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Abstract. In the first part of the paper [5], we gave a new definition of
real or complex 2-normed algebras and 2-Banach algebras. Here we give two
examples which establish that not all 2-normed algebras are normable and a
2-Banach algebra need not be a 2-Banach space. We conclude by deriving a
new and interesting spectral radius formula for 1-Banach algebras from the
basic properties of 2-Banach algebras and thus vindicating our definitions of
2-normed and 2-Banach algebras given in [5].

1. Introduction

This paper being the sequel to our earlier paper, for notations and definitions,
we refer to the said paper [5].

In the next section we give two examples. The first example establishes that not
all 2-normed algebras are normable and the other shows that a 2-Banach algebra
need not be a 2-Banach space. In Section 3, some basic properties of a 2-Banach
algebra are derived. As it turns out, these properties as well as their proofs go
almost parallel to the case of an 1-Banach algebra. In Section 4, we derive, from
the results obtained in Section 3, a new and interesting spectral radius formula for
an 1-Banach algebra. The results in Sections 2 and 4 vindicate our definitions of a
2-normed and 2-Banach spaces given in [5].

2. Examples

Theorem 2.1. There exist 2-normed algebras (with or without unity) which
are not normable.

Proof. Let (E, ‖., .‖) be a 2-normed space which is not normable (for the
existence of such a space, see Gähler [1]). We define for x, y ∈ E, xy = 0 and
E becomes an algebra. Let a1, a2 be any two linearly independent elements of E
(dim E � 2). Then, ‖xy, ai‖ = 0‖x, ai‖ ‖y, ai‖ for i = 1, 2 and for all x, y ∈ E
and (E, ‖., .‖) becomes a 2-normed algebra with respect to a1, a2 without unity
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and (E, ‖., .‖) is not normable. Let (E′, ‖., .‖) be the algebra after augmentation
of unity. Then as we have observed in [5], (E′, ‖., .‖) is a 2-normed algebra with
respect to a1, a2 with unity and as (E, ‖., .‖) is not normable, (E′, ‖., .‖) is also not
normable and we have the theorem. �

We conclude this section by giving an example which shows that a 2-Banach
algebra need not be a 2-Banach space. Let I = [0, 1],
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= {ri : i ∈ N},

Ae = {r2i : i ∈ N}, An = {r1, . . . , rn} and define sequence of functions {an} and
{φn} on I by

an(x) =

{
1, if x = rn

0, otherwise,
, φn(x) =

{
1, if x /∈ (Ae ∪ An)
0, otherwise

.

Let �(I) = the set of all bounded K-valued functions on I having at most
countably many points of discontinuity in I. Then the sequences {an} and {φn}
are in �(I). In �(I), let ‖.‖ be the sup 1-norm and ‖., .‖ be the 2-norm defined
by, for f, g ∈ �(I), ‖f, g‖ = supx,y∈I |f(x)g(y) − f(y)g(x)|. The space �(I) is an
algebra over K with unity with pointwise addition and multiplication. We also have
for each n ∈ N and for each f ∈ �(I), fan = anf = f(rn)an.

We prove the following lemmas.

Lemma 2.1. The 2-normed space (�(I), ‖., .‖) is a 2-normed algebra with re-
spect to a1, a2 (or any pair of distinct elements in {an}).

Proof. For f ∈ �(I) we have for n ∈ N, ‖f, an‖ = supx∈I, x �=rn
|f(x)|. There-

fore, for each f, g ∈ �(I), and n ∈ N,

‖fg, an‖ = sup
x �=rn, x∈I

|f(x)g(x)| �
(

sup
x �=rn, x∈I

|f(x)|
)(

sup
x �=rn, x∈I

|g(x)|
)

= ‖f, an‖ ‖g, an‖

and the lemma is proved. �
Lemma 2.2. The 1-normed space (�(I), ‖.‖) is an 1-Banach space.

Proof. Let {fn} be a Cauchy sequence in (�(I), ‖.‖). Then for each x ∈ I,
{fn(x)} converges to some f(x) in K, and hence {fn} converges to f uniformly in
I. To prove the lemma it is required to show that f ∈ �(I). Let Fn be the set of
all points of discontinuity of fn in I and F be the set of all points of discontinuity
of f in I. We prove that F ⊆ ⋃

Fn and the lemma will be established. If x0 ∈ F ,
then there exists an ε > 0 such that for all δ > 0, there exists an xδ ∈ I such that
(*) |x0 − xδ| < δ and |f(x0) − f(xδ)| � ε

As {fn} converges to f uniformly in I, there exists an N ∈ N such that
(i) |fn(x) − f(x)| < ε/3 for all n � N, for all x ∈ I.

If possible, let x0 /∈ ⋃
Fn. Then x0 /∈ FN and so, as fN is continuous at x0, we

have a δ0 > 0 such that for |x − x0| < δ0, x ∈ I,
(ii) |fN(x) − fN(x0)| < ε/3.
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Then, for |x − xδ0 | < δ0,
|f(x0) − f(xδ0 )| � |f(x0) − fN (x0)| + |fN (x0) − fN(xδ0 )| + |fN(xδ0 ) − f(xδ0 )| < ε

by (i) and (ii) and this contradicts (*). Hence x0 ∈ ⋃
Fn and the lemma follows. �

Lemma 2.3. A sequence {fn} is Cauchy in (�(I), ‖., .‖) with respect to a1, a2
(or any pair of distinct elements in {an}) (that is, limm,n→∞ ‖fm − fn, ai‖ = 0,
for i = 1, 2) if and only if {fn} is Cauchy in (�(I), ‖.‖).

Proof. As for each f ∈ �(I), ‖f, an‖ = supx∈I, x �=rn
|f(x)|, we have, for i =

1, 2

lim
m,n→∞ ‖fm − fn, ai‖ = 0 ⇔ lim

m,n→∞

(
sup

x∈I, x �=rn

|fm(x) − fn(x)|
)

= 0

⇔ lim
m,n→∞

(
sup

x∈I, x �=ri

|fm(x) − fn(x)|
)

= 0 ⇔ lim
m,n→∞ ‖fm − fn‖ = 0

and the lemma is proved. �

Lemma 2.4. A sequence {fn} in �(I) is convergent to an f in (�(I), ‖.‖) iff
{fn} is convergent to f in (�(I), ‖., .‖) with respect to a1, a2 (or any pair of distinct
element in {an}) (that is, limn→∞ ‖fn − f, ai‖ = 0 for i = 1, 2).

Proof. Follows as in Lemma 2.3. �

Lemma 2.5. The 2-normed space (�(I), ‖., .‖) is a 2-Banach algebra with re-
spect to a1, a2 (or any pair of distinct elements in {an}).

Proof. Follows from Lemmas 2.1, 2.2, 2.3 and 2.4. �

Lemma 2.6. The sequence {φn} is Cauchy in (�(I), ‖., .‖).

Proof. Define functions b1, b2 on I by

b1(x) =

{
1, if x ∈ Ae

0, otherwise
and b2(x) =

{
1, if x ∈ (Ae � {1/2})
0, otherwise.

Now for f ∈ �(I), we have,

‖f, b1‖ = max
{

sup
k∈N

|f(r2k)|, sup
k,l∈N

|f(r2k) − f(r2l)|
}

,

‖f, b2‖ = max
{

sup
k∈N, k�2

|f(r2k)|, sup
k,l∈N, k,l�2N

|f(r2k) − f(r2l)|
}

.

Now for each m, n ∈ N and for i = 1, 2 we have ‖φm − φn, bi‖ = 0 and hence
{φn} is Cauchy in (�(I), ‖., .‖), and the lemma is proved. �

Lemma 2.7. The sequence {φn} is not Cauchy in (�(I), ‖.‖).

Proof. We have, for m, n ∈ N, m < n, Am ⊆ An, and for x ∈ I,

|φm(x) − φn(x)| =

{
1, if x /∈ (Am ∪ Ae), x ∈ (An ∪ Ae)
0, otherwise.
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As for each pair of m, n ∈ N, m < n and n sufficiently large, there exists an x ∈ I
such that x /∈ (Am ∪Ae) but x ∈ (An ∪Ae), we have ‖φm −φn‖ = 1 and the lemma
is proved. �

Lemma 2.8. The 2-normed space (�(I), ‖., .‖) is not a 2-Banach space.

Proof. If (�(I), ‖., .‖) is a 2-Banach space, then by Lemma 2.6 as the sequence
{φn} is Cauchy in (�(I), ‖., .‖), there is a φ in �(I) so that limn→∞ ‖φn −φ, f‖ = 0
for each f ∈ �(I) and hence, in particular, limn→∞ ‖φn−φ, ai‖ = 0 for i = 1, 2. But
then by Lemma 2.4, {φn} is convergent to φ in (�(I), ‖.‖) contradicting Lemma 2.7
and the proof is complete. �

The Lemmas 2.5 and 2.8 imply that the 2-normed space (�(I), ‖., .‖) is a
2-Banach algebra with respect to a1, a2 (or any pair of distinct elements in {an})
though the 2-normed space (�(I), ‖., .‖) is not a Banach space, and we have the
following.

Theorem 2.2. A 2-Banach algebra need not be a 2-Banach space.

3. 2-Banach algebras: Some basic properties

Let (E, ‖., .‖) be a 2-Banach algebra with respect to a1, a2 over K with unity
(If E is without unity we augment unity as in [5]) a1, a2 ∈ A, where A is an algebra
with unity over K, E is a subalgebra of A and (A, ‖., .‖) is a 2-normed space. As we
have seen in [5] (E, ‖., .‖) is a topological vector space, the topology being induced
by the 2-norm ‖., .‖ in E. In this section the topological concepts like closed/open
sets, continuity etc. in E, are all meant for the topological vector space (E, ‖., .‖).
In this context, the following proposition is useful.

Proposition 3.1. Let (E, ‖., .‖) be a 2-normed linear space over K, X be a
nonempty subset of E. Then X is open if and only if for each a0 ∈ X, there exists
εa0 > 0 and b ∈ E such that for each c ∈ E with ρb(c) = ‖b, c‖ < εa0 implies
a0 + c ∈ X.

Proof. For a proof see [4]. �

Before we proceed further, let us agree with the following notations. For a
2-Banach algebra (E, ‖., .‖) with unity e with respect to a1, a2 over K, G(E) denotes
the group of all invertible elements of E. For a ∈ E, σ(a), ωa and r(a) denote the
spectrum, resolvent and spectral radius of a respectively.

Theorem 3.1. Let (E, ‖., .‖) be a 2-Banach algebra with unity e over K with
respect to a1, a2.

(i) If a ∈ E is such that ‖a, ai‖ < 1 for i = 1, 2, then e − a ∈ G(E) and if φ
be a nontrivial K-homomorphism on E, |φ(a)| < 1.

(ii) The group G(E) is open in (E, ‖., .‖), and the mapping f : G(E) → G(E)
defined by f(a) = a−1, a ∈ G(E) is a homeomorphism on G(E).
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Proof. (i) For each a ∈ E, associate a sequence {sn(a)} in E defined by
sn(a) = e + a + a2 + · · · + an. Now if ‖a, ai‖ < 1, i = 1, 2 we have for n ∈ N, n � 2,
i = 1, 2:

‖an, ai‖ � ‖an−1, ai‖ ‖a, ai‖ � ‖an−2, ai‖ ‖a, ai‖2 � · · · � ‖a, ai‖n → 0 as n → ∞.

So,

‖sn+p(a) − sn(a), ai‖ � ‖an+1, ai‖ + · · · + ‖an+p, ai‖
� ‖a, ai‖n+1 + · · · + ‖a, ai‖n+p

� ‖a, ai‖n+1

1 − ‖a, ai‖ for i = 1, 2; n, p ∈ N, n � 2, → 0 as n, p → ∞.

But (E, ‖., .‖) being 2-Banach algebra with respect to a1, a2 there exists an s(a) in
E such that limn→∞ ‖sn(a) − s(a), ai‖ = 0.

Now, sn(a)(e − a) = e − an+1 = (e − a)sn(a) for all n ∈ N and therefore for
i = 1, 2,

‖s(a)(e − a) − e, ai‖ = ‖s(a)(e − a) − sn(a)(e − a) − an+1, ai‖
� ‖(s(a) − sn(a))(e − a), ai‖ + ‖an+1, ai‖
� ‖s(a) − sn(a), ai‖ ‖e − a, ai‖ + ‖an+1, ai‖

becomes zero as n → ∞. Hence ‖s(a)(e − a) − e, ai‖ = 0 for i = 1, 2 and so
s(a)(e − a) = e. Similarly, (e − a)s(a) = e and therefore, s(a) = (e − a)−1 and
e − a ∈ G(E). (We call the series s(a) = e + a + a2 + · · · , the associate series of a).

To prove the second part of (i), let, if possible, φ be a nontrivial K-homo-
morphism on E, |φ(a)| � 1. Let λ ∈ K be such that φ(a) = λ. Then |λ| � 1
and φ(λ−1a) = 1 and so φ(e − λ−1a) = 0 as φ being nontrivial, φ(e) = 1. Let
b = e − λ−1a. Then φ(b) = 0. But as |λ| � 1 and ‖a, ai‖ < 1 for i = 1, 2, we have
‖λ−1a, ai‖ < 1 for i = 1, 2 and hence b = e − λ−1a ∈ G(E). But then φ(b) �= 0 and
we have a contradiction and (i) is completely proved.

(ii) To see that G(E) is open, let a ∈ G(E). Note that, as a1, a2 are linearly
independent, for a ∈ E, ‖a, ai‖ = 0 for i = 1, 2 if and only if a = 0, see [5]. Take
εa = 1

2 (maxi=1,2{‖a−1, ai‖})−1. Then for b ∈ E with ‖b, ai‖ < εa, i = 1, 2, we have
‖ − a−1b, ai‖ � ‖a−1, ai‖ ‖b, ai‖ < 1

2 , which implies, e + a−1b ∈ G(E) by (i), and as
a + b = a(e + a−1b), we have a + b ∈ G(E) which using Proposition 3.1 proves that
G(E) is open.

To prove that f is a homeomorphism, let b ∈ E, a ∈ G(E) and ‖b−a, ai‖ < εa,
for i = 1, 2; then, as a + (b − a) = b and G(E) is open, b ∈ G(E). Write c =
a−1(b − a). Then for i = 1, 2, ‖c, ai‖ � ‖a−1, ai‖ ‖b − a, ai‖ � 1

2 and hence by (i),
e + c ∈ G(E). We also have, for each n ∈ N, sn(−c)(e + c) = e − (−1)n+1cn+1 and
s(−c) = (e + c)−1 ∈ G(E) and for i = 1, 2,

‖sn(−c) − e, ai‖ � ‖c, ai‖ + ‖c, ai‖2 + · · · + ‖c, ai‖n = ‖c, ai‖(1 − ‖c, ai‖n)
1 − ‖c, ai‖

� 2‖c, ai‖(1 − ‖c, ai‖n) (as ‖c, ai‖ � 1/2)
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and so ‖s(−c)−e, ai‖ � 2‖c, ai‖ for i = 1, 2. Since b−1−a−1 = [(e + c)−1 − e]a−1 =
[s(−c) − e]a−1, we have for i = 1, 2:

‖f(b) − f(a), ai‖ = ‖b−1 − a−1, ai‖ = ‖(s(−c) − e)a−1, ai‖
� ‖s(−c) − e, ai‖ ‖a−1, ai‖ � 2‖a−1, ai‖ ‖b − a, ai‖ ‖a−1, ai‖
= 2‖a−1, ai‖2 ‖b − a, ai‖.

Hence, ‖f(b) − f(a), ai‖ � 2‖a−1, ai‖2‖b − a, ai‖ for i = 1, 2; whenever b ∈ E with
‖b − a, ai‖ < εa. But this proves that f is continuous on G(E). As f is one to
one on G(E), f−1 = f . The mapping f is a homeomorphism on G(E) and (ii) is
proved. This completes the proof of the theorem. �

Theorem 3.2. Let (E, ‖., .‖) be a 2-Banach algebra with unity e over K with
respect to a1, a2, and a ∈ E. Then,

(i) σ(a) is closed in K,
(ii) r(a) � maxi=1,2{‖a, ai‖},
(iii) σ(a) is compact in K,
(iv) σ(a) is nonempty if K = C, and
(v) r(a) = limn→∞

[
maxi=1,2{‖an, ai‖}]1/n.

Proof. (i) For a ∈ E define fa : K → E by fa(λ) = λe−a for λ ∈ K. Then fa

is continuous on K, and so f−1
a (G(E)) is open in K as G(E) is open in (E, ‖., .‖) by

Theorem 3.1. We claim that Ωa = f−1
a (G(E)). To prove the claim, let λ ∈ Ωa; then

λe − a ∈ G(E) and so fa(λ) ∈ G(E) which implies λ ∈ f−1
a (G(E)). Conversely, let

λ ∈ f−1
a (G(E)). Then fa(λ) = λe − a ∈ G(E) and so λ /∈ σ(a) and the claim is

proved. This proves that σ(a) is closed.
(ii) Write k = maxi=1,2 ‖a, ai‖ and let, if possible, r(a) > k. Then there exists

λ ∈ σ(a) such that |λ| > k, and therefore ‖λ−1a, ai‖ < 1 for i = 1, 2. But this
implies by Theorem 3.1, e − λ−1a ∈ G(E) and hence λ /∈ σ(a), and (ii) is proved.

(iii) Combining (i) and (ii), we get (iii).
(iv) For a ∈ E, define a mapping Ra : Ωa → G(E) by Ra(λ) = (λe − a)−1,

λ ∈ Ωa. Let λ ∈ Ωa, δ = [maxi=1,2 ‖Ra(λ), ai‖]−1. Let μ ∈ Ωa be such that

(3.1) |λ − μ| <
1
2

δ,

and b = (μ − λ)Ra(λ). Then, as ‖b, ai‖ < 1 for i = 1, 2, e − b ∈ G(E), by
Theorem 3.1. For i = 1, 2 we have

‖sn(b) − e − b, ai‖ � ‖b, ai‖2 + · · · + ‖b, ai‖n = ‖b, ai‖2(1 − ‖b, ai‖n)
1 − ‖b, ai‖

(see the proof of Theorem 3.1) and so, for i = 1, 2,

(3.2) ‖(e − b)−1 − e − b, ai‖ = ‖s(b) − e − b, ai‖ � ‖b, ai‖2

1 − ‖b, ai‖ , i = 1, 2.
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Now,

Ra(μ) − Ra(λ) + (μ − λ)(Ra(λ))2

= [(μe − a)−1(λe − a) − e + (μ − λ)Ra(λ)]Ra(λ)
= [[(λe − a)−1{(μ − λ)e + (λe − a)}]−1 − e + (μ − λ)Ra(λ)]Ra(λ)
= [{e + (μ − λ)Ra(λ)}−1 − e + (μ − λ)Ra(λ)]Ra(λ).

Therefore, for i = 1, 2,

‖Ra(μ) − Ra(λ) + (μ − λ)(Ra(λ))2, ai‖
� ‖{e + (μ − λ)Ra(λ)}−1 − e + (μ − λ)Ra(λ), ai‖ ‖Ra(λ), ai‖

� |(λ − μ)| ‖Ra(λ), ai‖2

1 − |(μ − λ)| ‖Ra(λ), ai‖‖Ra(λ), ai‖ (by (3.2))

� 2|μ − λ|2‖Ra(λ), ai‖3 � 1
2

δ‖Ra(λ), ai‖ (by (3.1))

as ‖b, ai‖ = |μ − λ| ‖Ra(λ), ai‖ � 1
2 .

Therefore, for i = 1, 2, for μ ∈ Ωa, μ �= λ and |μ − λ| < 1
2 δ,∥∥∥Ra(μ) − Ra(λ)

μ − λ
+ (Ra(λ))2, ai

∥∥∥ � 2|μ − λ| ‖Ra(λ), ai‖3.

So, limμ→λ
Ra(μ)−Ra(λ)

μ−λ exists in the topological linear space (E, ‖., .‖) and equals
to −(Ra(λ))2 for λ ∈ Ωa and we conclude that Ra is analytic in Ωa.

Now, if possible, let σ(a) be empty. Then Ωa = K = C and Ra is an entire
function. Let λ ∈ C be such that k < |λ|, that is, ‖λ−1a, ai‖ < 1 for i = 1, 2; k be
as in (ii). Then by Theorem 3.1, e−λ−1a ∈ G(E) and as s(λ−1a) = (e−λ−1a)−1 =
e + (λ−1a) + (λ−1a)2 + · · · , we have

(3.3) Ra(λ) = λ−1(e − λ−1a)−1 = λ−1e + λ−2a + λ−3a2 + · · ·
Let Γr be the circle on the complex plane with center at origin and radius r,

where k < r. Then the series on the right-hand side of (3.3) converges uniformly
on Γr and so term by term integration over Γr is allowed to the right hand-side of
the series in (3.3), and we conclude that for n = 0, 1, 2, . . . and for r > k,

(3.4) an = 1
2πi

∫
Γr

λnRa(λ) dλ

and in particular

(3.5) e = 1
2πi

∫
Γr

Ra(λ) dλ.

But as Ra is entire, by Cauchy theorem, the integral on the right-hand side of (3.5)
is zero, which is a contradiction and the proof of (iv) is complete.

(v) Let a ∈ E. Then for r > r(a) also (3.4) holds. The continuity of Ra in Γr

implies that for r > r(a), B(r) = maxj=1,2, θ∈[0,2π] ‖Ra(reiθ), aj‖ is finite. Hence
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by (3.4) we have maxj=1,2{‖an, aj‖} � rn+1B(r) for all n ∈ N, which then implies
that

(3.6) lim
n→∞ sup

[
max
j=1,2

{‖an, aj‖}
]1/n

� r(a)

Again, for λ ∈ σ(a), as we have, for all n ∈ N,

λne − an = (λe − a)(λn−1e + λn−2a + · · · + λan−2 + an−1),

we see that λne − an /∈ G(E) and hence λn ∈ σ(an) for all n ∈ N. Then by (ii) we
have for all n ∈ N, |λn| � r(an) � [maxj=1,2{‖an, aj‖}]. Hence, for all λ ∈ σ(a),
and for all n ∈ N, |λ| � [maxj=1,2{‖an, aj‖}]1/n implying,

(3.7) r(a) � lim
n→∞ inf

[
max
j=1,2

{‖an, aj‖}
]1/n

.

Now (3.6) and (3.7) implies that limn→∞ [maxj=1,2{‖an, aj‖}]1/n exists and
equals to r(a). This establishes (v) and the proof of the theorem is complete. �

4. Spectral radius formula for 1-Banach algebras

The following theorem contains a new spectral radius formula for 1-Banach
algebras.

Theorem 4.1. Let (E, ‖.‖) be an 1-Banach algebra with unity e over C, dim E
� 2 such that a nontrivial C-homomorphism on E exists. Then there exists an
1-Banach algebra (B, ‖.‖1) of which (E, ‖.‖) is a closed subalgebra, the 1-norm ‖.‖1
on B when restricted on E becomes the 1-norm ‖.‖ on E and a1, a2 ∈ B such that
for all a ∈ E,
(4.1)

r(a) = lim
n→∞ ‖an‖1/n = lim

n→∞

[
max
i=1,2

{
sup

φ,Ψ∈B∗
‖φ‖=‖Ψ‖=1

|φ(an)Ψ(ai) − Ψ(an)φ(ai)|
}]1/n

Proof. Follows from Lemma 5.4, Theorem 5.1 of [5] and Theorem 3.2. �

We conclude this section by stating the following 2-norm version of the Gelfand–
Mazur theorem [2, 3].

Theorem 4.2. There does not exist a 2-Banach division algebra over C.

Proof. If possible, let (E, ‖., .‖) be a 2-Banach division algebra on C with
respect to a1, a2. Then dim E � 2. For each 0 �= a ∈ E, we claim that σ(a) is a
singleton. To prove this claim, we observe that σ(a) is nonempty by Theorem 3.2
and if λ1, λ2 ∈ σ(a), λ1 �= λ2, then as λ1e − a and λ2e − a both are noninvertible,
we have λ1e − a = λ2e − a = 0 as E is a division algebra. So, λ1 = λ2, and our
claim is proved. Now for each a in E, let σ(a) = {λ(a)} and by definition of σ(a),
a = λ(a)e, that is, E is generated by e and hence dim E = 1 and the theorem
follows. �
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