2-NORMED ALGEBRAS-II

Neeraj Srivastava, S. Bhattacharya, and S. N. Lal

Communicated by Stevan Pilipović

Abstract

In the first part of the paper [5], we gave a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2 -Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2 -normed and 2-Banach algebras given in 5.

1. Introduction

This paper being the sequel to our earlier paper, for notations and definitions, we refer to the said paper [5.

In the next section we give two examples. The first example establishes that not all 2-normed algebras are normable and the other shows that a 2-Banach algebra need not be a 2-Banach space. In Section 3, some basic properties of a 2-Banach algebra are derived. As it turns out, these properties as well as their proofs go almost parallel to the case of an 1-Banach algebra. In Section 4, we derive, from the results obtained in Section 3, a new and interesting spectral radius formula for an 1-Banach algebra. The results in Sections 2 and 4 vindicate our definitions of a 2-normed and 2-Banach spaces given in [5].

2. Examples

ThEOREM 2.1. There exist 2-normed algebras (with or without unity) which are not normable.

Proof. Let $(E,\|.,\|$.$) be a 2-normed space which is not normable (for the$ existence of such a space, see Gähler (1). We define for $x, y \in E, x y=0$ and E becomes an algebra. Let a_{1}, a_{2} be any two linearly independent elements of E $(\operatorname{dim} E \geqslant 2)$. Then, $\left\|x y, a_{i}\right\|=0\left\|x, a_{i}\right\|\left\|y, a_{i}\right\|$ for $i=1,2$ and for all $x, y \in E$ and $(E,\|.,\|$.$) becomes a 2-normed algebra with respect to a_{1}, a_{2}$ without unity

[^0]and $(E,\|.,\|$.$) is not normable. Let \left(E^{\prime},\|.,\|.\right)$ be the algebra after augmentation of unity. Then as we have observed in [5], $\left(E^{\prime},\|.,\|.\right)$ is a 2-normed algebra with respect to a_{1}, a_{2} with unity and as $(E,\|.\|$,$) is not normable, \left(E^{\prime},\|.,\|.\right)$ is also not normable and we have the theorem.

We conclude this section by giving an example which shows that a 2-Banach algebra need not be a 2-Banach space. Let $I=[0,1]$,

$$
A_{\infty}=\mathbb{Q} \cap I=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \frac{1}{7}, \ldots\right\}=\left\{r_{i}: i \in \mathbb{N}\right\}
$$

$A_{e}=\left\{r_{2 i}: i \in \mathbb{N}\right\}, A_{n}=\left\{r_{1}, \ldots, r_{n}\right\}$ and define sequence of functions $\left\{a_{n}\right\}$ and $\left\{\phi_{n}\right\}$ on I by

$$
a_{n}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=r_{n} \\
0, & \text { otherwise },
\end{array} \quad \phi_{n}(x)= \begin{cases}1, & \text { if } x \notin\left(A_{e} \cup A_{n}\right) \\
0, & \text { otherwise }\end{cases}\right.
$$

Let $\Im(I)=$ the set of all bounded \mathbb{K}-valued functions on I having at most countably many points of discontinuity in I. Then the sequences $\left\{a_{n}\right\}$ and $\left\{\phi_{n}\right\}$ are in $\Im(I)$. In $\Im(I)$, let $\|$.$\| be the sup 1-norm and \|.,$.$\| be the 2$-norm defined by, for $f, g \in \Im(I),\|f, g\|=\sup _{x, y \in I}|f(x) g(y)-f(y) g(x)|$. The space $\Im(I)$ is an algebra over \mathbb{K} with unity with pointwise addition and multiplication. We also have for each $n \in \mathbb{N}$ and for each $f \in \Im(I), f a_{n}=a_{n} f=f\left(r_{n}\right) a_{n}$.

We prove the following lemmas.
Lemma 2.1. The 2 -normed space $(\Im(I),\|.,\|$.$) is a 2$-normed algebra with respect to a_{1}, a_{2} (or any pair of distinct elements in $\left\{a_{n}\right\}$).

Proof. For $f \in \Im(I)$ we have for $n \in \mathbb{N},\left\|f, a_{n}\right\|=\sup _{x \in I, x \neq r_{n}}|f(x)|$. Therefore, for each $f, g \in \Im(I)$, and $n \in \mathbb{N}$,
$\left\|f g, a_{n}\right\|=\sup _{x \neq r_{n}, x \in I}|f(x) g(x)| \leqslant\left(\sup _{x \neq r_{n}, x \in I}|f(x)|\right)\left(\sup _{x \neq r_{n}, x \in I}|g(x)|\right)=\left\|f, a_{n}\right\|\left\|g, a_{n}\right\|$
and the lemma is proved.
Lemma 2.2. The 1 -normed space $(\Im(I),\|\|$.$) is an 1-Banach space.$
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $(\Im(I),\|\cdot\|)$. Then for each $x \in I$, $\left\{f_{n}(x)\right\}$ converges to some $f(x)$ in \mathbb{K}, and hence $\left\{f_{n}\right\}$ converges to f uniformly in I. To prove the lemma it is required to show that $f \in \Im(I)$. Let F_{n} be the set of all points of discontinuity of f_{n} in I and F be the set of all points of discontinuity of f in I. We prove that $F \subseteq \bigcup F_{n}$ and the lemma will be established. If $x_{0} \in F$, then there exists an $\varepsilon>0$ such that for all $\delta>0$, there exists an $x_{\delta} \in I$ such that

$$
\begin{equation*}
\left|x_{0}-x_{\delta}\right|<\delta \text { and }\left|f\left(x_{0}\right)-f\left(x_{\delta}\right)\right| \geqslant \varepsilon \tag{*}
\end{equation*}
$$

As $\left\{f_{n}\right\}$ converges to f uniformly in I, there exists an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f_{n}(x)-f(x)\right|<\varepsilon / 3 \text { for all } n \geqslant N, \text { for all } x \in I \tag{i}
\end{equation*}
$$

If possible, let $x_{0} \notin \bigcup F_{n}$. Then $x_{0} \notin F_{N}$ and so, as f_{N} is continuous at x_{0}, we have a $\delta_{0}>0$ such that for $\left|x-x_{0}\right|<\delta_{0}, x \in I$,

$$
\begin{equation*}
\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\varepsilon / 3 \tag{ii}
\end{equation*}
$$

Then, for $\left|x-x_{\delta_{0}}\right|<\delta_{0}$,
$\left|f\left(x_{0}\right)-f\left(x_{\delta_{0}}\right)\right| \leqslant\left|f\left(x_{0}\right)-f_{N}\left(x_{0}\right)\right|+\left|f_{N}\left(x_{0}\right)-f_{N}\left(x_{\delta_{0}}\right)\right|+\left|f_{N}\left(x_{\delta_{0}}\right)-f\left(x_{\delta_{0}}\right)\right|<\varepsilon$ by (ii) and (iii) and this contradicts (*). Hence $x_{0} \in \bigcup F_{n}$ and the lemma follows.

Lemma 2.3. A sequence $\left\{f_{n}\right\}$ is Cauchy in $(\Im(I),\|.,\|$.$) with respect to a_{1}, a_{2}$ (or any pair of distinct elements in $\left\{a_{n}\right\}$) (that is, $\lim _{m, n \rightarrow \infty}\left\|f_{m}-f_{n}, a_{i}\right\|=0$, for $i=1,2)$ if and only if $\left\{f_{n}\right\}$ is Cauchy in $(\Im(I),\|\cdot\|)$.

Proof. As for each $f \in \Im(I),\left\|f, a_{n}\right\|=\sup _{x \in I, x \neq r_{n}}|f(x)|$, we have, for $i=$ 1,2

$$
\begin{aligned}
& \lim _{m, n \rightarrow \infty}\left\|f_{m}-f_{n}, a_{i}\right\|=0 \Leftrightarrow \lim _{m, n \rightarrow \infty}\left(\sup _{x \in I, x \neq r_{n}}\left|f_{m}(x)-f_{n}(x)\right|\right)=0 \\
& \Leftrightarrow \lim _{m, n \rightarrow \infty}\left(\sup _{x \in I, x \neq r_{i}}\left|f_{m}(x)-f_{n}(x)\right|\right)=0 \Leftrightarrow \lim _{m, n \rightarrow \infty}\left\|f_{m}-f_{n}\right\|=0
\end{aligned}
$$

and the lemma is proved.
Lemma 2.4. A sequence $\left\{f_{n}\right\}$ in $\Im(I)$ is convergent to an f in $(\Im(I),\|\cdot\|)$ iff $\left\{f_{n}\right\}$ is convergent to f in $(\Im(I),\|.,\|$.$) with respect to a_{1}, a_{2}$ (or any pair of distinct element in $\left\{a_{n}\right\}$) (that is, $\lim _{n \rightarrow \infty}\left\|f_{n}-f, a_{i}\right\|=0$ for $i=1,2$).

Proof. Follows as in Lemma 2.3
Lemma 2.5. The 2 -normed space $(\Im(I),\|.,\|$.$) is a 2$-Banach algebra with respect to a_{1}, a_{2} (or any pair of distinct elements in $\left\{a_{n}\right\}$).

Proof. Follows from Lemmas 2.1, 2.2, 2.3 and 2.4,
Lemma 2.6. The sequence $\left\{\phi_{n}\right\}$ is Cauchy in $(\Im(I),\|.,\|$.$) .$
Proof. Define functions b_{1}, b_{2} on I by

$$
b_{1}(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in A_{e} \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad b_{2}(x)= \begin{cases}1, & \text { if } x \in\left(A_{e} \backslash\{1 / 2\}\right) \\
0, & \text { otherwise }\end{cases}\right.
$$

Now for $f \in \Im(I)$, we have,

$$
\begin{aligned}
& \left\|f, b_{1}\right\|=\max \left\{\sup _{k \in \mathbb{N}}\left|f\left(r_{2 k}\right)\right|, \sup _{k, l \in \mathbb{N}}\left|f\left(r_{2 k}\right)-f\left(r_{2 l}\right)\right|\right\} \\
& \left\|f, b_{2}\right\|=\max \left\{\sup _{k \in \mathbb{N}, k \geqslant 2}\left|f\left(r_{2 k}\right)\right|, \sup _{k, l \in \mathbb{N}, k, l \geqslant 2 \mathbb{N}}\left|f\left(r_{2 k}\right)-f\left(r_{2 l}\right)\right|\right\}
\end{aligned}
$$

Now for each $m, n \in \mathbb{N}$ and for $i=1,2$ we have $\left\|\phi_{m}-\phi_{n}, b_{i}\right\|=0$ and hence $\left\{\phi_{n}\right\}$ is Cauchy in $(\Im(I),\|.\|$,$) , and the lemma is proved.$

Lemma 2.7. The sequence $\left\{\phi_{n}\right\}$ is not Cauchy in $(\Im(I),\|\cdot\|)$.
Proof. We have, for $m, n \in \mathbb{N}, m<n, A_{m} \subseteq A_{n}$, and for $x \in I$,

$$
\left|\phi_{m}(x)-\phi_{n}(x)\right|= \begin{cases}1, & \text { if } x \notin\left(A_{m} \cup A_{e}\right), x \in\left(A_{n} \cup A_{e}\right) \\ 0, & \text { otherwise }\end{cases}
$$

As for each pair of $m, n \in \mathbb{N}, m<n$ and n sufficiently large, there exists an $x \in I$ such that $x \notin\left(A_{m} \cup A_{e}\right)$ but $x \in\left(A_{n} \cup A_{e}\right)$, we have $\left\|\phi_{m}-\phi_{n}\right\|=1$ and the lemma is proved.

Lemma 2.8. The 2 -normed space $(\Im(I),\|.,\|$.$) is not a 2$-Banach space.
Proof. If $(\Im(I),\|\cdot,\|$.$) is a 2$-Banach space, then by Lemma 2.6 as the sequence $\left\{\phi_{n}\right\}$ is Cauchy in $(\Im(I),\|.,\|$.$) , there is a \phi$ in $\Im(I)$ so that $\lim _{n \rightarrow \infty}\left\|\phi_{n}-\phi, f\right\|=0$ for each $f \in \Im(I)$ and hence, in particular, $\lim _{n \rightarrow \infty}\left\|\phi_{n}-\phi, a_{i}\right\|=0$ for $i=1,2$. But then by Lemma 2.4, $\left\{\phi_{n}\right\}$ is convergent to ϕ in $(\Im(I),\|\cdot\|)$ contradicting Lemma 2.7 and the proof is complete.

The Lemmas 2.5 and 2.8 imply that the 2 -normed space $(\Im(I),\|.\|$,$) is a$ 2-Banach algebra with respect to a_{1}, a_{2} (or any pair of distinct elements in $\left\{a_{n}\right\}$) though the 2 -normed space $(\Im(I),\|.,\|$.$) is not a Banach space, and we have the$ following.

Theorem 2.2. A 2-Banach algebra need not be a 2-Banach space.

3. 2-Banach algebras: Some basic properties

Let $(E,\|.,\|$.$) be a 2$-Banach algebra with respect to a_{1}, a_{2} over \mathbb{K} with unity (If E is without unity we augment unity as in [5]) $a_{1}, a_{2} \in A$, where A is an algebra with unity over \mathbb{K}, E is a subalgebra of A and $(A,\|.,\|$.$) is a 2-normed space. As we$ have seen in [5] $(E,\|.,\|$.$) is a topological vector space, the topology being induced$ by the 2-norm $\|.,$.$\| in E$. In this section the topological concepts like closed/open sets, continuity etc. in E, are all meant for the topological vector space $(E,\|.,\|$.$) .$ In this context, the following proposition is useful.

Proposition 3.1. Let $(E,\|.,\|$.$) be a 2$-normed linear space over \mathbb{K}, X be a nonempty subset of E. Then X is open if and only if for each $a_{0} \in X$, there exists $\varepsilon_{a_{0}}>0$ and $b \in E$ such that for each $c \in E$ with $\rho_{b}(c)=\|b, c\|<\varepsilon_{a_{0}}$ implies $a_{0}+c \in X$.

Proof. For a proof see 4.
Before we proceed further, let us agree with the following notations. For a 2-Banach algebra $(E,\|.,\|$.$) with unity e$ with respect to a_{1}, a_{2} over $\mathbb{K}, G(E)$ denotes the group of all invertible elements of E. For $a \in E, \sigma(a), \omega a$ and $r(a)$ denote the spectrum, resolvent and spectral radius of a respectively.

Theorem 3.1. Let $(E,\|.\|$,$) be a 2-Banach algebra with unity e over \mathbb{K}$ with respect to a_{1}, a_{2}.
(i) If $a \in E$ is such that $\left\|a, a_{i}\right\|<1$ for $i=1,2$, then $e-a \in G(E)$ and if ϕ be a nontrivial \mathbb{K}-homomorphism on $E,|\phi(a)|<1$.
(ii) The group $G(E)$ is open in $(E,\|.,\|$.$) , and the mapping f: G(E) \rightarrow G(E)$ defined by $f(a)=a^{-1}, a \in G(E)$ is a homeomorphism on $G(E)$.

Proof. (i) For each $a \in E$, associate a sequence $\left\{s_{n}(a)\right\}$ in E defined by $s_{n}(a)=e+a+a^{2}+\cdots+a^{n}$. Now if $\left\|a, a_{i}\right\|<1, i=1,2$ we have for $n \in \mathbb{N}, n \geqslant 2$, $i=1,2$:

$$
\left\|a^{n}, a_{i}\right\| \leqslant\left\|a^{n-1}, a_{i}\right\|\left\|a, a_{i}\right\| \leqslant\left\|a^{n-2}, a_{i}\right\|\left\|a, a_{i}\right\|^{2} \leqslant \cdots \leqslant\left\|a, a_{i}\right\|^{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

So,

$$
\begin{aligned}
\left\|s_{n+p}(a)-s_{n}(a), a_{i}\right\| & \leqslant\left\|a^{n+1}, a_{i}\right\|+\cdots+\left\|a^{n+p}, a_{i}\right\| \\
& \leqslant\left\|a, a_{i}\right\|^{n+1}+\cdots+\left\|a, a_{i}\right\|^{n+p} \\
& \leqslant \frac{\left\|a, a_{i}\right\|^{n+1}}{1-\left\|a, a_{i}\right\|} \text { for } i=1,2 ; n, p \in \mathbb{N}, n \geqslant 2, \rightarrow 0 \text { as } n, p \rightarrow \infty
\end{aligned}
$$

But $(E,\|.,\|$.$) being 2-Banach algebra with respect to a_{1}, a_{2}$ there exists an $s(a)$ in E such that $\lim _{n \rightarrow \infty}\left\|s_{n}(a)-s(a), a_{i}\right\|=0$.

Now, $s_{n}(a)(e-a)=e-a^{n+1}=(e-a) s_{n}(a)$ for all $n \in \mathbb{N}$ and therefore for $i=1,2$,

$$
\begin{aligned}
\left\|s(a)(e-a)-e, a_{i}\right\| & =\left\|s(a)(e-a)-s_{n}(a)(e-a)-a^{n+1}, a_{i}\right\| \\
& \leqslant\left\|\left(s(a)-s_{n}(a)\right)(e-a), a_{i}\right\|+\left\|a^{n+1}, a_{i}\right\| \\
& \leqslant\left\|s(a)-s_{n}(a), a_{i}\right\|\left\|e-a, a_{i}\right\|+\left\|a^{n+1}, a_{i}\right\|
\end{aligned}
$$

becomes zero as $n \rightarrow \infty$. Hence $\left\|s(a)(e-a)-e, a_{i}\right\|=0$ for $i=1,2$ and so $s(a)(e-a)=e$. Similarly, $(e-a) s(a)=e$ and therefore, $s(a)=(e-a)^{-1}$ and $e-a \in G(E)$. (We call the series $s(a)=e+a+a^{2}+\cdots$, the associate series of a).

To prove the second part of (i), let, if possible, ϕ be a nontrivial \mathbb{K}-homomorphism on $E,|\phi(a)| \geqslant 1$. Let $\lambda \in \mathbb{K}$ be such that $\phi(a)=\lambda$. Then $|\lambda| \geqslant 1$ and $\phi\left(\lambda^{-1} a\right)=1$ and so $\phi\left(e-\lambda^{-1} a\right)=0$ as ϕ being nontrivial, $\phi(e)=1$. Let $b=e-\lambda^{-1} a$. Then $\phi(b)=0$. But as $|\lambda| \geqslant 1$ and $\left\|a, a_{i}\right\|<1$ for $i=1,2$, we have $\left\|\lambda^{-1} a, a_{i}\right\|<1$ for $i=1,2$ and hence $b=e-\lambda^{-1} a \in G(E)$. But then $\phi(b) \neq 0$ and we have a contradiction and (i) is completely proved.
(ii) To see that $G(E)$ is open, let $a \in G(E)$. Note that, as a_{1}, a_{2} are linearly independent, for $a \in E,\left\|a, a_{i}\right\|=0$ for $i=1,2$ if and only if $a=0$, see [5]. Take $\varepsilon_{a}=\frac{1}{2}\left(\max _{i=1,2}\left\{\left\|a^{-1}, a_{i}\right\|\right\}\right)^{-1}$. Then for $b \in E$ with $\left\|b, a_{i}\right\|<\varepsilon_{a}, i=1,2$, we have $\left\|-a^{-1} b, a_{i}\right\| \leqslant\left\|a^{-1}, a_{i}\right\|\left\|b, a_{i}\right\|<\frac{1}{2}$, which implies, $e+a^{-1} b \in G(E)$ by (i), and as $a+b=a\left(e+a^{-1} b\right)$, we have $a+b \in G(E)$ which using Proposition 3.1 proves that $G(E)$ is open.

To prove that f is a homeomorphism, let $b \in E, a \in G(E)$ and $\left\|b-a, a_{i}\right\|<\varepsilon_{a}$, for $i=1,2$; then, as $a+(b-a)=b$ and $G(E)$ is open, $b \in G(E)$. Write $c=$ $a^{-1}(b-a)$. Then for $i=1,2,\left\|c, a_{i}\right\| \leqslant\left\|a^{-1}, a_{i}\right\|\left\|b-a, a_{i}\right\| \leqslant \frac{1}{2}$ and hence by (i), $e+c \in G(E)$. We also have, for each $n \in \mathbb{N}, s_{n}(-c)(e+c)=e-(-1)^{n+1} c^{n+1}$ and $s(-c)=(e+c)^{-1} \in G(E)$ and for $i=1,2$,

$$
\begin{aligned}
\left\|s_{n}(-c)-e, a_{i}\right\| & \leqslant\left\|c, a_{i}\right\|+\left\|c, a_{i}\right\|^{2}+\cdots+\left\|c, a_{i}\right\|^{n}=\frac{\left\|c, a_{i}\right\|\left(1-\left\|c, a_{i}\right\|^{n}\right)}{1-\left\|c, a_{i}\right\|} \\
& \leqslant 2\left\|c, a_{i}\right\|\left(1-\left\|c, a_{i}\right\|^{n}\right) \quad\left(\text { as }\left\|c, a_{i}\right\| \leqslant 1 / 2\right)
\end{aligned}
$$

and so $\left\|s(-c)-e, a_{i}\right\| \leqslant 2\left\|c, a_{i}\right\|$ for $i=1,2$. Since $b^{-1}-a^{-1}=\left[(e+c)^{-1}-e\right] a^{-1}=$ $[s(-c)-e] a^{-1}$, we have for $i=1,2$:

$$
\begin{aligned}
\left\|f(b)-f(a), a_{i}\right\| & =\left\|b^{-1}-a^{-1}, a_{i}\right\|=\left\|(s(-c)-e) a^{-1}, a_{i}\right\| \\
& \leqslant\left\|s(-c)-e, a_{i}\right\|\left\|a^{-1}, a_{i}\right\| \leqslant 2\left\|a^{-1}, a_{i}\right\|\left\|b-a, a_{i}\right\|\left\|a^{-1}, a_{i}\right\| \\
& =2\left\|a^{-1}, a_{i}\right\|^{2}\left\|b-a, a_{i}\right\|
\end{aligned}
$$

Hence, $\left\|f(b)-f(a), a_{i}\right\| \leqslant 2\left\|a^{-1}, a_{i}\right\|^{2}\left\|b-a, a_{i}\right\|$ for $i=1,2$; whenever $b \in E$ with $\left\|b-a, a_{i}\right\|<\varepsilon_{a}$. But this proves that f is continuous on $G(E)$. As f is one to one on $G(E), f^{-1}=f$. The mapping f is a homeomorphism on $G(E)$ and (ii) is proved. This completes the proof of the theorem.

THEOREM 3.2. Let $(E,\|.,\|$.$) be a 2-Banach algebra with unity e over \mathbb{K}$ with respect to a_{1}, a_{2}, and $a \in E$. Then,
(i) $\sigma(a)$ is closed in \mathbb{K},
(ii) $r(a) \leqslant \max _{i=1,2}\left\{\left\|a, a_{i}\right\|\right\}$,
(iii) $\sigma(a)$ is compact in \mathbb{K},
(iv) $\sigma(a)$ is nonempty if $\mathbb{K}=\mathbb{C}$, and
(v) $r(a)=\lim _{n \rightarrow \infty}\left[\max _{i=1,2}\left\{\left\|a^{n}, a_{i}\right\|\right\}\right]^{1 / n}$.

Proof. (i) For $a \in E$ define $f_{a}: \mathbb{K} \rightarrow E$ by $f_{a}(\lambda)=\lambda e-a$ for $\lambda \in \mathbb{K}$. Then f_{a} is continuous on \mathbb{K}, and so $f_{a}^{-1}(G(E))$ is open in \mathbb{K} as $G(E)$ is open in $(E,\|.,\|$.$) by$ Theorem 3.1 We claim that $\Omega_{a}=f_{a}^{-1}(G(E))$. To prove the claim, let $\lambda \in \Omega_{a}$; then $\lambda e-a \in G(E)$ and so $f_{a}(\lambda) \in G(E)$ which implies $\lambda \in f_{a}^{-1}(G(E))$. Conversely, let $\lambda \in f_{a}^{-1}(G(E))$. Then $f_{a}(\lambda)=\lambda e-a \in G(E)$ and so $\lambda \notin \sigma(a)$ and the claim is proved. This proves that $\sigma(a)$ is closed.
(ii) Write $k=\max _{i=1,2}\left\|a, a_{i}\right\|$ and let, if possible, $r(a)>k$. Then there exists $\lambda \in \sigma(a)$ such that $|\lambda|>k$, and therefore $\left\|\lambda^{-1} a, a_{i}\right\|<1$ for $i=1,2$. But this implies by Theorem 3.1] $e-\lambda^{-1} a \in G(E)$ and hence $\lambda \notin \sigma(a)$, and (ii) is proved.
(iii) Combining (i) and (ii), we get (iii).
(iv) For $a \in E$, define a mapping $R_{a}: \Omega_{a} \rightarrow G(E)$ by $R_{a}(\lambda)=(\lambda e-a)^{-1}$, $\lambda \in \Omega_{a}$. Let $\lambda \in \Omega_{a}, \delta=\left[\max _{i=1,2}\left\|R_{a}(\lambda), a_{i}\right\|\right]^{-1}$. Let $\mu \in \Omega_{a}$ be such that

$$
\begin{equation*}
|\lambda-\mu|<\frac{1}{2} \delta \tag{3.1}
\end{equation*}
$$

and $b=(\mu-\lambda) R_{a}(\lambda)$. Then, as $\left\|b, a_{i}\right\|<1$ for $i=1,2, e-b \in G(E)$, by Theorem 3.1. For $i=1,2$ we have

$$
\left\|s_{n}(b)-e-b, a_{i}\right\| \leqslant\left\|b, a_{i}\right\|^{2}+\cdots+\left\|b, a_{i}\right\|^{n}=\frac{\left\|b, a_{i}\right\|^{2}\left(1-\left\|b, a_{i}\right\|^{n}\right)}{1-\left\|b, a_{i}\right\|}
$$

(see the proof of Theorem 3.1) and so, for $i=1,2$,

$$
\begin{equation*}
\left\|(e-b)^{-1}-e-b, a_{i}\right\|=\left\|s(b)-e-b, a_{i}\right\| \leqslant \frac{\left\|b, a_{i}\right\|^{2}}{1-\left\|b, a_{i}\right\|}, \quad i=1,2 \tag{3.2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
R_{a}(\mu) & -R_{a}(\lambda)+(\mu-\lambda)\left(R_{a}(\lambda)\right)^{2} \\
& =\left[(\mu e-a)^{-1}(\lambda e-a)-e+(\mu-\lambda) R_{a}(\lambda)\right] R_{a}(\lambda) \\
& =\left[\left[(\lambda e-a)^{-1}\{(\mu-\lambda) e+(\lambda e-a)\}\right]^{-1}-e+(\mu-\lambda) R_{a}(\lambda)\right] R_{a}(\lambda) \\
& =\left[\left\{e+(\mu-\lambda) R_{a}(\lambda)\right\}^{-1}-e+(\mu-\lambda) R_{a}(\lambda)\right] R_{a}(\lambda)
\end{aligned}
$$

Therefore, for $i=1,2$,

$$
\begin{aligned}
& \left\|R_{a}(\mu)-R_{a}(\lambda)+(\mu-\lambda)\left(R_{a}(\lambda)\right)^{2}, a_{i}\right\| \\
& \leqslant\left\|\left\{e+(\mu-\lambda) R_{a}(\lambda)\right\}^{-1}-e+(\mu-\lambda) R_{a}(\lambda), a_{i}\right\|\left\|R_{a}(\lambda), a_{i}\right\| \\
& \quad \leqslant \frac{|(\lambda-\mu)|\left\|R_{a}(\lambda), a_{i}\right\|^{2}}{1-|(\mu-\lambda)|\left\|R_{a}(\lambda), a_{i}\right\|}\left\|R_{a}(\lambda), a_{i}\right\| \\
& \quad \leqslant 2|\mu-\lambda|^{2}\left\|R_{a}(\lambda), a_{i}\right\|^{3} \leqslant \frac{1}{2} \delta\left\|R_{a}(\lambda), a_{i}\right\|
\end{aligned}
$$

as $\left\|b, a_{i}\right\|=|\mu-\lambda|\left\|R_{a}(\lambda), a_{i}\right\| \leqslant \frac{1}{2}$.
Therefore, for $i=1,2$, for $\mu \in \Omega_{a}, \mu \neq \lambda$ and $|\mu-\lambda|<\frac{1}{2} \delta$,

$$
\left\|\frac{R_{a}(\mu)-R_{a}(\lambda)}{\mu-\lambda}+\left(R_{a}(\lambda)\right)^{2}, a_{i}\right\| \leqslant 2|\mu-\lambda|\left\|R_{a}(\lambda), a_{i}\right\|^{3} .
$$

So, $\lim _{\mu \rightarrow \lambda} \frac{R_{a}(\mu)-R_{a}(\lambda)}{\mu-\lambda}$ exists in the topological linear space $(E,\|\cdot\|$,$) and equals$ to $-\left(R_{a}(\lambda)\right)^{2}$ for $\lambda \in \Omega_{a}$ and we conclude that R_{a} is analytic in Ω_{a}.

Now, if possible, let $\sigma(a)$ be empty. Then $\Omega_{a}=\mathbb{K}=\mathbb{C}$ and R_{a} is an entire function. Let $\lambda \in \mathbb{C}$ be such that $k<|\lambda|$, that is, $\left\|\lambda^{-1} a, a_{i}\right\|<1$ for $i=1,2 ; k$ be as in (ii). Then by Theorem3.1, $e-\lambda^{-1} a \in G(E)$ and as $s\left(\lambda^{-1} a\right)=\left(e-\lambda^{-1} a\right)^{-1}=$ $e+\left(\lambda^{-1} a\right)+\left(\lambda^{-1} a\right)^{2}+\cdots$, we have

$$
\begin{equation*}
R_{a}(\lambda)=\lambda^{-1}\left(e-\lambda^{-1} a\right)^{-1}=\lambda^{-1} e+\lambda^{-2} a+\lambda^{-3} a^{2}+\cdots \tag{3.3}
\end{equation*}
$$

Let Γ_{r} be the circle on the complex plane with center at origin and radius r, where $k<r$. Then the series on the right-hand side of (3.3) converges uniformly on Γ_{r} and so term by term integration over Γ_{r} is allowed to the right hand-side of the series in (3.3), and we conclude that for $n=0,1,2, \ldots$ and for $r>k$,

$$
\begin{equation*}
a^{n}=\frac{1}{2 \pi i} \int_{\Gamma_{r}} \lambda^{n} R_{a}(\lambda) d \lambda \tag{3.4}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
e=\frac{1}{2 \pi i} \int_{\Gamma_{r}} R_{a}(\lambda) d \lambda \tag{3.5}
\end{equation*}
$$

But as R_{a} is entire, by Cauchy theorem, the integral on the right-hand side of (3.5) is zero, which is a contradiction and the proof of (iv) is complete.
(v) Let $\mathrm{a} \in E$. Then for $r>r(a)$ also (3.4) holds. The continuity of R_{a} in Γ_{r} implies that for $r>r(a), B(r)=\max _{j=1,2, \theta \in[0,2 \pi]}\left\|R_{a}\left(r e^{i \theta}\right), a_{j}\right\|$ is finite. Hence
by (3.4) we have $\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\} \leqslant r^{n+1} B(r)$ for all $n \in \mathbb{N}$, which then implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left[\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\}\right]^{1 / n} \leqslant r(a) \tag{3.6}
\end{equation*}
$$

Again, for $\lambda \in \sigma(a)$, as we have, for all $n \in \mathbb{N}$,

$$
\lambda^{n} e-a^{n}=(\lambda e-a)\left(\lambda^{n-1} e+\lambda^{n-2} a+\cdots+\lambda a^{n-2}+a^{n-1}\right)
$$

we see that $\lambda^{n} e-a^{n} \notin G(E)$ and hence $\lambda^{n} \in \sigma\left(a^{n}\right)$ for all $n \in \mathbb{N}$. Then by (ii) we have for all $n \in \mathbb{N},\left|\lambda^{n}\right| \leqslant r\left(a^{n}\right) \leqslant\left[\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\}\right]$. Hence, for all $\lambda \in \sigma(a)$, and for all $n \in \mathbb{N},|\lambda| \leqslant\left[\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\}\right]^{1 / n}$ implying,

$$
\begin{equation*}
r(a) \leqslant \lim _{n \rightarrow \infty} \inf \left[\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\}\right]^{1 / n} \tag{3.7}
\end{equation*}
$$

Now (3.6) and (3.7) implies that $\lim _{n \rightarrow \infty}\left[\max _{j=1,2}\left\{\left\|a^{n}, a_{j}\right\|\right\}\right]^{1 / n}$ exists and equals to $r(a)$. This establishes (v) and the proof of the theorem is complete.

4. Spectral radius formula for 1-Banach algebras

The following theorem contains a new spectral radius formula for 1-Banach algebras.

THEOREM 4.1. Let $(E,\|\|$.$) be an 1-Banach algebra with unity e over \mathbb{C}, \operatorname{dim} E$ $\geqslant 2$ such that a nontrivial \mathbb{C}-homomorphism on E exists. Then there exists an 1-Banach algebra $\left(B,\|\cdot\|_{1}\right)$ of which $(E,\|\cdot\|)$ is a closed subalgebra, the 1-norm $\|\cdot\|_{1}$ on B when restricted on E becomes the 1-norm $\|$.$\| on E$ and $a_{1}, a_{2} \in B$ such that for all $a \in E$,

$$
\begin{equation*}
r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\lim _{n \rightarrow \infty}\left[\max _{i=1,2}\left\{\sup _{\substack{\phi, \pm \in B^{*} \\\|\phi\|=\|\Psi\|=1}}\left|\phi\left(a^{n}\right) \Psi\left(a_{i}\right)-\Psi\left(a^{n}\right) \phi\left(a_{i}\right)\right|\right\}\right]^{1 / n} \tag{4.1}
\end{equation*}
$$

Proof. Follows from Lemma 5.4, Theorem 5.1 of [5] and Theorem 3.2]
We conclude this section by stating the following 2-norm version of the GelfandMazur theorem [2, 3].

Theorem 4.2. There does not exist a 2 -Banach division algebra over \mathbb{C}.
Proof. If possible, let $(E,\|.,\|$.$) be a 2-Banach division algebra on \mathbb{C}$ with respect to a_{1}, a_{2}. Then $\operatorname{dim} E \geqslant 2$. For each $0 \neq a \in E$, we claim that $\sigma(a)$ is a singleton. To prove this claim, we observe that $\sigma(a)$ is nonempty by Theorem 3.2 and if $\lambda_{1}, \lambda_{2} \in \sigma(a), \lambda_{1} \neq \lambda_{2}$, then as $\lambda_{1} e-a$ and $\lambda_{2} e-a$ both are noninvertible, we have $\lambda_{1} e-a=\lambda_{2} e-a=0$ as E is a division algebra. So, $\lambda_{1}=\lambda_{2}$, and our claim is proved. Now for each a in E, let $\sigma(a)=\{\lambda(a)\}$ and by definition of $\sigma(a)$, $a=\lambda(a) e$, that is, E is generated by e and hence $\operatorname{dim} E=1$ and the theorem follows.

References

1. S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1965), 1-43.
2. I. M. Gel'fand, Normierte Ringe, Mat. Sb., Nov. Ser. 9(51) (1941), 3-21.
3. I. M. Gel'fand and M. A. Neumar, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb., Nov. Ser. 12(54) (1943), 197-213.
4. S. N. Lal, S. Bhattacharya, and E. Keshava Reddi, 2-norm on an algebra, Prog. Math., Varanasi 35 (2001), 27-32.
5. Neeraj Srivastava, S. Bhattacharya, and S. N. Lal, 2-normed algebras-I, Publ. Inst. Math., Nouv. Sér. 88(102) (2010), 111-121.

National Academy for Scientific Development (Received 2005 2010)
Education and Research "Shashi Villa"
Mahamanapuri Colony
B.H.U. Post Office

Varanasi 221005
India
neeraj_bhuin@yahoo.co.in
Department of Mathematics
Faculty of Science
Banaras Hindu University
Varanasi 221005
India
sbhatta@bhu.ac.in
National Academy for Scientific Development, Education and Research "Shashi Villa"
Mahamanapuri Colony
B.H.U. Post Office

Varanasi 221005
India
snlmath@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 46A, 46H.

