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FORMULATION AND ANALYSIS
OF A PARABOLIC TRANSMISSION PROBLEM

ON DISJOINT INTERVALS

Boško S. Jovanović and Lubin G. Vulkov

Abstract. We investigate an initial-boundary-value problem for one dimen-
sional parabolic equations in disjoint intervals. Under some natural assump-
tions on the input data we proved the well-posedness of the problem. Nonneg-
ativity and energy stability of its weak solutions are also studied.

1. Introduction

It is well known that the transfer of energy or mass is fundamental for many
biological, chemical, environmental and industrial processes. The basic transport
mechanisms of such processes are diffusion (or dispersion) and bulkflow. There-
fore, the corresponding flux has two components: a diffusive one and a convective
one. Here we pay attention to diffusion in one-dimensional domain with layers.
Layers with material properties which significantly differ from those of surrounding
medium appear in variety of applications [1, 2, 3, 4, 7, 8, 12, 14, 17]. The layer
may have structural role (as in the case of glue), a thermal role (as in the case of
thin thermal insulator), an electromagnetic or optical role, etc., depending on the
application. Traditionally there are two ways of handling such layers in the numer-
ical modelling: either they are fully modelled or, they are totally ignored. We use a
method proposed in [7, 8] of modelling of a thin layer as an interface. The effect of
the layer on the solution is modelled by means of nonlocal jump conditions across
the interface. In order to explain the method proposed in this paper for mathemat-
ical modelling of layer phenomena we consider in Section 2 a physical model. As
a result the following initial-boundary-value problem (IBVP) arises: find functions
u1(x, t), u2(x, t) that satisfy the parabolic equations

(1.1)
∂u1

∂t
−

∂

∂x

(

p1(x)
∂u1

∂x

)

+ q1(x)u1 = f1(x, t), x ∈ Ω1 ≡ (a, b), t > 0,
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(1.2)
∂u2

∂t
−

∂

∂x

(

p2(x)
∂u2

∂x

)

+ q2(x)u2 = f2(x, t), x ∈ Ω2 ≡ (c, d), t > 0,

where −∞ < a < b < c < d < +∞, and the internal boundary (or nonlocal
interface jump) conditions

(1.3) p1(b)
∂u1(b, t)

∂x
+ α1u1(b, t) = β1u2(c, t) + γ1(t),

(1.4) − p2(c)
∂u2(c, t)

∂x
+ α2u2(c, t) = β2u1(b, t) + γ2(t).

These two conditions have the form of Robin–Dirichlet mixed boundary conditions
(see the review of Givoli [7], where Robin–Dirichlet conditions have been incorpo-
rated in a finite element formulation in order to eliminate an infinite domain, a
singular domain, or a substructure from computational domain). Finally, in order
to complete the IBVP we pose the simplest external boundary conditions

(1.5) u1(a, t) = 0, u2(d, t) = 0,

and initial conditions

(1.6) u1(x, 0) = u10(x), u2(x, 0) = u20(x).

Throughout the paper we assume that the data satisfy the usual regularity and
ellipticity conditions

pi(x), qi(x) ∈ L∞(Ωi), i = 1, 2,(1.7)

pi(x) > p0i > 0, a.e. in Ωi, i = 1, 2,(1.8)

αi > 0 , βi > 0, i = 1, 2.(1.9)

In some cases we shall require that

(1.10) qi(x) > 0, a.e. in Ωi, i = 1, 2,

and/or

(1.11) β1β2 6 α1α2.

The aim of the present paper is to study the well-posedness of the IBVP (1.1)–
(1.6) and some of its properties as nonnegativity and energy stability of the solu-
tions. Finite difference schemes for approximation of (1.1)–(1.6) are considered in
[10, 11].

An outline of the paper is as follows. In Section 2 we discuss a heat-mass
transfer problem and show how in a natural way can arise problem (1.1)–(1.6). In
Section 3 the well-posedness (existence, uniqueness and regularity of the solution)
for problem (1.1)–(1.6) is studied. A specific spectral problem is used. Energy
stability for solutions to problem (1.1)–(1.6) is also discussed. The nonnegativity
of solutions to (1.1)–(1.11) is studied in Section 4.
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2. A Motivated Heat-Mass Transfer Problem

We know that conductive heat transfer is nothing else but the movement of
thermal energy through the corresponding medium (material) from the more ener-
getic particles to the others [3, 4, 17]. Of course, the local temperature is given by
the energy of the molecules situated at that place. So, thermal energy is transferred
from points with higher temperature to other points. If the temperature of some
area of the medium increases, then the random molecular motion becomes more
intense in that area. Thus a transfer of thermal energy is produced, which is called
heat diffusion. The corresponding conductive heat flux Q(x, t), is given by the
Fourier’s rate law Q = −pux = −p ∂u

∂x , where p is the thermal conductivity of the
medium, and u = u(x, t) is the temperature at point x at time instant t. We shall
assume that p depends on x only. The first law of thermodynamics (conservation
of energy) gives in a standard manner the transformation of the energy from one
form (e.g. mechanical, electrical, etc.) into heat. The right hand side of the above
equation represents the stored heat. In other words, the heat equation looks like

ε
∂u

∂t
−

∂

∂x

(

p(x)
∂u

∂x

)

= f(x, t),

where ε = ρc, ρ is the density, and c is the specific heat capacity. Note that
the same partial differential equation is a model of mass transfer, but in this case
u(x, t) represents the mass density of the material at a point x, at time t. Instead
of Fourier law, a similar law is available in this case, which is called Fick’s law of
mass diffusion. An additional term q(x)u depending on the density may appear in
the mass equation due to the reaction

(2.1) ε
∂u

∂t
−

∂

∂x

(

p(x)
∂u

∂x

)

+ q(x)u = f(x, t).

For the case of an interface joining two media with thermal conductivities pi (i =
1, 2) the heat flows Qi (even temperatures ui) have a discontinuity jump at the
interface (a point in 1D case, a curve in 2D case and a surface in the 3D case). We
shall now discuss a 1D model of two media of non-stationary transfer separated
by a layer where the temperature field is almost stationary, i.e., ∂u/∂t ≡ 0 or the
quantity ε = ρc is very small. Then equation (2.1) in the layer takes the form:

(2.2) −
∂

∂x

(

pL(x)
∂uL

∂x

)

+ qL(x)uL = fL(x, t).

Let us suppose that the heat (or mass) equations of media 1, 2 are given by (1.1),
(1.2) respectively, and in the intermediate layer (b, c), by (2.2). On the two ends of
the layer we have the continuity conditions

u1(b, t) = uL(b, t), uL(c, t) = u2(c, t),(2.3)

p1(b)
∂u1

∂x
(b, t) = pL(b)

∂uL

∂x
(b, t), pL(c)

∂uL

∂x
(c, t) = p2(c)

∂u2

∂x
(c, t).(2.4)

Conditions (2.3) enforce the continuity of the primary variable u (e.g., tempera-
ture), whereas conditions (2.4) require the continuity of the ‘flux’ Q. In the layer
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(b, c) we solve equation (2.2) analytically. Its general solution is of the form

(2.5) uL(x, t) = C1(t)v1(x) + C2(t)v2(x) + w(x, t),

where v1, v2, w are known functions, and C1(t), C2(t) are unknown functions. From
(2.5) we can write

[

v1(b) v2(b)
v1(c) v2(c)

]

·

[

C1(t)
C2(t)

]

=

[

uL(b, t) − w(b, t)
uL(c, t) − w(c, t)

]

.

By solving this set of equations we express C1(t) and C2(t) in terms of uL(b, t),
uL(c, t) and w(b, t), w(c, t). Then, from (2.3)–(2.5) we obtain conditions (1.3) and
(1.4), where

α1 =
pL(b)∆1(c, b)

∆(b, c)
, β1 =

pL(b)∆1(b, b)

∆(b, c)
,

α2 =
pL(c)∆1(b, c)

∆(b, c)
, β2 =

pL(c)∆1(c, c)

∆(b, c)
,

γ1(t) =
pL(b)

∆(b, c)

(

∆1(c, b) w(b, t) − ∆1(b, b) w(c, t) + ∆(b, c)
∂w

∂x
(b, t)

)

,

γ2(t) =
pL(c)

∆(b, c)

(

∆1(c, c) w(b, t) − ∆1(b, c) w(c, t) + ∆(b, c)
∂w

∂x
(c, t)

)

,

∆(b, c) =

∣

∣

∣

∣

v1(b) v2(b)
v1(c) v2(c)

∣

∣

∣

∣

= v1(b)v2(c) − v1(c)v2(b),

∆1(r, s) =

∣

∣

∣

∣

v1(r) v2(r)
dv1

dx (s) dv2

dx (s)

∣

∣

∣

∣

= v1(r)
dv2

dx
(s) − v2(r)

dv1

dx
(s).

Lemma 2.1. For the constants αi and βi inequalities (1.9) hold.

Proof. The functions v1(x) and v2(x) are two linearly independent solutions
of the corresponding homogeneous ordinary differential equation

Lv ≡ −
d

dx

(

pL(x)
dv

dx

)

+ qL(x)v = 0, x ∈ (b, c).

For example, we can choose v1(x) and v2(x) as the solutions of the Cauchy problems

Lv1 = 0, b < x < c, v1(b) = 0, pL(b)
dv1

dx
(b) = 1,

Lv2 = 0, b < x < c, v2(c) = 0, pL(c)
dv2

dx
(c) = −1.

Then maximum principle arguments [6] imply v1(c) > 0, dv1

dx (b) > 0, dv1

dx (c) > 0,

v2(b) > 0, dv2

dx (b) < 0 and dv2

dx (c) < 0, wherefrom follows (1.9). �

Remark 2.1. If one formally sets β1 = 0 (or β2 = 0) problem (1.1)–(1.6)
can be decoupled into two independent initial-boundary-value problems. Indeed,
in that case u1 satisfies equation (1.1), boundary conditions of the Dirichlet and
Robin type

u1(a, t) = 0, p1(b)
∂u1(b, t)

∂x
+ α1u1(b, t) = γ1(t),
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and the initial condition u1(x, 0) = u10(x). Such problems are already well studied
(see e.g., [16, 18, 20]), where, for the well-posedness, α1 > 0 is assumed. When u1

is determined, one obtains an analogous mixed Dirichlet–Robin initial-boundary-
value problem for u2.

Remark 2.2. Introducing new unknown functions

U1(x, t) = u1(x, t) − A1(t)(x − a)(x − b), U2(x, t) = u2(x, t) − A2(t)(x − c)(x − d),

where A1(t) = γ1(t)/[(b − a)p1(b)] and A2(t) = γ2(t)/[(d − c)p2(c)], one obtains
an analogous initial-boundary-value problem with homogeneous internal boundary
conditions. In such a way, without loss of generality, we can set γ1(t) = γ2(t) = 0
in (1.3)–(1.4).

3. Well-Posedness of Problem (1.1)–(1.6)

After the formulation and explanation of the physical meaning of problem
(1.1)–(1.6), we come up to the following theoretical questions: (a) existence, unique-
ness and qualitative properties (as smoothness, positivity, energy stability, etc.) of
the solution; (b) construction of analytical and numerical methods for approximate
solution of the problem. This paper is concerned with the first group of ques-
tions. We begin with the well-posedness, i.e., existence and uniqueness of solution
in appropriate Sobolev spaces.

3.1. An Auxiliary Spectral Problem. The problem is to find the triple
[λ; v = (v1, v2)] ∈ R × H1(Ω1) × H1(Ω2) which satisfies the differential equations

L1v1 ≡ −
d

dx

(

p1(x)
dv1

dx

)

+ q1(x)v1(x) = λv1(x), x ∈ Ω1,(3.1)

L2v2 ≡ −
d

dx

(

p2(x)
dv2

dx

)

+ q2(x)v2(x) = λv2(x), x ∈ Ω2,(3.2)

with Dirichlet’s classical boundary conditions

(3.3) v1(a) = 0, v2(d) = 0,

as well as the nonlocal Robin–Dirichlet boundary conditions

(3.4)
l1(v1, v2) ≡ p1(b)

dv1

dx
(b) + α1v1(b) − β1v2(c) = 0,

l2(v1, v2) ≡ −p1(c)
dv2

dx
(c) + α2v2(c) − β2v1(b) = 0.

Assuming that conditions (1.9) hold, consider the product space L = L2(Ω1) ×
L2(Ω2), endowed with the inner product and associated norm

(u, v)L =

2
∑

i=1

β3−i(ui, vi)L2(Ωi), ‖v‖L = (v, v)
1/2
L ,

where

(ui, vi)L2(Ωi) =

∫

Ωi

uivi dx, i = 1, 2.
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We can identify v ∈ L with a scalar function in Ω = Ω1 ∪ Ω2, by v : Ω → R,
v|Ωi

= vi, i = 1, 2. We introduce the product space

H1 = {v = (v1, v2) | vi ∈ H1(Ωi) and v1(a) = 0, v2(d) = 0}

endowed with the inner product and associated norm

(u, v)H1 =
2

∑

i=1

β3−i

[

(ui, vi)L2(Ωi) +
(dui

dx
,

dvi

dx

)

L2(Ωi)

]

, ‖u‖H1 = (u, u)
1/2
H1 .

We have the following assertion.

Lemma 3.1. Under the regularity conditions (1.7)–(1.9), the spectral problem

(3.1)–(3.4) is formally equivalent to the following variational problem: find [λ, v] ∈
R × H1 such that

(3.5) A(v, w) ≡ [v, w] + Z(v, w) = λ(v, w)L, ∀w ∈ H1,

where

[u, v] =

2
∑

i=1

β3−i[ui, vi]i, [ui, vi]i =

∫

Ωi

(

pi
dui

dx

dvi

dx
+ qiuivi

)

dx, i = 1, 2,

Z(v, w) = β2α1v1(b) w1(b) + β1α2v2(c) w2(c) − β1β2
[

v1(b) w2(c) + v2(c) w1(b)
]

.

Proof. Consider the eigentriple [λ; v1, v2] of (3.1)–(3.4). Multiplying (3.1) by
w1 ∈ H1(Ω1) such that w1(a) = 0 and integrating by parts using the first condition
in (3.4) we obtain the identity:

[v1, w1]1 + α1v1(b) w1(b) − β1v2(c) w1(b) = λ (v1, w1)L2(Ω1).

Analogously, multiplying (3.2) by w2 ∈ H1(Ω2) such that w2(d) = 0 and integrating
by parts we obtain:

[v2, w2]2 + α2v2(c) w2(c) − β2v1(b) w2(b) = λ (v2, w2)L2(Ω2).

Now multiplying the first of these identities by β2, the second by β1 and summing
up we get (3.5). Conversely, consider the eigenpair [λ, v] of the variational spectral
problem (3.5). Choosing successively test functions of the form w = (ϕ1, 0) and
w = (0, ϕ2), ϕi ∈ C∞

0 (Ωi), and using the standard rules of differentiation for
Schwartz distributions [15, 22] we recover differential equations (3.1) and (3.2). To
recover boundary conditions (3.4) we choose the test functions w = (w1, 0) ∈ H1

and w = (0, w2) ∈ H1. �

We state the following important properties of the spaces H1 and L:
(i) H1 and L are Hilbert spaces, (ii) H1 is compactly embedded in L.
In the following lemma we deal with some properties of the bilinear form

A(u, v).

Lemma 3.2. [11] Under condition (1.7), the bilinear form A, defined by (3.5),
is symmetric and bounded on H1 × H1. If conditions (1.8)–(1.9) also hold, the

bilinear form A satisfies the Gårding inequality

A(v, v) > c1‖v‖2
H1 − c2‖v‖2

L, ∀ v ∈ H1, c1, c2 > 0.
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Remark 3.1. If besides (1.7)–(1.9), conditions (1.10)–(1.11) are satisfied, the
bilinear form A is coercive, i.e., there exists a constant c0 > 0 such that

A(v, v) > c0‖v‖2
H1 , ∀ v ∈ H1.

Lemmas 2.1, 3.1, 3.2 and properties (i), (ii), allow us to recast problem (3.1)–
(3.4) into the general theory of abstract eigenvalue problems for bilinear forms in
Hilbert spaces, see e.g. [15, 18, 20]. This ensures the existence of exact eigenpairs
as stated in the following theorem.

Theorem 3.1. Under conditions (1.7) and (1.8) problem (3.1)–(3.4) has a

countable sequence of real eigenvalues −c2 < λ1 6 λ2 6 · · · → ∞. The correspond-

ing eigenfunctions vk ≡ (vk
1 , vk

2 ), k = 1, 2 . . . , can be chosen to be orthonormal

in L. They constitute a Hilbert basis for H1 as well as for L.

3.2. Existence and Uniqueness of Weak Solutions. Let us introduce the
cylinders QiT = {(x, t) | x ∈ Ωi, 0 < t < T }, i = 1, 2.

Theorem 3.2. Assume that f = (f1, f2) ∈ L2(0, T ; L), u0 = (u10, u20) ∈ L and

γ1(t) = γ2(t) = 0. Then problem (1.1)–(1.9) has a unique solution u = (u1, u2) ∈
H1,0 ≡ L2(0, T ; H1) which satisfies the following weak formulation:

−β2

∫

Q1T

u1
∂v1

∂t
dx dt − β1

∫

Q2T

u2
∂v2

∂t
dx dt +

∫ T

0
A(u(·, t), v(·, t)) dt

= β2

∫

Ω1

u10(x)v1(x, 0) dx + β1

∫

Ω2

u20(x)v2(x, 0) dx

+β2

∫

Q1T

f1(x, t)v1dx dt + β1

∫

Q2T

f2(x, t)v2dx dt,

∀v = (v1, v2) ∈ H1,1 ≡ L2(0, T ; H1) ∩ H1(0, T ; L), vi(x, T ) = 0 a.e. in Ωi.

Proof. The existence proof, for example, can be accomplished by the Fourier
method [15, 18, 20]. We first construct a family of approximate solutions, using
the spectral problem (3.1)–(3.4). Since ui0 ∈ L2(Ωi), and fi(x, t) ∈ L2(Ωi), i = 1, 2,
for almost all t ∈ (0, T ) we have

ui0(x) =

∞
∑

k=1

uk
i0vk

i (x), fi(x, t) =

∞
∑

k=1

fk
i (t)vk

i (x), i = 1, 2,

where uk
i0 = (ui0, vk

i )L2(Ωi), fk
i (t) = (fi(·, t), vk

i )L2(Ωi) and fk
i (t) ∈ L2(0, T ). Let us

consider for each k = 1, 2, . . . the functions

Uk
i (t) = uk

i0e−λkt +

∫ t

0
fk

i (τ)eλk(t−τ)dτ, i = 1, 2,

which satisfy almost everywhere on (0, T ) the equations

dUk
i

dt
+ λkUk = fk

i (t), Uk
i (0) = uk

i0, i = 1, 2.

The pair of sums SK ≡ (SK
1 , SK

2 ), SK
i (x, t) =

∑K
k=1 Uk

i (t)vk
i (x), i = 1, 2, is a

weak solution of the problem (1.1)–(1.9) with initial functions
∑K

k=1 uk
i0vk

i (x) and
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right hand sides
∑K

k=1 fk
i vk

i (x), i = 1, 2. Further, following the known techniques
[15, 18, 20], we show that the series SK is convergent in H1,0.

Let u1(x, t) ≡ (u1
1(x, t), u1

2(x, t)) and u2(x, t) ≡ (u2
1(x, t), u2

2(x, t)) be two gener-
alized solutions of problem (1.1)–(1.9). Then u = u1 − u2 is a generalized solution
of the corresponding homogeneous problem. Let introduce the functions

vi(x, t) =

{

∫ l

t
ui(x, τ) dτ, x ∈ Ωi, t ∈ (0, l),

0, x ∈ Ωi, t ∈ (l, T ),

where i = 1, 2 and 0 < ε 6 l 6 T . It is easy to check that the functions vi have
generalized derivatives

∂vi

∂t
=

{

−ui, x ∈ Ωi, t ∈ (0, l),

0, x ∈ Ωi, t ∈ (l, T ),

∂vi

∂x
=

{

∫ l

t
∂ui

∂x (x, τ) dτ, x ∈ Ωi, t ∈ (0, l),

0, x ∈ Ωi, t ∈ (l, T ),

v = (v1, v2) ∈ H1,1, vi(x, T ) = 0, i = 1, 2, and v1(a, t) = 0, v2(d, t) = 0, t ∈ [0, T ].
Plugging these formulas in the identity of Theorem 3.2, that defines the solution u,
and assuming that ui(x, t) = 0 for x ∈ Ωi, t ∈ (0, l − ε)we get the equality

(3.6)

∫ l

l−ε

‖u(·, t)‖2
Ldt +

∫ l

l−ε

A(u(·, t), v(·, t)) dt = 0.

Following the technique from [18, p. 395], and using Lemma 3.2 we show that

(3.7)

∫ l

l−ε

A(u(·, t), v(·, t)) dt = −
1

2

∫ l

l−ε

d

dt

(

A(v(·, t), v(·, t))
)

dt

=
1

2
A(v(·, l − ε), v(·, l − ε)) >

c1

2
‖v(·, l − ε)‖2

H1 −
c2

2
‖v(·, l − ε)‖2

L.

Further, we have

‖v(·, l − ε)‖2
L =

2
∑

i=1

β3−i

∫

Ωi

(
∫ l

l−ε

ui(x, t) dt

)2

dx(3.8)

6 ε

2
∑

i=1

β3−i

∫

Ωi

∫ l

l−ε

u2
i (x, t) dt dx = ε

∫ l

l−ε

‖u(·, t)‖2
L dt.

Choosing ε = T/N < 2/c2 from (3.6)–(3.8) follows
∫ l

l−ε
‖u(·, t)‖2

L dt 6 0, which

imply that ui = 0 a.e. in Ωi × (l − ε, l), i = 1, 2.
Repeating this procedure for l = ε, 2ε, . . . , Nε = T we obtain that ui = 0 a.e.

in QiT , i = 1, 2, wherefrom follows u = 0 and u1 = u2. �

3.3. A Priori Estimates and Energy Stability of the Solutions. Let
H−1 = (H1)∗ be the dual space for H1. The spaces H1, L and H−1 form a
Gelfand triple H1 ⊂ L ⊂ H−1 [22], with continuous and dense embeddings. We also
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introduce the space W =
{

u | u ∈ L2(0, T ; H1), ∂u
∂t =

(

∂u1

∂t , ∂u2

∂t

)

∈ L2(0, T ; H−1)
}

with the inner product and associated norm

(u, v)W =

∫ T

0

[

(u(·, t), v(·, t))H1 +
(∂u

∂t
(·, t),

∂v

∂t
(·, t)

)

H−1

]

dt, ‖u‖W = (u, u)
1/2
W .

Let us consider the following weak form of (1.1)–(1.5):

(3.9)
〈∂u

∂t
(·, t), v

〉

+ A(u(·, t), v) = 〈f(·, t), v〉, ∀v ∈ H1,

where 〈·, ·〉 denotes duality pairing in H−1 × H1.
Problem (3.9) fit into the general theory of abstract parabolic problems [22].

Applying Theorem 26.1 from [22] to (3.9) we immediately obtain the following
assertion.

Theorem 3.3. Let the assumptions (1.7)–(1.9) hold and suppose that u0 =
(u10, u20) ∈ L, f = (f1, f2) ∈ L2(0, T ; H−1), γ1(t) = γ2(t) = 0. Then the problem

(1.1)–(1.6) has a unique weak solution u ∈ W , and Hadamard’s a priori estimate

holds:

‖u‖2
W 6 C(T )

(

‖u0‖2
L +

∫ T

0
‖f(·, t)‖2

H−1dt

)

, C(T ) = Ce2c2T .

Theorem 3.4. Let the assumptions (1.7)–(1.11) hold and suppose that u0 =
(u10, u20) ∈ L, f = (f1, f2) ∈ L2(0, T ; L), γ1(t) = γ2(t) = 0. Then the solution of

problem (1.1)–(1.6) satisfies the a priori estimate:

‖u(·, t)‖2
L 6 e−2δt

(

‖u0‖2
L + C

∫ t

0
e2δτ ‖f(·, τ)‖2

L dτ

)

, δ > 0.

Proof. Setting in (3.9) v = u and using Theorem 3.1, and the Cauchy–
Schwarz inequality with ε > 0 one obtains

1

2

∂

∂t

(

‖u(·, t)‖2
L

)

+ λ1 ‖u(·, t)‖2
L 6 ε ‖u(·, t)‖2

L +
1

4ε
‖f(·, t)‖2

L,

where λ1 > 0 is the minimal eigenvalue of the problem (3.1)–(3.4). For ε < λ1,
result with δ = λ1 − ε and C = 1/(2ε) follows by integration. �

Remark 3.2. Functional ‖u(·, t)‖2
L express the kinetic energy of the system.

Therefore, results of such type are usually referred to as energy stability (cf. [9]).

Remark 3.3. The minimal eigenvalue of problem (3.1)–(3.4) may be positive
even if (1.10)–(1.11) is not satisfied. Using Lemma 3.2 and the Poincaré inequality
one obtains

A(v, v) > c3 ‖v‖2
L, c3 =

2c1

max{(b − a)2, (d − c)2}
+ c1 − c2.

In such a way, instead of (1.10)–(1.11) we can require that c3 > 0.
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4. Nonnegativity Preservation

Considering the heat conduction problem, the temperature of a body can not be
negative if the temperature is nonnegative in the initial state and on the boundary
of the body. This property is called nonnegativity preservation. In this section we
analyze the nonnegativity preservation for the problem (1.1)–(1.11).

For a function vi ∈ H1(Ωi), i = 1, 2, we denote its positive and negative
parts by v+

i and v−

i . That is vi = v+
i + v−

i , where v+
i = max{vi, 0} > 0 and

v−

i = min{vi, 0} 6 0. By [6, Lemma 7.6, p. 150], we have that

dv+
i

dx
=

{

dvi

dx , if v > 0,

0, if v 6 0,

dv−

i

dx
=

{

dvi

dx , if v 6 0,

0, if v > 0.

It follows that

v+
i v−

i =
dv+

i

dx

dv−

i

dx
= v−

i

dv+
i

dx
+ v+

i

dv−

i

dx
= 0 a.e. in Ωi, i = 1, 2.

For some T > 0 let us consider the following inequalities

∂ui

∂t
+ Liui > 0 in QiT , i = 1, 2,(4.1)

l1(u1, u2) > 0, l2(u1, u2) > 0, 0 < t < T.(4.2)

Let V (see [16, p. 6]) be the Banach space consisting of all functions in H1,0 having
the finite norm

‖u‖V = max
i

(

sup
06t6T

‖ui(·, t)‖L2(Ωi) +
∥

∥

∥

∂ui

∂x

∥

∥

∥

L2(QiT )

)

.

A function u = (u1, u2) ∈ V is said to satisfy weakly (4.1) and (4.2) if for any
v = (v1, v2) ∈ H1,1, vi > 0, i = 1, 2:

(4.3)

β2

∫ b

a

u1(x, t)v1(x, t) dx + β1

∫ d

c

u2(x, t)v2(x, t) dx

−β2

∫ b

a

u1(x, 0)v1(x, 0) dx − β1

∫ d

c

u2(x, 0)v2(x, 0) dx

−β2

∫ t

0

∫ b

a

u1(x, τ)
∂v1

∂t
(x, τ) dx dτ − β1

∫ t

0

∫ d

c

u2(x, τ)
∂v2

∂t
(x, τ) dx dτ

+

∫ t

0
A(u(·, τ), v(·, τ)) dτ > 0

for almost every t ∈ (0, T ). It is easy to see that if ui ∈ C2,1(QiT ), i = 1, 2, satisfy
(4.1), (4.2) pointwise then (4.3) holds. Conversely, if u ∈ V satisfy (4.3) and ui

are sufficiently smooth, then they also satisfy (4.1), (4.2) pointwise. We shall now
prove the following theorem.

Theorem 4.1. Let u = (u1, u2) ∈ V satisfy (4.1) and (4.2) weakly, and let

(1.7)–(1.11) hold. If ui(x, 0) > 0, then ui(x, t) > 0 a.e. in QiT , i = 1, 2.
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Proof. Using the Steklov average and passing to the limit (see [6, Ch. 3]) we
can formally take v = −u− > 0 in (4.3) to obtain

(4.4)

β2

2

∫ b

a

(u−

1 (x, t))2dx +
β1

2

∫ d

c

(u−

2 (x, t))2dx −
β2

2

∫ b

a

(u−

1 (x, 0))2dx

−
β1

2

∫ d

c

(u−

2 (x, 0))2dx + β2

∫ t

0

∫ b

a

(

p1(x)
∂u1

∂x

∂u−

1

∂x
+ q1(x)u1u−

1

)

dx dt

+ β1

∫ t

0

∫ d

c

(

p2(x)
∂u2

∂x

∂u−

2

∂x
+ q2(x)u2u−

2

)

dx dt

6

∫ t

0

{

− β2α1u1(b, τ)u−

1 (b, τ) − β1α2u2(c, τ)u−

2 (c, τ)

+ β1β2
[

u1(b, τ)u−

2 (c, τ) + u2(c, τ)u−

1 (b, τ)
]

}

dτ

Further

∂ui

∂x

∂u−

i

∂x
=

(

∂u−

i

∂x

)2

, (uiu
−

i ) = (u−

i )2,

u1(b, t)u−

2 (c, t) + u2(c, t)u−

1 (b, t) = 2u−

1 (b, t)u−

2 (c, t) + u+
1 (b, t)u−

2 (c, t)

+ u−

1 (b, t)u+
2 (c, t) 6 2u−

1 (b, t)u−

2 (c, t).

From here and (4.4), since by our assumption u−

i (x, 0) = 0, i = 1, 2, we obtain:

β2

2

∫ b

a

(u−

1 (x, t))2dx + β2

∫ t

0

∫ b

a

(

p1(x)
(∂u−

1

∂x

)2
+ q1(x)(u−

1 )2
)

dx dτ

+
β1

2

∫ d

c

(u−

2 (x, t))2dx + β1

∫ t

0

∫ d

c

(

p2(x)
(∂u−

2

∂x

)2
+ q2(x)(u−

2 )2
)

dx dτ

6 −

∫ t

0

[

β2α1(u−

1 (b, τ))2 + β1α2(u−

2 (c, τ))2 − 2β1β2u−

1 (b, τ)u−

2 (c, τ)
]

dτ 6 0.

For the last inequality we used (1.9) and (1.11). From here it follows u−

i (x, t) = 0.
We then conclude that ui(x, t) = u+

i (x, t) > 0, a.e. in QiT , i = 1, 2. �

5. Concluding Remarks

We have proposed a simple parabolic problem on disjoint intervals to model
layers with material properties which significantly differ from those of the surround-
ing medium. We assumed that the differential equation that describe the process in
the layer is monotone, i.e., it satisfies the maximum principle which implies the pos-
itivity conditions (1.9). Under some additional natural assumptions on the input
data we proved well-posedness of the IBVP that describes the process outside the
layer as well as nonnegativity and energy stability of the solutions of the problem.
The results obtained in this paper should be a good base for analysis of numerical
approximations of the problems. The preservation of characteristic properties of
different phenomena is a very important requirement in the construction of reliable
numerical methods [5]. The nonnegativity preservation of finite element solutions
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to 1D elliptic problem on disjoint domains is discussed in [13]. A further devel-
opment of the present modelling of layer problems should include cases when the
differential operator corresponding to the process in the layer is nonmonotonous
and conditions (1.9) fail. The process in the intermediate layer is considered to
be stationary (Section 2) and as a result of this the derived nonlocal boundary
conditions are of the Robin–Dirichlet type [7, 8]. But when the process in the in-
termediate layer is nonstationary, the arising boundary conditions will be nonlocal
in time and it will be interesting to study this new problem for well-posedness and
qualitative behavior of the solutions. Nonlinear 1D elliptic problems on disjoint do-
mains are studied in [21]. Using the exact solutions of heat mass transfer equations
[19] the results from the present paper could be extended to nonlinear parabolic
problems.
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