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ORDINARY DIFFERENTIAL EQUATIONS

WITH DELTA FUNCTION TERMS

Marko Nedeljkov and Michael Oberguggenberger

Abstract. This article is devoted to nonlinear ordinary differential equations
with additive or multiplicative terms consisting of Dirac delta functions or
derivatives thereof. Regularizing the delta function terms produces a family of
smooth solutions. Conditions on the nonlinear terms, relating to the order of
the derivatives of the delta function part, are established so that the regularized
solutions converge to a limiting distribution.

Introduction

This paper is devoted to ordinary differential equations (and systems) of the
form

(0.1) y′(t) = f(t, y(t)) + g(y(t))δ(s), y(t0) = y0,

where δ(s) denotes the s-th derivative of the Dirac delta function. The case of
constant g(y) ≡ α will be referred to as the additive case, the general case with
s = 0 will be called the multiplicative case. We shall replace the delta function by
a family of regularizations φε(t) = ε−1φ(t/ε) and ask under what conditions on f ,
g and s the family of regularized solutions admits a limit as ε → 0.

In the case of partial differential equations, such weak limits have been termed
delta waves and studied in various situations, see e.g. [15, 16, 21]. The interest
in problem (0.1) comes also from the fact that such equations have been proven to
admit solutions in the Colombeau algebra of generalized functions [5, 8, 10].

Equations of the type (0.1) with s = 0 arise in nonsmooth mechanics [1, 3, 7,

14] and are referred to as measure differential equations or impulsive differential
equations, often considered under the form

y′(t) = f(t, y(t)) +

N
∑

i=1

gi(y(t))δ(t − ti).
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Such an equation can be interpreted piecewise: the function gi(y(t)) is fixed during
the action of the delta distribution, i.e., gi(y(t)) is substituted by limt→ti,t<ti

gi(y(t))
and this value depends on the classical solution up to the point ti only. In the addi-
tive case one can alternatively consider the delta function term as the derivative of
a function of bounded variation. We refer to the vast literature on such equations
[2, 4, 6, 12, 13, 17]. The point of view of distribution theory and regularizing
sequences is sometimes taken as well. Here the work [18, 19, 20] is relevant, in
which higher order linear differential equations with measures as coefficients were
considered and unique solutions in the space of Borel measures with primitives be-
ing normalized to being right-continuous functions were obtained. There it was also
shown that the regularized solutions converge to a solution of a measure differential
equation of the same type.

Higher derivatives (with s = 1 or s = 2) in nonlinear differential equations
arise, e.g., in geodesic equations and geodesic deviation equations for impulsive
gravitational waves [11, 22] and in the calculus of variations with strongly singular
potential [9].

In this article, we adopt the approach of regularization and taking limits. The
admissible order s of the delta function term is arbitrary in principle, but may be
restricted by the type of sublinearity of the nonlinear function f (no restriction if
f is bounded).

The paper is organized as follows. In the first section we establish the existence
of a limiting function in the additive case when f is a sublinear function of order
r with respect to y, r < 1/s, or f is globally Lipschitz in the case s = 1. In both
cases the limit is the sum of a function continuous in [t0, 0) ∪ (0, ∞) and a multiple
of δ(s−1). Depending on the case, the function part may be continuous across t = 0
or suffer a jump (whose value we compute). Similar assertions can also be obtained
for systems of differential equations.

The second section addresses the multiplicative case with s = 0. If f and g are
globally Lipschitz or f is arbitrary and g has a sufficiently small Lipschitz constant,
the existence of a limiting functions with a jump at t = 0 is derived. In both
sections we illuminate the required conditions by means of a number of examples
and counterexamples. The limiting functions do not depend on the regularization
if non-negative mollifiers are used. This may or may not be the case if the non-
negativity condition is violated, as is shown by various examples.

1. The additive case

In this section, we study the equation

y′(t) = f(t, y(t)) + αδ(s)(t), y(−1) = y0

on some interval [−1, T ] with T > 0. Here α ∈ R and s > 1 is an integer (s = 0
will arise as a special case in the next section). Throughout, f is assumed to be
continuous in (t, y) and locally Lipschitz with respect to y, uniformly on compact
time intervals. We suppose that the free equation y′(t) = f(t, y(t)) is uniquely
solvable on the whole interval [−1, T ] for whatever data y(−1) = y0 ∈ R, and is
also uniquely solvable on [0, T ] for arbitrary data y(0) = y1.
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We are going to find limits of the family of regularized solutions yε(t) as ε → 0
when the δ-distribution is substituted by some mollifier φε(t) = ε−1φ(t/ε). We
shall suppose that φ ∈ C∞(R) has integral one, and supp φ = [−a, b], a, b > 0.

The supports of φε and its derivatives are contained in [−aε, bε]. Our first
concern will be that yε does not blow up in this interval; note that yε(t) coincides
with ȳ(t), the classical solution to y′(t) = f(t, y(t)), y(−1) = y0, up to t = −aε,
and limε→0 yε(−aε) = ȳ(0). To have convergence of yε(t) on the whole interval
[−1, T ] we will have to verify that the limit limε→0 yε(bε) exists, thus providing the
initial data for the limiting solution for t > 0.

A function g : R → R will be called sublinear of order r, 0 6 r < 1, if
|g(u)| 6 C(1 + |u|r) for some C > 0 and all u ∈ R. In this terminology, a function
which is sublinear of order 0 is bounded. In the following, φ± > 0 denotes the
positive and negative part of φ, respectively, so that φ = φ+ − φ−.

Theorem 1.1. (a) Let 0 6 r < 1 and assume that f is sublinear of order r
with respect to y, uniformly on compact intervals with respect to t. Let 0 < s < 1/r
(i.e., s is arbitrary if f is bounded). Then the solutions to

(1.1) y′
ε(t) = f(t, yε(t)) + αφ(s)

ε (t), yε(−1) = y0

converge to y(t) = ȳ(t)+αδ(s−1)(t), where ȳ(t), t ∈ [−1, T ], is the classical solution
to

y′(t) = f(t, y(t)), y(−1) = y0.

(b) Let f be globally Lipschitz with respect to y, uniformly on compact intervals
with respect to t and assume that the double limits

lim
η→0, y→±∞

f(η, y)

y
= M±

exist. Let s = 1. Then the solutions to (1.1) converge to y(t) = ȳ1(t)+αδ(t), where
ȳ1(t) is equal to ȳ(t) for t ∈ [−1, 0] and ȳ1(t) is the classical solution to

y′(t) = f(t, y(t)), y(0) = ȳ(0) + β,

t ∈ [0, ∞) with

β = α

(

M+

∫ b

−a

φ+(u) du − M−

∫ b

−a

φ−(u) du

)

, if α > 0,

β = α

(

M−

∫ b

−a

φ+(u) du − M+

∫ b

−a

φ−(u) du

)

, if α < 0.

Proof. We shall rewrite (1.1) in the following way. Let yε(t) = y1ε(t) +

αφ
(s−1)
ε (t), where y1ε is the solution to

y1ε
′(t) = f

(

t, y1ε(t) + αφ(s−1)
ε (t)

)

, y1ε(−1) = y0,

i.e.,

y1ε(t) = y0 +

∫ t

−1
f

(

u, y1ε(u) + αφ(s−1)
ε (u)

)

du.

Obviously, y1ε(t) = ȳ(t) for t ∈ [−1, −aε], and y0ε := y1ε(−aε) → ȳ(0) as ε → 0.
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First we shall show that y1ε(t) is bounded for t ∈ [−aε, bε]. By using the
sublinearity we have

|y1ε(t) − y0ε| 6

∫ t

−aε

∣

∣f
(

u, y1ε(u) + αφ(s−1)
ε (u)

)
∣

∣ du

6

∫ t

−aε

C
(

1 +
∣

∣y1ε(u) + αφ(s−1)
ε (u) − y0ε + y0ε

∣

∣

r)

du

6 Cdε + C|y0ε|rdε + C

∫ bε

−aε

|α|r|φ(s−1)
ε (u)|rdu

+ C

∫ t

−aε

|y1ε(u) − y0ε|rdu,

where dε = aε + bε. After the change of the variables u/ε 7→ u we have
∫ bε

−aε

|φ(s−1)
ε (u)|rdu = ε1−rs

∫ b

−a

|φ(s−1)(u)|rdu.

That means that for 0 < s < 1/r the above integral converges to zero as ε → 0.
When f is globally Lipschitz and s = 1, a similar estimate holds with r = 1, and
the integral is seen to remain bounded as ε → 0. Using |u|r 6 max{1, |u|} we get
from Gronwall’s inequality that

max{1, |y1ε(t) − y0ε|} 6 C1eCdε .

For 0 < s < 1/r, this in turn implies that

|y1ε(t) − y0ε| 6 C2dε + C3
(

ε1−rs + dεerCdε

)

→ 0

as ε → 0 and hence y1ε(bε) → ȳ(0). Thus the limiting solution has no jump at 0
and y1ε(t) → ȳ(t) for t > 0 as ε → 0, thereby proving (a).

Let f be globally Lipschitz and s = 1. As mentioned, an estimate as above
holds with r = 1 and so |y1ε(t) − y0ε| 6 β̄ for some β̄ > 0 on [−aε, bε]. We shall
prove that y1ε(t), which is the solution to

y1ε
′(t) = f(t, y1ε(t) + αφε(t)), y1ε(−aε) = y0ε,

and the solution zε(t) to

zε
′(t) = f(t, αφε(t)), zε(−aε) = y0ε

differ at most by dεC(|y0ε| + β̄) on [−aε, bε], where C is the Lipschitz constant for
f on [−a, b], y ∈ R. It holds that

|y1ε(t) − zε(t)| 6

∫ t

−aε

∣

∣f
(

u, y1ε(u) + αφε(u)
)

− f
(

u, αφε(u)
)
∣

∣du

6

∫ t

−aε

C|y1ε(u)|du 6 dεC(|y0ε| + β̄).

In particular, y1ε(bε) − zε(bε) → 0 as ε → 0.
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In the case when the limits M± = limη→0, y→±∞
f(η,y)

y exist, we can compute

the value of the limiting jump. Indeed,

zε(bε) = y0ε +

∫ bε

−aε

f
(

u, αφ(u/ε)ε−1)

du

= y0ε + ε

∫ b

−a

f
(

εu, αφ(u)ε−1)

du

= y0ε + ε

∫

[−a,b]∩{|φ(u)|6ε}

f
(

εu, αφ(u)ε−1)

du

+

∫

[−a,b]∩{|φ(u)|>ε}

f
(

εu, αφ(u)ε−1
)

α φ(u) ε−1 αφ(u) du.

The first integral is less than or equal to

ε(b − a) sup
t∈[−εa,εb],|y|6|α|

|f(t, y)|

and converges to 0 as ε → 0; the second integral converges to α(M+
∫ b

−a
φ+(u) du−

M−

∫ b

−a φ−(u) du) by Lebesgue’s dominated convergence theorem, if α > 0, and
similarly for α < 0. �

Remark 1.1. If the mollifier φ is nonnegative, then the above jump does not
depend on it, i.e., it equals αM+.

Example 1.1. Let f(y) = y sin(log(1 + y2)). Then f is globally Lipschitz, but
does not have limits M+ and M− required in (b). We let α = 1 and choose the
mollifier φ > 0 such that φ ≡ 1 on an interval I ⊂ [−a, b] and

∫

[−a,b]rI

φ(u) du = 1/4, length(I) = 3/4.

Then

zε(bε) =

∫ bε

−aε

1

ε
φ

(u

ε

)

sin
(

log
(

1 +
1

ε2 φ2
(u

ε

)))

du

=

∫ b

−a

φ(u) sin
(

log
(

1 +
1

ε2 φ2(u)
))

du

=
3

4
sin

(

log
(

1 +
1

ε2

))

+

∫

[−a,b]rI

φ(u) sin
(

log
(

1 +
1

ε2 φ2(u)
))

du.

We can choose a subsequence εk → 0 so that sin
(

log
(

1 + 1/ε2
k

))

= (−1)k. Since
the second term is less then or equal to 1/4 in absolute value, we see that the
sequence zε(bε) is oscillating with a jump of height at least 1. So there does not
exist a limiting solution on the right-hand side of t = 0.

The assumption that f is globally Lipschitz is not necessary for the existence
of a limit of the regularized solutions, as can be seen from the following example
(even in the case s = 1).
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Example 1.2. The dissipative case f(t, y) = −y3. We analyze the case y0 > 0
only and assume here that φ > 0. Obviously any solution to y′ = −y3 decreases
for positive y and increases when y is negative since f is decreasing with respect to
y. By using the comparison theorem one can see that the solution y1ε to

y1ε
′(t) = f(t, y1ε(t) + φε(t)), y0ε := ȳ(−aε) > 0

is less or equal to the solution to

v′(t) = f(t, v + gε(t)), v(−aε) = y0ε,

where gε(t) 6 φε(t) and

gε(t) =











0, t < −āε

ξ̄ε, t ∈ [−āε, b̄ε]

0, t > b̄ε,

for some 0 < āε 6 aε, 0 < b̄ε 6 bε such that b̄ε + āε = ξ̄−1
ε /2 with ξ̄ε → ∞ as

ε → 0. This means that y1ε(t) 6 v(t), where

v′(t) =











−v3, v(−aε) = y0ε, t ∈ [−aε, −āε]

−(v + ξ̄ε)3, v(−āε) = ȳ0ε, t ∈ [−āε, b̄ε]

−v3, v(b̄ε) = ỹ0ε, t ∈ [b̄ε, bε].

Observe that y0ε ≈ ȳ0ε; here ȳ0ε, ỹ0ε are the terminal values of the solutions on the
preceding intervals. The solution on the second interval is given by

v(t) = (ȳ0ε + ξ̄ε)(1 + 2(t + āε)(ȳ0ε + ξ̄ε)2)−1/2 − ξ̄ε.

This means that v(b̄ε) behaves like
√

ξ̄ε − ξ̄ε, which goes to −∞ as ε → 0. (This
is then true of v(t) for b̄ε 6 t 6 bε as well.) The same is true for y1ε(bε), i.e.,
y1ε(bε) = ξ̃ε → −∞ as ε → 0. The function φε(t) = 0 for t > bε, and y1ε is the
solution to

y1ε
′(t) = −y1ε

3, y1ε(bε) = ξ̃ε,

that is,

y1ε(t) = −(ξ̃−2
ε + 2(t − bε))−1/2

and y1ε(t) → −(2t)−1/2, t > 0. That gives that the solution to

yε
′(t) = −y3

ε(t) + φ′
ε(t)

converges to ȳ1(t) + δ(t) where

ȳ1(t) =

{

y0(1 + 2(t + 1)y2
0)−1/2, t < 0

−(2t)−1/2, t > 0.

It is not true that if y′ = f(t, y), y(−1) = y0 has a unique global solution in
[−1, ∞), then the solutions to yε

′ = f(t, yε) + φ′′
ε with the same initial data have a

limiting function. This can be seen from the following example.
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Example 1.3. The solutions to

y′
ε(t) = (1 + y2

ε)1/2 + φ′′
ε (t), y(−1) = y0

do not converge to any function defined for t > 0 as ε → 0; in fact, they diverge to
∞, uniformly on every interval [t0, ∞), t0 > 0. Indeed, the solution to

y1ε
′(t) = (1 + (y1ε + φε

′)2)1/2, y1ε(−1) = y0

is increasing and its derivative is greater than Cε−2 on an interval of length O(ε),
on which φ′

ε is strictly different from 0. That means that the value of the function
at t = bε is greater or equal to a constant times ε−1. After this point the function
y1ε continues to increase, and that implies blow up to ∞, uniformly on each interval
[t0, ∞) bounded away from zero.

Remark 1.2. Theorem 1.1 can be easily extended to the case of (n × n)-
systems, where f : Rn+1 → R

n and α ∈ R
n. One just has to replace the absolute

value in the estimates by the norm ‖y‖ = max{|y1|, . . . , |yn|} in R
n. The function

f : Rn+1 → R is sublinear of order r with respect to y if there exists a constant C
such that ‖f(t, y)‖ 6 C(1 + ‖y‖r). With these modifications, part (a) of Theorem
1.1 remains valid. As for part (b), suitable limiting behavior on f has to be imposed
as the components yi tend to infinity. Various versions of part (b) can be obtained
in this way; we leave out the details.

2. The multiplicative case

This section is devoted to the equation

y′(t) = f(t, y(t)) + g(y(t))δ(t), y(−1) = y0

where f satisfies the same general assumptions as in Section 1 and g ∈ C1(R).

Proposition 2.1. Let f and g be globally Lipschitz (uniformly on compact
time intervals) and assume that G(y) =

∫

dy/g(y) is invertible. Then the solutions
to

(2.1) yε
′(t) = f(t, yε(t)) + g(yε(t))φε(t), yε(−1) = y0

converge to the limiting function

ȳ(t) =

{

ȳ1(t), t 6 0

ȳ2(t), t > 0

where ȳ1 is the solution to

ȳ′
1(t) = f(t, ȳ1(t)), ȳ1(−1) = y0

and ȳ2 is the solution to

ȳ′
2(t) = f(t, ȳ2(t)), ȳ2(0) = G−1(G(ȳ1(0)) + 1).
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Proof. We have only to check what is going on for t ∈ [−aε, bε]. Let y0ε :=
yε(−aε) = ȳ1(−aε). Then

yε(t) = y0ε +

∫ t

−aε

(

f(s, yε(s)) + g(yε(s)) φε(s)
)

ds,

|yε(t)| 6 |y0ε| +

∫ t

−aε

(

Lf + Lg|φε(s)|
)

|yε(s)|ds +

∫ t

−aε

(

|f(s, 0)| + |g(0)||φε(s)|
)

ds,

where Lf and Lg are the Lipschitz constants for f and g, respectively. Letting

Cφ =
∫ b

−a
|φ(t)|dt, Gronwall’s inequality gives

|yε(t)| 6 (|y0ε| + dεCf + CgCφ) exp(dεLf + LgCφ) 6 C < ∞,

i.e., |yε(t)| remains bounded for t ∈ [−aε, bε]. (Here Cf and Cg are bounds on |f |
and |g| in the appropriate regions.) Using this fact we will prove that the solution
zε(t) to

(2.2) zε
′(t) = g(zε(t))φε(t), zε(−aε) = y0ε

satisfies

sup
t∈[−aε,bε]

|yε(t) − zε(t)| → 0, ε → 0.

In particular, this will be true for t = bε. Indeed,

|yε(t) − zε(t)| 6

∫ t

−aε

|f(s, yε(s))|ds +

∫ t

−aε

Lg|yε(s) − zε(s)||φε(s)|ds.

By Gronwall’s inequality,

|yε(t) − zε(t)| 6

∫ t

−aε

|f(s, yε(s))|ds exp(LgCφ) 6 dε(Cf + CLf ) exp(LgCφ) → 0

as ε → 0. This means that, in the limit, the jump of yε is equal to the jump of zε

at zero. But the latter can be easily found. By integrating (2.2) we obtain

∫ zε(bε)

zε(−aε)
g(z)−1dz =

∫ bε

−aε

φε(t) dt = 1

and G(zε(bε)) = G(zε(−aε)) + 1. This gives the desired result. �

The next result shows that the conditions on f can be relaxed to the local
Lipschitz case, provided that g has a sufficiently small (global) Lipschitz constant.
As in Section 1, we require again that the free equation y′(t) = f(t, y(t)) is uniquely
solvable on the whole interval [−1, T ] for whatever data y(−1) = y0 ∈ R, and is
also uniquely solvable on [0, T ] for arbitrary data y(0) = y1.

Proposition 2.2. Let f be locally Lipschitz, uniformly on compact time in-

tervals, let g be globally Lipschitz with constant Lg. Set Cφ =
∫ b

−a |φ(t)|dt and

assume that 1/g has an invertible primitive G. If LgCφ < 1, then the assertions of
Proposition 2.1 remain valid, at least on the interval [−1, T ].
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Proof. We keep the notations from Proposition 2.1; in particular, we let y0ε =
ȳ1(−aε). Choose η such that η > |g(ȳ1(0))|Cφ/(1 − LgCφ). Let Bε be the set of
continuous functions on [−aε, bε] such that

sup
t∈[−aε,bε]

|u(t) − y0ε| 6 η,

and define the operator M on Bε by

Mu(t) = y0ε +

∫ t

−aε

(

f(s, u(s)) + g(u(s))φε(s)
)

ds.

We are going to show that M is a contraction on Bε for all sufficiently small ε.
First, if u ∈ Bε, then

|Mu(t) − y0ε| 6

∣

∣

∣

∣

∫ t

−aε

(f(s, u(s)) + g(u(s))φε(s)) ds

∣

∣

∣

∣

6 dεCf + LgCφ|y0ε − ȳ1(0)| + LgCφη + |g(ȳ1(0))|Cφ 6 η

for sufficiently small ε. Here the constant Cf denotes the maximum of |f | on
[−aε0, bε0] × [y0ε − η, y0ε + η] for some fixed ε0 and ε 6 ε0. We have used the
decomposition

g(u(s)) = g(u(s)) − g(y0ε) + g(y0ε) − g(ȳ1(0)) + g(ȳ1(0))

and that LgCφη + |g(ȳ1(0))|Cφ < η by definition. Next, if u, v ∈ Bε, then

|Mu(t) − Mv(t)| 6

∣

∣

∣

∣

∫ t

−aε

(

f(s, u(s)) − f(s, v(s))
)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

−aε

(

g(u(s)) − g(v(s))
)

φε(s) ds

∣

∣

∣

∣

6 (dεLf + LgCφ) sup
s∈[−aε,bε]

|u(s) − v(s)|.

By assumption, the constant on the right-hand side is less than 1 for sufficiently
small ε, thus M is a contraction on Bε.

But the solution yε(t) of equation (2.1) is the unique fixed point. This shows
that yε(t) is bounded by η on [−aε, bε]. The rest of the proof is the same as in
Proposition 2.1. �

Let us remark that if φ is nonnegative, then Cφ = 1 and the condition of
Proposition 2.2 reduces to Lg < 1.

Example 2.1. The case s = 0 in Section 1 can be seen as the special case of
Proposition 2.2, where g(y) ≡ α. It follows that under the assumptions on f above,
the family of regularized solutions yε to

yε
′(t) = f(t, yε(t)) + αφε, yε(−1) = y0

converges to

ȳ(t) =

{

ȳ1(t), t 6 0

ȳ2(t), 0 < t 6 T
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where ȳ1 is the solution to y′ = f(t, y), y(−1) = y0 and ȳ2 is the solution to
y′ = f(t, y), y(0) = y0 + α.

We note that here the limiting function is also a distributional solution; this
cannot be asserted in the situation of Theorem 1.1 in general.

Remark 2.1. For completeness, we remark that if the singularity is in the
same point where the initial condition is given, then the solution depends on the
regularization as a rule. This can be seen from simplest linear equations. In fact,
the solutions to

y′
ε(t) = yε(t)φε(t), yε(0) = y0

are given by and converge to

yε(t) = y0 exp

(
∫ t/ε

0
φ(s) ds

)

→ y0 exp

(
∫ ∞

0
φ(s) ds

)

for t > 0. Depending on the support of φ, the integral
∫ ∞

0 φ(s) ds can have any
real value (any value between 0 and 1 for non-negative φ). The same holds in the
additive case

y′
ε(t) = yε(t) + φε(t), yε(0) = y0

with

yε(t) = y0et +

∫ t/ε

0
et−εsφ(s) ds → et

(

y0 +

∫ ∞

0
φ(s) ds

)

.
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