2-NORMED ALGEBRAS-II

Neeraj Srivastava, S. Bhattacharya, and S. N. Lal

Communicated by Stevan Pilipović

ABSTRACT. In the first part of the paper [5], we gave a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2-Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2-normed and 2-Banach algebras given in [5].

1. Introduction

This paper being the sequel to our earlier paper, for notations and definitions, we refer to the said paper [5].

In the next section we give two examples. The first example establishes that not all 2-normed algebras are normable and the other shows that a 2-Banach algebra need not be a 2-Banach space. In Section 3, some basic properties of a 2-Banach algebra are derived. As it turns out, these properties as well as their proofs go almost parallel to the case of an 1-Banach algebra. In Section 4, we derive, from the results obtained in Section 3, a new and interesting spectral radius formula for an 1-Banach algebra. The results in Sections 2 and 4 vindicate our definitions of a 2-normed and 2-Banach spaces given in [5].

2. Examples

THEOREM 2.1. There exist 2-normed algebras (with or without unity) which are not normable.

PROOF. Let $(E, \|., .\|)$ be a 2-normed space which is not normable (for the existence of such a space, see Gähler [1]). We define for $x, y \in E$, xy = 0 and E becomes an algebra. Let a_1, a_2 be any two linearly independent elements of E (dim $E \ge 2$). Then, $\|xy, a_i\| = 0 \|x, a_i\| \|y, a_i\|$ for i = 1, 2 and for all $x, y \in E$ and $(E, \|., .\|)$ becomes a 2-normed algebra with respect to a_1, a_2 without unity

²⁰¹⁰ Mathematics Subject Classification: 46A, 46H.

¹³⁵

and $(E, \|., .\|)$ is not normable. Let $(E', \|., .\|)$ be the algebra after augmentation of unity. Then as we have observed in [5], $(E', \|., .\|)$ is a 2-normed algebra with respect to a_1, a_2 with unity and as $(E, \|., .\|)$ is not normable, $(E', \|., .\|)$ is also not normable and we have the theorem. \square

We conclude this section by giving an example which shows that a 2-Banach algebra need not be a 2-Banach space. Let I = [0, 1],

$$A_{\infty} = \mathbb{Q} \cap I = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \frac{1}{7}, \dots \right\} = \{ r_i : i \in \mathbb{N} \},$$

 $A_e = \{r_{2i} : i \in \mathbb{N}\}, A_n = \{r_1, \dots, r_n\}$ and define sequence of functions $\{a_n\}$ and $\{\phi_n\}$ on I by

$$a_n(x) = \begin{cases} 1, & \text{if } x = r_n \\ 0, & \text{otherwise}, \end{cases}, \qquad \phi_n(x) = \begin{cases} 1, & \text{if } x \notin (A_e \cup A_n) \\ 0, & \text{otherwise} \end{cases}$$

Let $\Im(I)$ = the set of all bounded K-valued functions on I having at most countably many points of discontinuity in I. Then the sequences $\{a_n\}$ and $\{\phi_n\}$ are in $\mathfrak{T}(I)$. In $\mathfrak{T}(I)$, let $\|.\|$ be the sup 1-norm and $\|.,.\|$ be the 2-norm defined by, for $f, g \in \mathfrak{S}(I)$, $||f,g|| = \sup_{x,y \in I} |f(x)g(y) - f(y)g(x)|$. The space $\mathfrak{S}(I)$ is an algebra over \mathbb{K} with unity with pointwise addition and multiplication. We also have for each $n \in \mathbb{N}$ and for each $f \in \mathfrak{S}(I)$, $fa_n = a_n f = f(r_n)a_n$.

We prove the following lemmas.

LEMMA 2.1. The 2-normed space $(\Im(I), \|., \|)$ is a 2-normed algebra with respect to a_1, a_2 (or any pair of distinct elements in $\{a_n\}$).

PROOF. For $f \in \Im(I)$ we have for $n \in \mathbb{N}$, $||f, a_n|| = \sup_{x \in I, x \neq r_n} |f(x)|$. Therefore, for each $f, g \in \Im(I)$, and $n \in \mathbb{N}$,

$$\|fg,a_n\| = \sup_{x \neq r_n, x \in I} |f(x)g(x)| \leq \left(\sup_{x \neq r_n, x \in I} |f(x)|\right) \left(\sup_{x \neq r_n, x \in I} |g(x)|\right) = \|f,a_n\| \|g,a_n\|$$

and the lemma is proved.

and the lemma is proved.

LEMMA 2.2. The 1-normed space $(\Im(I), \|.\|)$ is an 1-Banach space.

PROOF. Let $\{f_n\}$ be a Cauchy sequence in $(\Im(I), \|.\|)$. Then for each $x \in I$, $\{f_n(x)\}\$ converges to some f(x) in \mathbb{K} , and hence $\{f_n\}\$ converges to f uniformly in I. To prove the lemma it is required to show that $f \in \mathfrak{I}(I)$. Let F_n be the set of all points of discontinuity of f_n in I and F be the set of all points of discontinuity of f in I. We prove that $F \subseteq \bigcup F_n$ and the lemma will be established. If $x_0 \in F$, then there exists an $\varepsilon > 0$ such that for all $\delta > 0$, there exists an $x_{\delta} \in I$ such that

 $|x_0 - x_{\delta}| < \delta$ and $|f(x_0) - f(x_{\delta})| \ge \varepsilon$ (*)

As $\{f_n\}$ converges to f uniformly in I, there exists an $N \in \mathbb{N}$ such that

(i)
$$|f_n(x) - f(x)| < \varepsilon/3$$
 for all $n \ge N$, for all $x \in I$.

If possible, let $x_0 \notin \bigcup F_n$. Then $x_0 \notin F_N$ and so, as f_N is continuous at x_0 , we have a $\delta_0 > 0$ such that for $|x - x_0| < \delta_0, x \in I$,

(ii)
$$|f_N(x) - f_N(x_0)| < \varepsilon/3.$$

Then, for $|x - x_{\delta_0}| < \delta_0$,

 $|f(x_0) - f(x_{\delta_0})| \leq |f(x_0) - f_N(x_0)| + |f_N(x_0) - f_N(x_{\delta_0})| + |f_N(x_{\delta_0}) - f(x_{\delta_0})| < \varepsilon$ by (i) and (ii) and this contradicts (*). Hence $x_0 \in \bigcup F_n$ and the lemma follows. \Box

LEMMA 2.3. A sequence $\{f_n\}$ is Cauchy in $(\Im(I), \|., .\|)$ with respect to a_1, a_2 (or any pair of distinct elements in $\{a_n\}$) (that is, $\lim_{m,n\to\infty} ||f_m - f_n, a_i|| = 0$, for i = 1, 2 if and only if $\{f_n\}$ is Cauchy in $(\Im(I), \|.\|)$.

PROOF. As for each $f \in \Im(I)$, $||f, a_n|| = \sup_{x \in I, x \neq r_n} |f(x)|$, we have, for i =1, 2

$$\lim_{m,n\to\infty} \|f_m - f_n, a_i\| = 0 \Leftrightarrow \lim_{m,n\to\infty} \left(\sup_{x\in I, \ x\neq r_n} |f_m(x) - f_n(x)| \right) = 0$$
$$\Leftrightarrow \lim_{m,n\to\infty} \left(\sup_{x\in I, \ x\neq r_i} |f_m(x) - f_n(x)| \right) = 0 \Leftrightarrow \lim_{m,n\to\infty} \|f_m - f_n\| = 0$$
e lemma is proved.

and the lemma is proved.

LEMMA 2.4. A sequence $\{f_n\}$ in $\Im(I)$ is convergent to an f in $(\Im(I), \|.\|)$ iff $\{f_n\}$ is convergent to f in $(\Im(I), \|., .\|)$ with respect to a_1, a_2 (or any pair of distinct element in $\{a_n\}$) (that is, $\lim_{n\to\infty} ||f_n - f, a_i|| = 0$ for i = 1, 2).

PROOF. Follows as in Lemma 2.3.

LEMMA 2.5. The 2-normed space $(\Im(I), \|., \|)$ is a 2-Banach algebra with respect to a_1, a_2 (or any pair of distinct elements in $\{a_n\}$).

PROOF. Follows from Lemmas 2.1, 2.2, 2.3 and 2.4.

LEMMA 2.6. The sequence $\{\phi_n\}$ is Cauchy in $(\Im(I), \|., .\|)$.

PROOF. Define functions b_1, b_2 on *I* by

$$b_1(x) = \begin{cases} 1, & \text{if } x \in A_e \\ 0, & \text{otherwise} \end{cases} \text{ and } b_2(x) = \begin{cases} 1, & \text{if } x \in (A_e \smallsetminus \{1/2\}) \\ 0, & \text{otherwise.} \end{cases}$$

Now for $f \in \mathfrak{T}(I)$, we have,

$$\|f, b_1\| = \max \Big\{ \sup_{k \in \mathbb{N}} |f(r_{2k})|, \sup_{k,l \in \mathbb{N}} |f(r_{2k}) - f(r_{2l})| \Big\}, \\\|f, b_2\| = \max \Big\{ \sup_{k \in \mathbb{N}, \ k \ge 2} |f(r_{2k})|, \sup_{k,l \in \mathbb{N}, \ k,l \ge 2\mathbb{N}} |f(r_{2k}) - f(r_{2l})| \Big\}.$$

Now for each $m, n \in \mathbb{N}$ and for i = 1, 2 we have $\|\phi_m - \phi_n, b_i\| = 0$ and hence $\{\phi_n\}$ is Cauchy in $(\Im(I), \|., .\|)$, and the lemma is proved.

LEMMA 2.7. The sequence $\{\phi_n\}$ is not Cauchy in $(\Im(I), \|.\|)$.

PROOF. We have, for $m, n \in \mathbb{N}$, m < n, $A_m \subseteq A_n$, and for $x \in I$,

$$\phi_m(x) - \phi_n(x)| = \begin{cases} 1, & \text{if } x \notin (A_m \cup A_e), \ x \in (A_n \cup A_e) \\ 0, & \text{otherwise.} \end{cases}$$

As for each pair of $m, n \in \mathbb{N}$, m < n and n sufficiently large, there exists an $x \in I$ such that $x \notin (A_m \cup A_e)$ but $x \in (A_n \cup A_e)$, we have $\|\phi_m - \phi_n\| = 1$ and the lemma is proved.

LEMMA 2.8. The 2-normed space $(\Im(I), \|., \|)$ is not a 2-Banach space.

PROOF. If $(\Im(I), \|., \|)$ is a 2-Banach space, then by Lemma 2.6 as the sequence $\{\phi_n\}$ is Cauchy in $(\Im(I), \|., \|)$, there is a ϕ in $\Im(I)$ so that $\lim_{n\to\infty} \|\phi_n - \phi, f\| = 0$ for each $f \in \Im(I)$ and hence, in particular, $\lim_{n\to\infty} \|\phi_n - \phi, a_i\| = 0$ for i = 1, 2. But then by Lemma 2.4, $\{\phi_n\}$ is convergent to ϕ in $(\Im(I), \|.\|)$ contradicting Lemma 2.7 and the proof is complete.

The Lemmas 2.5 and 2.8 imply that the 2-normed space $(\Im(I), \|., .\|)$ is a 2-Banach algebra with respect to a_1, a_2 (or any pair of distinct elements in $\{a_n\}$) though the 2-normed space $(\Im(I), \|., .\|)$ is not a Banach space, and we have the following.

THEOREM 2.2. A 2-Banach algebra need not be a 2-Banach space.

3. 2-Banach algebras: Some basic properties

Let $(E, \|., .\|)$ be a 2-Banach algebra with respect to a_1, a_2 over \mathbb{K} with unity (If E is without unity we augment unity as in [5]) $a_1, a_2 \in A$, where A is an algebra with unity over \mathbb{K} , E is a subalgebra of A and $(A, \|., .\|)$ is a 2-normed space. As we have seen in [5] $(E, \|., .\|)$ is a topological vector space, the topology being induced by the 2-norm $\|., .\|$ in E. In this section the topological concepts like closed/open sets, continuity etc. in E, are all meant for the topological vector space $(E, \|., .\|)$. In this context, the following proposition is useful.

PROPOSITION 3.1. Let $(E, \|., .\|)$ be a 2-normed linear space over \mathbb{K} , X be a nonempty subset of E. Then X is open if and only if for each $a_0 \in X$, there exists $\varepsilon_{a_0} > 0$ and $b \in E$ such that for each $c \in E$ with $\rho_b(c) = \|b, c\| < \varepsilon_{a_0}$ implies $a_0 + c \in X$.

PROOF. For a proof see [4].

Before we proceed further, let us agree with the following notations. For a 2-Banach algebra $(E, \|., .\|)$ with unity e with respect to a_1, a_2 over $\mathbb{K}, G(E)$ denotes the group of all invertible elements of E. For $a \in E$, $\sigma(a)$, ωa and r(a) denote the spectrum, resolvent and spectral radius of a respectively.

THEOREM 3.1. Let $(E, \|., .\|)$ be a 2-Banach algebra with unity e over \mathbb{K} with respect to a_1, a_2 .

- (i) If $a \in E$ is such that $||a, a_i|| < 1$ for i = 1, 2, then $e a \in G(E)$ and if ϕ be a nontrivial \mathbb{K} -homomorphism on E, $|\phi(a)| < 1$.
- (ii) The group G(E) is open in $(E, \|., .\|)$, and the mapping $f : G(E) \to G(E)$ defined by $f(a) = a^{-1}$, $a \in G(E)$ is a homeomorphism on G(E).

PROOF. (i) For each $a \in E$, associate a sequence $\{s_n(a)\}$ in E defined by $s_n(a) = e + a + a^2 + \cdots + a^n$. Now if $||a, a_i|| < 1$, i = 1, 2 we have for $n \in \mathbb{N}$, $n \ge 2$, i = 1, 2:

 $||a^n, a_i|| \le ||a^{n-1}, a_i|| ||a, a_i|| \le ||a^{n-2}, a_i|| ||a, a_i||^2 \le \dots \le ||a, a_i||^n \to 0 \text{ as } n \to \infty.$ So,

$$\begin{aligned} \|s_{n+p}(a) - s_n(a), a_i\| &\leq \|a^{n+1}, a_i\| + \dots + \|a^{n+p}, a_i\| \\ &\leq \|a, a_i\|^{n+1} + \dots + \|a, a_i\|^{n+p} \\ &\leq \frac{\|a, a_i\|^{n+1}}{1 - \|a, a_i\|} \text{ for } i = 1, 2; \ n, p \in \mathbb{N}, \ n \geq 2, \ \to 0 \text{ as } n, p \to \infty. \end{aligned}$$

But $(E, \|., \|)$ being 2-Banach algebra with respect to a_1, a_2 there exists an s(a) in E such that $\lim_{n\to\infty} \|s_n(a) - s(a), a_i\| = 0$.

Now, $s_n(a)(e-a) = e - a^{n+1} = (e-a)s_n(a)$ for all $n \in \mathbb{N}$ and therefore for i = 1, 2,

$$\begin{aligned} \|s(a)(e-a) - e, a_i\| &= \|s(a)(e-a) - s_n(a)(e-a) - a^{n+1}, a_i\| \\ &\leq \|(s(a) - s_n(a))(e-a), a_i\| + \|a^{n+1}, a_i\| \\ &\leq \|s(a) - s_n(a), a_i\| \|e - a, a_i\| + \|a^{n+1}, a_i\| \end{aligned}$$

becomes zero as $n \to \infty$. Hence $||s(a)(e-a) - e, a_i|| = 0$ for i = 1, 2 and so s(a)(e-a) = e. Similarly, (e-a)s(a) = e and therefore, $s(a) = (e-a)^{-1}$ and $e-a \in G(E)$. (We call the series $s(a) = e + a + a^2 + \cdots$, the associate series of a).

To prove the second part of (i), let, if possible, ϕ be a nontrivial K-homomorphism on E, $|\phi(a)| \ge 1$. Let $\lambda \in \mathbb{K}$ be such that $\phi(a) = \lambda$. Then $|\lambda| \ge 1$ and $\phi(\lambda^{-1}a) = 1$ and so $\phi(e - \lambda^{-1}a) = 0$ as ϕ being nontrivial, $\phi(e) = 1$. Let $b = e - \lambda^{-1}a$. Then $\phi(b) = 0$. But as $|\lambda| \ge 1$ and $||a, a_i|| < 1$ for i = 1, 2, we have $||\lambda^{-1}a, a_i|| < 1$ for i = 1, 2 and hence $b = e - \lambda^{-1}a \in G(E)$. But then $\phi(b) \ne 0$ and we have a contradiction and (i) is completely proved.

(ii) To see that G(E) is open, let $a \in G(E)$. Note that, as a_1, a_2 are linearly independent, for $a \in E$, $||a, a_i|| = 0$ for i = 1, 2 if and only if a = 0, see [5]. Take $\varepsilon_a = \frac{1}{2}(\max_{i=1,2}\{||a^{-1}, a_i||\})^{-1}$. Then for $b \in E$ with $||b, a_i|| < \varepsilon_a$, i = 1, 2, we have $||-a^{-1}b, a_i|| \leq ||a^{-1}, a_i|| ||b, a_i|| < \frac{1}{2}$, which implies, $e + a^{-1}b \in G(E)$ by (i), and as $a + b = a(e + a^{-1}b)$, we have $a + b \in G(E)$ which using Proposition 3.1 proves that G(E) is open.

To prove that f is a homeomorphism, let $b \in E$, $a \in G(E)$ and $||b-a, a_i|| < \varepsilon_a$, for i = 1, 2; then, as a + (b-a) = b and G(E) is open, $b \in G(E)$. Write $c = a^{-1}(b-a)$. Then for i = 1, 2, $||c, a_i|| \leq ||a^{-1}, a_i|| ||b-a, a_i|| \leq \frac{1}{2}$ and hence by (i), $e + c \in G(E)$. We also have, for each $n \in \mathbb{N}$, $s_n(-c)(e+c) = e - (-1)^{n+1}c^{n+1}$ and $s(-c) = (e+c)^{-1} \in G(E)$ and for i = 1, 2,

$$||s_n(-c) - e, a_i|| \leq ||c, a_i|| + ||c, a_i||^2 + \dots + ||c, a_i||^n = \frac{||c, a_i||(1 - ||c, a_i||^n)}{1 - ||c, a_i||}$$
$$\leq 2||c, a_i||(1 - ||c, a_i||^n) \qquad (\text{as } ||c, a_i|| \leq 1/2)$$

and so $||s(-c)-e, a_i|| \leq 2||c, a_i||$ for i = 1, 2. Since $b^{-1}-a^{-1} = [(e+c)^{-1}-e]a^{-1} = [s(-c)-e]a^{-1}$, we have for i = 1, 2:

$$\begin{split} \|f(b) - f(a), a_i\| &= \|b^{-1} - a^{-1}, a_i\| = \|(s(-c) - e)a^{-1}, a_i\| \\ &\leqslant \|s(-c) - e, a_i\| \|a^{-1}, a_i\| \leqslant 2\|a^{-1}, a_i\| \|b - a, a_i\| \|a^{-1}, a_i\| \\ &= 2\|a^{-1}, a_i\|^2 \|b - a, a_i\|. \end{split}$$

Hence, $||f(b) - f(a), a_i|| \leq 2||a^{-1}, a_i||^2 ||b - a, a_i||$ for i = 1, 2; whenever $b \in E$ with $||b - a, a_i|| < \varepsilon_a$. But this proves that f is continuous on G(E). As f is one to one on G(E), $f^{-1} = f$. The mapping f is a homeomorphism on G(E) and (ii) is proved. This completes the proof of the theorem. \Box

THEOREM 3.2. Let $(E, \|., .\|)$ be a 2-Banach algebra with unity e over \mathbb{K} with respect to a_1, a_2 , and $a \in E$. Then,

- (i) $\sigma(a)$ is closed in \mathbb{K} ,
- (ii) $r(a) \leq \max_{i=1,2} \{ \|a, a_i\| \},\$
- (iii) $\sigma(a)$ is compact in \mathbb{K} ,
- (iv) $\sigma(a)$ is nonempty if $\mathbb{K} = \mathbb{C}$, and
- (v) $r(a) = \lim_{n \to \infty} \left[\max_{i=1,2} \{ \|a^n, a_i\| \} \right]^{1/n}$.

PROOF. (i) For $a \in E$ define $f_a : \mathbb{K} \to E$ by $f_a(\lambda) = \lambda e - a$ for $\lambda \in \mathbb{K}$. Then f_a is continuous on \mathbb{K} , and so $f_a^{-1}(G(E))$ is open in \mathbb{K} as G(E) is open in $(E, \|., .\|)$ by Theorem 3.1. We claim that $\Omega_a = f_a^{-1}(G(E))$. To prove the claim, let $\lambda \in \Omega_a$; then $\lambda e - a \in G(E)$ and so $f_a(\lambda) \in G(E)$ which implies $\lambda \in f_a^{-1}(G(E))$. Conversely, let $\lambda \in f_a^{-1}(G(E))$. Then $f_a(\lambda) = \lambda e - a \in G(E)$ and so $\lambda \notin \sigma(a)$ and the claim is proved. This proves that $\sigma(a)$ is closed.

(ii) Write $k = \max_{i=1,2} ||a, a_i||$ and let, if possible, r(a) > k. Then there exists $\lambda \in \sigma(a)$ such that $|\lambda| > k$, and therefore $||\lambda^{-1}a, a_i|| < 1$ for i = 1, 2. But this implies by Theorem 3.1, $e - \lambda^{-1}a \in G(E)$ and hence $\lambda \notin \sigma(a)$, and (ii) is proved.

(iii) Combining (i) and (ii), we get (iii).

(iv) For $a \in E$, define a mapping $R_a : \Omega_a \to G(E)$ by $R_a(\lambda) = (\lambda e - a)^{-1}$, $\lambda \in \Omega_a$. Let $\lambda \in \Omega_a$, $\delta = [\max_{i=1,2} ||R_a(\lambda), a_i||]^{-1}$. Let $\mu \in \Omega_a$ be such that

$$|\lambda - \mu| < \frac{1}{2} \delta.$$

and $b = (\mu - \lambda)R_a(\lambda)$. Then, as $||b, a_i|| < 1$ for $i = 1, 2, e - b \in G(E)$, by Theorem 3.1. For i = 1, 2 we have

$$||s_n(b) - e - b, a_i|| \leq ||b, a_i||^2 + \dots + ||b, a_i||^n = \frac{||b, a_i||^2 (1 - ||b, a_i||^n)}{1 - ||b, a_i||}$$

(see the proof of Theorem 3.1) and so, for i = 1, 2,

(3.2)
$$||(e-b)^{-1} - e - b, a_i|| = ||s(b) - e - b, a_i|| \le \frac{||b, a_i||^2}{1 - ||b, a_i||}, \quad i = 1, 2$$

Now,

$$\begin{aligned} R_a(\mu) - R_a(\lambda) + (\mu - \lambda)(R_a(\lambda))^2 \\ &= [(\mu e - a)^{-1}(\lambda e - a) - e + (\mu - \lambda)R_a(\lambda)]R_a(\lambda) \\ &= [[(\lambda e - a)^{-1}\{(\mu - \lambda)e + (\lambda e - a)\}]^{-1} - e + (\mu - \lambda)R_a(\lambda)]R_a(\lambda) \\ &= [\{e + (\mu - \lambda)R_a(\lambda)\}^{-1} - e + (\mu - \lambda)R_a(\lambda)]R_a(\lambda). \end{aligned}$$

Therefore, for i = 1, 2,

$$\begin{aligned} \|R_{a}(\mu) - R_{a}(\lambda) + (\mu - \lambda)(R_{a}(\lambda))^{2}, a_{i}\| \\ &\leq \|\{e + (\mu - \lambda)R_{a}(\lambda)\}^{-1} - e + (\mu - \lambda)R_{a}(\lambda), a_{i}\| \|R_{a}(\lambda), a_{i}\| \\ &\leq \frac{|(\lambda - \mu)| \|R_{a}(\lambda), a_{i}\|^{2}}{1 - |(\mu - \lambda)| \|R_{a}(\lambda), a_{i}\|} \|R_{a}(\lambda), a_{i}\| \qquad (by (3.2)) \end{aligned}$$

$$\leq 2|\mu - \lambda|^2 \|R_a(\lambda), a_i\|^3 \leq \frac{1}{2} \,\delta \|R_a(\lambda), a_i\| \tag{by (3.1)}$$

as $||b, a_i|| = |\mu - \lambda| ||R_a(\lambda), a_i|| \leq \frac{1}{2}$. Therefore, for i = 1, 2, for $\mu \in \Omega_a, \ \mu \neq \lambda$ and $|\mu - \lambda| < \frac{1}{2}\delta$,

$$\left|\frac{R_a(\mu) - R_a(\lambda)}{\mu - \lambda} + (R_a(\lambda))^2, a_i\right\| \leq 2|\mu - \lambda| \|R_a(\lambda), a_i\|^3$$

So, $\lim_{\mu\to\lambda} \frac{R_a(\mu)-R_a(\lambda)}{\mu-\lambda}$ exists in the topological linear space $(E, \|., .\|)$ and equals to $-(R_a(\lambda))^2$ for $\lambda \in \Omega_a$ and we conclude that R_a is analytic in Ω_a .

Now, if possible, let $\sigma(a)$ be empty. Then $\Omega_a = \mathbb{K} = \mathbb{C}$ and R_a is an entire function. Let $\lambda \in \mathbb{C}$ be such that $k < |\lambda|$, that is, $||\lambda^{-1}a, a_i|| < 1$ for i = 1, 2; k be as in (ii). Then by Theorem 3.1, $e - \lambda^{-1}a \in G(E)$ and as $s(\lambda^{-1}a) = (e - \lambda^{-1}a)^{-1} = e + (\lambda^{-1}a) + (\lambda^{-1}a)^2 + \cdots$, we have

(3.3)
$$R_a(\lambda) = \lambda^{-1} (e - \lambda^{-1} a)^{-1} = \lambda^{-1} e + \lambda^{-2} a + \lambda^{-3} a^2 + \cdots$$

Let Γ_r be the circle on the complex plane with center at origin and radius r, where k < r. Then the series on the right-hand side of (3.3) converges uniformly on Γ_r and so term by term integration over Γ_r is allowed to the right hand-side of the series in (3.3), and we conclude that for n = 0, 1, 2, ... and for r > k,

(3.4)
$$a^n = \frac{1}{2\pi i} \int_{\Gamma_r} \lambda^n R_a(\lambda) \, d\lambda$$

and in particular

(3.5)
$$e = \frac{1}{2\pi i} \int_{\Gamma_r} R_a(\lambda) \, d\lambda.$$

But as R_a is entire, by Cauchy theorem, the integral on the right-hand side of (3.5) is zero, which is a contradiction and the proof of (iv) is complete.

(v) Let $a \in E$. Then for r > r(a) also (3.4) holds. The continuity of R_a in Γ_r implies that for r > r(a), $B(r) = \max_{j=1,2, \theta \in [0,2\pi]} \|R_a(re^{i\theta}), a_j\|$ is finite. Hence

by (3.4) we have $\max_{j=1,2}\{||a^n, a_j||\} \leq r^{n+1}B(r)$ for all $n \in \mathbb{N}$, which then implies that

(3.6)
$$\lim_{n \to \infty} \sup \left[\max_{j=1,2} \{ \|a^n, a_j\| \} \right]^{1/n} \leqslant r(a)$$

Again, for $\lambda \in \sigma(a)$, as we have, for all $n \in \mathbb{N}$,

$$\lambda^n e - a^n = (\lambda e - a)(\lambda^{n-1}e + \lambda^{n-2}a + \dots + \lambda a^{n-2} + a^{n-1}),$$

we see that $\lambda^n e - a^n \notin G(E)$ and hence $\lambda^n \in \sigma(a^n)$ for all $n \in \mathbb{N}$. Then by (ii) we have for all $n \in \mathbb{N}$, $|\lambda^n| \leq r(a^n) \leq [\max_{j=1,2}\{||a^n, a_j||\}]$. Hence, for all $\lambda \in \sigma(a)$, and for all $n \in \mathbb{N}$, $|\lambda| \leq [\max_{j=1,2}\{||a^n, a_j||\}]^{1/n}$ implying,

(3.7)
$$r(a) \leq \lim_{n \to \infty} \inf \left[\max_{j=1,2} \{ \|a^n, a_j\| \} \right]^{1/n}$$

Now (3.6) and (3.7) implies that $\lim_{n\to\infty} [\max_{j=1,2}\{||a^n, a_j||\}]^{1/n}$ exists and equals to r(a). This establishes (v) and the proof of the theorem is complete. \Box

4. Spectral radius formula for 1-Banach algebras

The following theorem contains a new spectral radius formula for 1-Banach algebras.

THEOREM 4.1. Let $(E, \|.\|)$ be an 1-Banach algebra with unity e over \mathbb{C} , dim $E \ge 2$ such that a nontrivial \mathbb{C} -homomorphism on E exists. Then there exists an 1-Banach algebra $(B, \|.\|_1)$ of which $(E, \|.\|)$ is a closed subalgebra, the 1-norm $\|.\|_1$ on B when restricted on E becomes the 1-norm $\|.\|$ on E and $a_1, a_2 \in B$ such that for all $a \in E$, (4.1)

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \lim_{n \to \infty} \left[\max_{\substack{i=1,2\\ \|\phi\|=\|\Psi\|=1}} \left\{ \sup_{\substack{\phi, \Psi \in B^*\\ \|\phi\|=\|\Psi\|=1}} |\phi(a^n)\Psi(a_i) - \Psi(a^n)\phi(a_i)| \right\} \right]^{1/n}$$

PROOF. Follows from Lemma 5.4, Theorem 5.1 of [5] and Theorem 3.2.

We conclude this section by stating the following 2-norm version of the Gelfand–Mazur theorem [2, 3].

THEOREM 4.2. There does not exist a 2-Banach division algebra over \mathbb{C} .

PROOF. If possible, let $(E, \|., \|)$ be a 2-Banach division algebra on \mathbb{C} with respect to a_1, a_2 . Then dim $E \ge 2$. For each $0 \ne a \in E$, we claim that $\sigma(a)$ is a singleton. To prove this claim, we observe that $\sigma(a)$ is nonempty by Theorem 3.2 and if $\lambda_1, \lambda_2 \in \sigma(a), \lambda_1 \ne \lambda_2$, then as $\lambda_1 e - a$ and $\lambda_2 e - a$ both are noninvertible, we have $\lambda_1 e - a = \lambda_2 e - a = 0$ as E is a division algebra. So, $\lambda_1 = \lambda_2$, and our claim is proved. Now for each a in E, let $\sigma(a) = \{\lambda(a)\}$ and by definition of $\sigma(a)$, $a = \lambda(a)e$, that is, E is generated by e and hence dim E = 1 and the theorem follows. \Box

2-NORMED ALGEBRAS-II

References

- 1. S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1965), 1-43.
- 2. I. M. Gel'fand, Normierte Ringe, Mat. Sb., Nov. Ser. 9(51) (1941), 3-21.
- I. M. Gel'fand and M. A. Neumar, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb., Nov. Ser. 12(54) (1943), 197–213.
- S. N. Lal, S. Bhattacharya, and E. Keshava Reddi, 2-norm on an algebra, Prog. Math., Varanasi 35 (2001), 27–32.
- 5. Neeraj Srivastava, S. Bhattacharya, and S.N. Lal, 2-normed algebras–I, Publ. Inst. Math., Nouv. Sér. 88(102) (2010), 111–121.

National Academy for Scientific Development Education and Research "Shashi Villa" Mahamanapuri Colony B.H.U. Post Office Varanasi 221 005 India neeraj_bhuin@yahoo.co.in

Department of Mathematics Faculty of Science Banaras Hindu University Varanasi 221005 India sbhatta@bhu.ac.in

National Academy for Scientific Development, Education and Research "Shashi Villa" Mahamanapuri Colony B.H.U. Post Office Varanasi 221 005 India snlmath@yahoo.com (Received 20 05 2010)