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EHRESMANN CONNECTION

IN THE GEOMETRY

OF NONHOLONOMIC SYSTEMS

Aleksandar Bakša

Abstract. This article deals with a dynamic system whose motion is con-
strained by nonholonomic, reonomic, affine constraints. The article analy-
ses the geometrical properties of the “reactions" of nonholonomic constraints
in Voronets’s equations of motion. The analysis shows their link with the
torsion of the Ehresmann connection, which is defined by the nonholonomic
constraints.

1. Differential Equations of Motion

We consider nonholonomic mechanical system on a configuration manifold Qn,
where the local coordinates are q = (q1, . . . , qn). The motion of the system is
constrained by the affine constraints

(1) q̇ν = aν
αq̇

α + aν , α = 1, . . . ,m; ν = m+ 1, . . . , n

where aν
α : (q, t) 7→ aν

α(q, t) and aν : (q, t) 7→ aν(q, t) are smooth functions. At
each point (q, t) ∈ Qn ×R, the constraints (1) define a (n−m)-dimensional time-
dependent tangent subspace Dq,t ⊂ TqQ

n ×R (assuming that the subspace dimen-
sions are the same at each point), i.e., (n−m)-dimensional distribution.

A curve γ : (a, b) ∋ t 7→ γ(t) ∈ Qn, is said to satisfy the constraints if γ̇(t) ∈
Dγ(t) for all t. The set M comprising all the points at which the tangent vector
belongs to the distribution is called the integral set of the distribution.

The nonholonomic constraints (1) define the 1-forms ω on an extended config-
uration manifold Qn ×R in the following manner: ων = dqν − aν

αdq
α − aνdt.

For the sake of brevity, we will express them as follows (t = q0):

ων = dqν − aν
α̂dq

α̂, aν = aν
0 , α̂ = 0, 1, . . . ,m.
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The linear space N∗ of the 1-forms on the manifold, which represents a module
over the ring of smooth functions, will be called the differential system. If dim N∗

is equal at all points, then it is taken as the dimension of the differential system.
The differential system may also be given with (m+ 1) linearly independent vector
fields

ξα̂ = aν
α̂

∂

∂qν
+

∂

∂qα̂

which annul the 1-forms ων . The linearly independent vectors ξα̂ in each tangent
space T(q,t)(Q

n × R) define the (m + 1)-dimensional vector subspace D(q,t). The
differentiable field of these subspaces D : (q, t) 7→ Dq,t is called the distribution.

For the linearly independent vector fields ξα̂ we say that they span the distri-
bution D, and that the corresponding fields of 1-forms ων span the codistribution
or annulator D⊥.

The differential equations of motion of the mechanical system determined by
the LagrangianL : TQn×R ∋ (q̇, q, t) 7→ L(q̇, q, t) ∈ R, whose motion is constrained
by nonholonomic constraints (1), are derived from the basic dynamic equation

( d

dt

∂L

∂q̇
−
∂L

∂q
, δq

)
= 0

where δq is a random vector from TqQ
n (virtual displacement). Bearing in mind the

constraints imposed on the coordinates of vector δq by nonholonomic connections

δqν = aν
αδq

α

the basic dynamic equation has the following form

( d

dt

∂L

∂q̇α
−

∂L

∂qα

)
δqα + aν

α

( d

dt

∂L

∂q̇ν
−
∂L

∂qν

)
δqα = 0.

Let us introduce a “connected" Lagrangian L̃ by using the equality (1) and excluding
the coordinates q̇ν :

L(q̇, q, t) → L̃(q̇1, . . . , q̇m, q1, . . . , qn, t).

The equations of motion may now be written in the following form (in scientific
literature, these equations are known as Voronets’s equations 1 [3]:

(2)
d

dt

∂L̃

∂q̇α
−
∂L̃

∂qα
−
∂L̃

∂qν
aν

α −

(
∂̃L

∂q̇ν

)
(Bν

αβ q̇
β +Bν

α) = 0,

where

Bν
αβ =

∂aν
α

∂qβ
−
∂aν

β

∂qα
+
∂aν

α

∂qµ
a

µ
β −

∂aν
β

∂qµ
aµ

α(3)

Bν
α =

∂aν
α

∂t
−
∂aν

∂qα
+
∂aν

α

∂qµ
aµ −

∂aν

∂qµ
aµ

α(4)

1P. V. Voronets, 1871–1923
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Along with the initially set conditions, equations (1) and (2) completely define the
motion of the system. Obviously, the system of coefficient (3) is skew-symmetric.
In further we shall denote

Bν
αβ q̇

β +Bν
α = Bν

αβ̂
q̇β̂ , α = 1, . . . ,m, β̂ = 0, . . . ,m, q̇0 = 1.

where t = q0, aµ = a
µ
0 , Bν

α = Bν
α0.

2. Ehresmann Connection

In order to examine the geometrical properties of the nonholonomic connec-
tions, we need to analyse the fibre bundle (Qn, Rm, S(n−m), π), where Qn is the
total space, Rm is the base space, S(n−m) is the fiber, π : Qn → R(n−m) projection
(surjective submersion).

The submersion of π induces the submersion of π∗ : TQ → TR. The kernel
of the submersion is the vertical subspace Ker(π∗) = V ∈ TQ. The complement
of the vertical subspace is the horizontal subspace H . At any point q ∈ Q is
Vq ⊕Hq = TqQ, Vq ∩Hq = {0}.

The separation of the horizontal subspace is linked with the structure of the
linear connection at the fiber bundle, i.e., with the parallel transport. The connec-
tion can be defined in several ways and we will introduce it via the vector-valued
1-form.

Definition. The Ehresmann2 connection is a vector-valued differential 1-form
Ω on Qn such that

(1) Ω : TqQ
n → Vq (vertical valued), (2) Ω(v) = v, v ∈ V (projection).

We will introduce the Ehresmann connection on Qn ×R via the differential form

Ω := ων ∂

∂qν
, ων = dqν − aν

αdq
α − aνdt.

The vertical vector component ξ (we will mark it as ξv) is

ξv = Ω(ξ) = (ξν − aν
α̂ξ

α̂)
∂

∂qν
, α̂ = 0, 1, . . . ,m.

The map Ω is obviously vectorial and it can be easily seen that the projection
is vectorial as well.

The horizontal vectors have the following form

ξh = ξ − ξv ⇒ ξh = ξα̂
(
aν

α̂

∂

∂qν
+

∂

∂qα̂

)
.

It should be noted that these vectors extend the distribution. We can see that the
horizontal lift is

hlift
( ∂

∂qα̂

)
=

∂

∂qα̂
+ aν

α̂

∂

∂qν
.

The collection of all the horizontal vectors at point q ∈ Qn forms a horizontal sub-
space. The separation of the horizontal subspace basically represents the definition
of the Ehresmann connection.

2Charles Ehresmann, 1905–1979
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One of the important characteristics of the connection is its curvature. The
curvature of the connection Ω is the two-form on Qn with values in TQn, [4], [7]

T (X,Y ) = Ω[Xh, Yh].

By using a known identity valid for a 1-form differential θ

dθ(X,Y ) = X(θ(Y )) − Y (θ(X)) + θ([X,Y ])

we get

T (X,Y ) = dων(Xh, Yh)
∂

∂qν
.

In our case it is

dων = −
∂aν

α̂

∂qβ̂
dqβ̂ ∧ dqα̂ −

∂aν
α̂

∂qµ
dqµ ∧ dqα̂.

The value of the differential form dω on vectors ξh ∈ TQ, ηh ∈ T (Qn ×R) is

dω(ξh, ηh) = Bν
αβξ

αηβ +Bν
αξ

αη0.

This proves the following

Proposition. Coefficients Bν
αβ + Bν

α in Voronets’s equations represent the

curvature of the Ehresmann connection on the vectors ξh ∈ H ⊂ TQn, ηh ∈ H ⊂
T (Qn ×R).

Example. Let us consider the rolling of a heavy homogenous ball on a hori-
zontal plane, revolving around its axis [4]. Let us assume that the radius of the ball
r(·) and the angular speed of the plane Ω(·) are given smooth functions of time.
We will set the inertial (immovable) coordinate system Oxyz in such a manner that
the z-axis is vertical, pointed upwards. We will determine the position of the ball
by the coordinates (x, y) of the point at which the ball A touches the plane, and by
the Euler angles (ψ, θ, ϕ). The configuration manifold of the system is R2 ×SO(3),
which can be considered as the main stratification with the base R2 and the fiber
SO(3), at which the structural group acts on itself from the right. Based on the
rolling conditions (without sliding), we get the nonholonomic constraints in the
following form

(5) ωx(t) = −
1

a(t)
ẏ +

Ω(t)

a(t)
x, ωy(t) =

1

a(t)
ẋ+

Ω(t)

a(t)
y,

t ∈ (α, β) ⊂ R, where

ωx = θ̇ cosψ + ϕ̇ sinψ sin θ

ωy = θ̇ sinψ − ϕ̇ cosψ sin θ(6)

ωz = ϕ̇ cos θ + ψ̇.

Substituting (6) into (5) gives

ϕ̇ =
cosψ

a sin θ
ẋ−

sinψ

a sin θ
ẏ +

Ω(x sinψ − y cosψ)

a sin θ

θ̇ =
sinψ

a
ẋ−

cosψ

a
ẏ +

Ω(x cosψ + y sinψ)

a
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The Lagrangian is

L =
m

2

(
ẋ2 + ẏ2)

+
mk2

2

(
ω2

x + ω2
y + ω2

z

)

=
m

2

(
ẋ2 + ẏ2)

+
mk2

2

[
ψ̇2 + ϕ̇2 + 2ϕ̇ψ̇ cos θ + θ̇2]

(mk2 is inertia about any axis).

From Lagrange’s equations with multipliers [1]

d

dt

∂L

∂q̇i
−
∂L

∂qi
=

∑
λν

∂Φν

∂qi

we get
∂L

∂ψ̇
= mk2(

ψ̇ + ϕ̇ cos θ
)

= mk2ωz = const .

The reduced Lagrangian L̃, without an additive constant, is

L̃(x, y, ẋ, ẏ) =
m

2

[(
1 +

k2

a2

) (
ẋ2 + ẏ2)

+
2k2Ω

a2 (yẋ− xẏ) +
k2Ω2

a2

(
x2 + y2)]

.

The functions that determine the curvature are (q1 = x, q2 = y, q3 = ψ, q4 = ϕ,
q5 = θ)

B4
12 = −

cos θ

a2 sin2 θ
, B4

13 =
sinψ

a sin θ
, B4

23 = −
cosψ

a sin θ

B4
1 =

ȧ cosψ

a2 sin θ
−

Ω sinψ

a cos θ
+

Ω cos θ

a2 sin2 θ
x, B4

2 =
ȧ sinψ

a2 sin θ
+

Ω cosψ

a sin θ
+

Ω cos θ

a2 sin2 θ
y,

B4
3 = −

Ω(x cosψ + y sinψ)

a sin θ
, B5

12 = 0, B5
13 =

cosψ

a
, B5

23 =
sinψ

a
,

B5
1 = −

1

a2 (ȧ sinψ+a cosψ), B5
2 =

1

a2 (ȧ cosψ−a sinψ) ; B5
3 =

Ω

a
(x sinψ−y cosψ)

The distribution D is determined by (horizontal vectors)

ξ1 =
∂

∂x
−

cosψ

a sin θ

∂

∂ϕ
+

sinψ

a

∂

∂θ
,

ξ2 =
∂

∂y
−

sinψ

a sin θ

∂

∂ϕ
−

cosψ

a

∂

∂θ
,

ξ0 =
∂

∂t
+

Ω(x sinψ + y cosψ)

a sin θ

∂

∂ϕ
−

Ω(x cosψ + y sinψ)

a

∂

∂θ
.
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