
∑

a+2b+3c=n+m+2l+3

(−1)n+1+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 1
b

)
ca+1

1 cb
2cc

3

=
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 1
b

)
ca

1cb
2cc

3

−
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 2

a − 1

)(b + c − l − 1
b

)
ca

1cb
2cc

3.

As in some previous proofs, the change of variable a 	→ a − 1 in the second sum
does not affect the requirement that a runs through N0 since

(
a+b+c−m−l−2

a−1
)

= 0
for a = 0. In the first sum, the change of variable c 	→ c − 1 was made and we
need to prove that for c = 0, the coefficient

(
a+b−m−l−1

a

)(
b−l−1

b

)
= 0, provided that

a + 2b = n + m + 2l + 4.
If b � l+1, then 0 � b−l−1 < b and the second factor equals zero. If b � l, then

a+b−m−l−1 � a−m−1 < a, so
(

a+b−m−l−1
a

) �= 0 only if a+b−m−l−1 < 0, i.e.,
a+b < m+l+1. But then a+2b = a+b+b < m+l+1+l = m+2l+1 < n+m+2l+4
contradicting the fact that a+2b = n+m+2l+4. Hence,

(
a+b−m−l−1

a

)(
b−l−1

b

)
= 0.
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Finally, since
(

a+b+c−m−l−1
a

) − (
a+b+c−m−l−2

a−1
)

=
(

a+b+c−m−l−2
a

)
, we get

S(gm,l, gm,l+1)

=
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 2

a

)(b + c − l − 1
b

)
ca

1cb
2cc

3

= −gm+1,l+1

and the induction base is completed.
Passing to the induction step, for s � 2 we have

S(gm,l, gm,l+s) = cs
3gm,l − cs

1gm,l+s

= cs
3gm,l − cs−1

1 c3gm,l+s−1 + cs−1
1 c3gm,l+s−1 − cs

1gm,l+s

= c3S(gm,l, gm,l+s−1) + cs−1
1 S(gm,l+s−1, gm,l+s)

= −c3

s−2∑
j=0

cj
1cs−2−j

3 gm+1,l+1+j − cs−1
1 gm+1,l+s = −

s−1∑
j=0

cj
1cs−1−j

3 gm+1,l+1+j

and we are done. �

Note that lemmas 5.4 and 5.5 hold also when r = 0 (s = 0) since by definition
S(f, f) = 0 and the sums on the right-hand side of the equalities are empty.

Now we generalize both Lemma 5.4 and Lemma 5.5.

Proposition 5.4. Let m, l, r, s ∈ N0 such that m + l < m + l + r + s � n + 1.
Then

S(gm,l, gm+r,l+s)

=
r−1∑
i=0

cs+i
1 cr−1−i

2 (gm+i,l+s+1 − gm+2+i,l+s) −
s−1∑
j=0

cj
1cr

2cs−1−j
3 gm+1,l+1+j .

Proof. Using Proposition 5.1, we easily obtain that

lcm(LM(gm,l), LM(gm+r,l+s)) = cn+1−m−l
1 cm+r

2 cl+s
3 ,

and so
S(gm,l, gm+r,l+s) = cr

2cs
3gm,l − cr+s

1 gm+r,l+s.

Moving on, we have

S(gm,l, gm+r,l+s) = cr
2cs

3gm,l − cr
2cs

1gm,l+s + cr
2cs

1gm,l+s − cr+s
1 gm+r,l+s

= cr
2S(gm,l, gm,l+s) + cs

1S(gm,l+s, gm+r,l+s)

= −
s−1∑
j=0

cj
1cr

2cs−1−j
3 gm+1,l+1+j +

r−1∑
i=0

cs+i
1 cr−1−i

2 (gm+i,l+s+1 − gm+2+i,l+s),

by lemmas 5.4 and 5.5. �
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Lemma 5.6. Let m, l ∈ N0, s ∈ N, m � s and m + l � n + 1. Then

S(gm,l, gm−s,l+s) = −
s−1∑
j=0

cj
2cs−1−j

3 gm−1−j,l+2+j.

Proof. It is easy to see that by definition
S(gm,l, gm−s,l+s) = cs

3gm,l − cs
2gm−s,l+s.

The proof is by induction on s. For the induction base, we want to show that
S(gm,l, gm−1,l+1) = −gm−1,l+2. We have

S(gm,l, gm−1,l+1) = c3gm,l − c2gm−1,l+1

=
∑

a+2b+3c=n+1+m+2l

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l

b

)
ca

1cb
2cc+1

3

−
∑

a+2b+3c=n+m+2l+2

(−1)n+1+a+b+c
(a + b + c − m − l

a

)(b + c − l − 1
b

)
ca

1cb+1
2 cc

3

=
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 1
b

)
ca

1cb
2cc

3

−
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 2
b − 1

)
ca

1cb
2cc

3.

For the same reasons as in the proof of Lemma 5.5, we may assume that a, b and
c still run through N0. Finally, since

(
b+c−l−1

b

) − (
b+c−l−2

b−1
)

=
(

b+c−l−2
b

)
, we obtain

S(gm,l, gm−1,l+1)

=
∑

a+2b+3c=n+m+2l+4

(−1)n+a+b+c
(a + b + c − m − l − 1

a

)(b + c − l − 2
b

)
ca

1cb
2cc

3

= −gm−1,l+2.

Now let s � 2 and if the lemma holds for all positive integers < s, then

S(gm,l, gm−s,l+s) = cs
3gm,l − cs

2gm−s,l+s

= cs
3gm,l − cs−1

2 c3gm−s+1,l+s−1 + cs−1
2 c3gm−s+1,l+s−1 − cs

2gm−s,l+s

= c3S(gm,l, gm−s+1,l+s−1) + cs−1
2 S(gm−s+1,l+s−1, gm−s,l+s)

= −c3

s−2∑
j=0

cj
2cs−2−j

3 gm−1−j,l+2+j−cs−1
2 gm−s,l+s+1 = −

s−1∑
j=0

cj
2cs−1−j

3 gm−1−j,l+2+j

and the lemma follows. �

We finally use Lemma 5.6 to obtain two additional propositions concerning
S-polynomials of the elements of G.

Proposition 5.5. Let m, l, ∈ N0, r, s ∈ N, l � s, r � s and m+r+l−s � n+1.
Then
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S(gm,l, gm+r,l−s)

=
r−s−1∑

i=0
ci

1cr−1−i
2 (gm+i,l+1 − gm+2+i,l) −

s−1∑
j=0

cr−s
1 cj

2cs−1−j
3 gm+r−1−j,l−s+2+j .

Proof. By Proposition 5.1,

lcm(LM(gm,l), LM(gm+r,l−s)) = cn+1−m−l
1 cm+r

2 cl
3,

implying

S(gm,l, gm+r,l−s) = cr
2gm,l − cr−s

1 cs
3gm+r,l−s

= cr
2gm,l − cr−s

1 cs
2gm+r−s,l + cr−s

1 cs
2gm+r−s,l − cr−s

1 cs
3gm+r,l−s

= cs
2S(gm,l, gm+r−s,l) + cr−s

1 S(gm+r,l−s, gm+r−s,l)

=
r−s−1∑

i=0
ci

1cr−1−i
2 (gm+i,l+1 − gm+2+i,l) −

s−1∑
j=0

cr−s
1 cj

2cs−1−j
3 gm+r−1−j,l−s+2+j,

by lemmas 5.4 and 5.6. �

Proposition 5.6. Let m, l, ∈ N0, r, s ∈ N, l � s, r < s and m + l � n + 1.
Then

S(gm,l, gm+r,l−s)

= −
s−r−1∑

i=0
ci

1cr
2cs−r−1−i

3 gm+1,l−s+r+1+i −
r−1∑
j=0

cj
2cs−1−j

3 gm+r−1−j,l−s+2+j .

Proof. In this case (r < s) Proposition 5.1 tells us that

lcm(LM(gm,l), LM(gm+r,l−s)) = cn+1−m−l+s−r
1 cm+r

2 cl
3,

and we conclude

S(gm,l, gm+r,l−s) = cs−r
1 cr

2gm,l − cs
3gm+r,l−s

= cs−r
1 cr

2gm,l − cr
2cs−r

3 gm,l−s+r + cr
2cs−r

3 gm,l−s+r − cs
3gm+r,l−s

= cr
2S(gm,l−s+r, gm,l) + cs−r

3 S(gm+r,l−s, gm,l−s+r)

= −
s−r−1∑

i=0
ci

1cr
2cs−r−1−i

3 gm+1,l−s+r+1+i −
r−1∑
j=0

cj
2cs−1−j

3 gm+r−1−j,l−s+2+j,

by lemmas 5.5 and 5.6. �

Observe that in the previous three propositions the S-polynomials of the ele-
ments of G are presented as some functions of polynomials gm,l, where m+l � n+2.
Those for which m+l � n+1 are the elements of G and those for which m+l = n+2
are either zero (for m = 0 and m = 1) or some linear combination of elements of G
according to Proposition 5.3.
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In order to prove that G is a basis for the ideal I3,n, i.e., IG = I3,n, we list the
following equalities:

gm+2,l = gm,l+1 − c2gm,l + c1gm+1,l,(5.1)
gm+1,l+1 = c1gm,l+1 − c3gm,l,(5.2)
gm−1,l+2 = c2gm−1,l+1 − c3gm,l,(5.3)

which are obtained in the proofs of lemmas 5.4, 5.5 and 5.6 respectively as the
induction bases.

Proposition 5.7. IG = I3,n.

Proof. According to Proposition 5.2, I3,n ⊆ IG, so it remains to prove that
g ∈ I3,n for all g ∈ G, i.e., gm,l ∈ I3,n for all m, l ∈ N0 such that m+ l � n+1. The
proof is by induction on m + l. We already have that g0,0 = (−1)n+1cn+1 ∈ I3,n.
Also, in the proof of Proposition 5.2 we established that

g1,0 = c1g0,0 + (−1)n+1cn+2 = (−1)n+1c1cn+1 + (−1)n+1cn+2 ∈ I3,n

and that g2,0 = −c2
1g0,0 + 2c1g1,0 + (−1)n+1cn+3 ∈ I3,n. By formula (5.1), g2,0 =

g0,1 − c2g0,0 + c1g1,0 and so

g0,1 = g2,0 + c2g0,0 − c1g1,0 ∈ I3,n.

Therefore, gm,l ∈ I3,n if m + l � 1.
Now, take gm,l ∈ G such that m + l � 2 and assume that g

m̃,̃l
∈ I3,n if

m̃ + l̃ < m + l. If l = 0, then m � 2 and by formula (5.1) we have

gm,0 = gm−2,1 − c2gm−2,0 + c1gm−1,0 ∈ I3,n.

If l = 1, formula (5.2) gives us

gm,1 = c1gm−1,1 − c3gm−1,0 ∈ I3,n.

Finally, if l � 2, we use formula (5.3) and obtain

gm,l = c2gm,l−1 − c3gm+1,l−2 ∈ I3,n,

by the induction hypothesis. �

We are left to prove that G is a strong Gröbner basis for I3,n. We are going to
do that by showing that G satisfies sufficient conditions for being a strong Gröbner
basis stated in Theorem 2.2.

Theorem 5.1. Let n � 3. The set G (see definitions 5.1 and 5.2) is a strong
Gröbner basis for the ideal I3,n in Z[c1, c2, c3] with respect to the grlex ordering �.

Proof. In order to apply Theorem 2.2, we first accord to Proposition 5.1 for
the fact that LC(g) = 1 for all g ∈ G. Then, we take two arbitrary elements of G,
say gm,l and g

m̃,̃l
(gm,l �= g

m̃,̃l
). Since S-polynomials are antisymmetric, without

loss of generality we may assume that either (a) m < m̃ or else (b) m = m̃ and
l < l̃. We distinguish three cases.
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1◦ If condition (b) holds or if m < m̃ and l � l̃, writing m̃ = m + r, l̃ = l + s,
r, s ∈ N0, we have m + l < m + l + r + s � n + 1, so the conditions of Proposition
5.4 are satisfied implying

S(gm,l, g
m̃,̃l

) = S(gm,l, gm+r,l+s)

=
r−1∑
i=0

cs+i
1 cr−1−i

2 (gm+i,l+s+1 − gm+2+i,l+s) −
s−1∑
j=0

cj
1cr

2cs−1−j
3 gm+1,l+1+j .

If m + l + r + s < n + 1, then all polynomials gm,l appearing in this expression
are elements of G. If m + l + r + s = n + 1, then gm+r+1,l+s and eventually
gm+1,l+s (if r = 0) are not in G. But, according to Proposition 5.3, these two can
be written as linear combinations of the elements of G and henceforth we consider
these polynomials as the appropriate linear combinations.

By Proposition 5.1 the leading monomials of the elements of G all have the sum
of the exponents equal to n+1. Therefore, the leading monomials of the summands
in the first sum all have the sum of the exponents s+ i+r −1− i+n+1 = n+r +s

and in the second j +r +s−1− j +n+1 = n+r +s too. We define t = t(m, l, m̃, l̃)
to be the maximum (with respect to �) of all these leading monomials. Hence, the
above expression is a t-representation of S(gm,l, g

m̃,̃l
) w.r.t. G, t has the sum of the

exponents equal to n + r + s and so

t ≺ cn+1−m−l
1 cm+r

2 cl+s
3 = lcm(LM(gm,l), LM(g

m̃,̃l
)).

2◦ If m < m̃, l > l̃ and m̃ − m � l − l̃, writing m̃ = m + r, l̃ = l − s, r, s ∈ N,
we have l � s, r � s and m + r + l − s � n + 1, i.e., the conditions of Proposition
5.5 are satisfied and by that proposition

S(gm,l, g
m̃,̃l

) = S(gm,l, gm+r,l−s)

=
r−s−1∑

i=0
ci

1cr−1−i
2 (gm+i,l+1 − gm+2+i,l) −

s−1∑
j=0

cr−s
1 cj

2cs−1−j
3 gm+r−1−j,l−s+2+j .

As in the previous case, for m + r + l − s = n + 1 the polynomials gm+r−s+1,l and
gm+r−1−j,l−s+2+j (j = 0, s − 1) are treated as linear combinations of elements of
G (obtained in Proposition 5.3).

Again, we define t to be the maximum of all leading monomials in this expres-
sion and so we have a t-representation of S(gm,l, g

m̃,̃l
) w.r.t. G. Since the sum of

the exponents in the leading monomials is equal to i + r − 1 − i + n + 1 = n + r,
i.e., r − s + j + s − 1 − j + n + 1 = n + r, we have

t ≺ cn+1−m−l
1 cm+r

2 cl
3 = lcm(LM(gm,l), LM(g

m̃,̃l
)).

3◦ Finally, if m < m̃, l > l̃ and m̃ − m < l − l̃, again we put m̃ = m + r,
l̃ = l − s (r, s ∈ N). In this case, l � s, r < s and m + l � n + 1, hence we may
apply Proposition 5.6 and obtain

S(gm,l, g
m̃,̃l

) = S(gm,l, gm+r,l−s)
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= −
s−r−1∑

i=0
ci

1cr
2cs−r−1−i

3 gm+1,l−s+r+1+i −
r−1∑
j=0

cj
2cs−1−j

3 gm+r−1−j,l−s+2+j .

Considering this case as the previous two, we observe that the sum of the exponents
in the leading monomials is i+r+s−r−1−i+n+1 = n+s, i.e., j+s−1−j+n+1 =
n + s. Defining t as before, we have

t ≺ cn+1−m−l+s−r
1 cm+r

2 cl
3 = lcm(LM(gm,l), LM(g

m̃,̃l
)).

Therefore, by Theorem 2.2 we conclude that G is a strong Gröbner basis. �

Since LM(gm,l) = LT(gm,l) = cn+1−m−l
1 cm

2 cl
3 (m, l ∈ N0, m + l � n + 1), we see

that the set of all leading monomials in G is the set of all monomials with the sum
of the exponents equal to n + 1. Therefore, a monomial ca

1cb
2cc

3 ∈ Z[c1, c2, c3] is not
divisible by any of these leading monomials if and only if a + b + c � n. Now, the
proof of the following corollary is completely analogous to that of Corollary 4.2.

Corollary 5.1. Let n � 3. If ci is the i-th Chern class of the canonical
complex vector bundle γ3 over G3,n, then the set {ca

1cb
2cc

3 | a + b + c � n} is a basis
for the free abelian group H∗(G3,n;Z).

As in the case k = 2, one can verify that the strong Gröbner basis G from
Theorem 5.1 is minimal, reduced and produces unique normal forms.

Let us now calculate a few elements of the strong Gröbner basis G. By Proposi-
tion 5.1, excluding the leading monomial LM(gm,l) = cn+1−m−l

1 cm
2 cl

3, the monomial
ca

1cb
2cc

3 appears in gm,l with nonzero coefficient only if a + b + c < n + 1, so then
we have c � b + c � a + b + c � n and we conclude that a + 2b + 3c � 3n. Since
a + 2b + 3c must be equal to n + 1 + m + 2l, we see that if n + 1 + m + 2l > 3n (i.e.,
m+2l > 2n−1) then gm,l = LT(gm,l) = LM(gm,l) = cn+1−m−l

1 cm
2 cl

3. In particular,
we have the equalities:

g0,n+1 = cn+1
3 ; g0,n = c1cn

3 ; g1,n = c2cn
3 .

Starting from these three, we can calculate the polynomials gm,n−1, gm,n−2, gm,n−3
etc. in the following way. From formula (5.2), we have c3g0,n−1 = c1g0,n − g1,n =
c2

1cn
3 − c2cn

3 , so
g0,n−1 = c2

1cn−1
3 − c2cn−1

3 .

Using formula (5.3), one obtains c3g1,n−1 = c2g0,n − g0,n+1 = c1c2cn
3 − cn+1

3 , im-
plying:

g1,n−1 = c1c2cn−1
3 − cn

3 .

Applying formula (5.1), we have

g2,n−1 = g0,n − c2g0,n−1 + c1g1,n−1

= c1cn
3 − c2

1c2cn−1
3 + c2

2cn−1
3 + c2

1c2cn−1
3 − c1cn

3 = c2
2cn−1

3 .

Obviously, continuing in the same manner, one can compute gm,l ∈ G when l is
close to n.
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