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DOMAIN DECOMPOSITION SCHEMES

FOR THE STOKES EQUATION

Petr N. Vabishchevich

Abstract. Numerical algorithms for solving problems of mathematical physics
on modern parallel computers employ various domain decomposition tech-
niques. Domain decomposition schemes are developed here to solve numer-
ically initial/boundary value problems for the Stokes system of equations in
the primitive variables pressure–velocity. Unconditionally stable schemes of
domain decomposition are based on the partition of unit for a computational
domain and the corresponding Hilbert spaces of grid functions.

1. Introduction

In computational fluid dynamics [1, 10] there are employed numerical algo-
rithms based on using the primitive variables pressure-velocity. The main difficul-
ties in this approach are connected with the calculation of the pressure. In studying
transient problems the corresponding elliptic Neumann problem for the pressure is
derived as the result of employment of one or another scheme of splitting with
respect to physical processes [3, 4].

Domain decomposition methods are used for the numerical solution of bound-
ary value problems for partial differential equations on parallel computers. They
are in most common use for stationary problems [7, 11]. Computational algo-
rithms with and without overlapping of subdomains are employed in this case in
synchronous (sequential) and asynchronous (parallel) algorithms.

For transient problems it seems to be more suitable to utilize iteration-free
variants of domain decomposition techniques [6, 8] which are best suited to pe-
culiarities of a problem (evolution in time). In these regionally-additive schemes
a transition to a new time level is performed via solving problems in particular
subdomains.

The regionally-additive schemes for the Navier–Stokes equations in the prim-
itive variables are discussed in [2]. In simulation of incompressible flows an ellip-
tic problem for the pressure can be changed to separate elliptic problems for the
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pressure in particular subdomains. Therefore, it is possible to construct iteration-
free regionally-additive schemes for the Navier–Stokes equations. In this paper we
propose a general approach to construct domain decomposition schemes for time-
dependent systems of equations. Using the partition of unit for a computational
domain and the corresponding Hilbert spaces of grid functions we perform a tran-
sition to finding the individual components of the solution in the subdomains. The
unsteady Stokes equations for an incompressible fluid is considered as a typical
problem.

2. Stokes equations

Assume that the linear approximation is valid to describe a flow of an incom-
pressible viscous fluid. In a region Ω with solid boundaries we can write equations
of motion and continuity in the primitive variables pressure, velocity as follows

∂u

∂t
+ grad p − ν∆u = f(x, t),(2.1)

div u = 0, x ∈ Ω, 0 < t 6 T.(2.2)

Here u is the velocity, p is the pressure, ν is the kinematic viscosity and ∆ = div grad
is the Laplace operator. Equations (2.1), (2.2) are supplemented with the following
condition for the single-valued evaluation of the pressure

(2.3)

∫

Ω

p(x, t) dx = 0, 0 < t 6 T.

No-slip, no-permeability conditions are specified on solid boundaries

(2.4) u(x, t) = 0, x ∈ ∂Ω, 0 < t 6 T.

Some initial condition is also given

(2.5) u(x, 0) = v(x), x ∈ Ω.

Let us rewrite problem (2.1)–(2.5) in an operator formulation. On the set of
functions satisfying (2.3),2.4), we have the Cauchy problem

du

dt
+ Au + Bp = f ,(2.6)

B∗u = 0, 0 < t 6 T,(2.7)

u(0) = v.(2.8)

For these operators in the space L2(Ω) we have A = A∗ > δE , δ = δ(Ω) > 0, where
E is the unit (identity) operator. Adjointness of operators B = grad(B : L2(Ω) →
L2(Ω)) and B∗ = − div(B∗ : L2(Ω) → L2(Ω)) follows from

∫

Ω
u grad p dx +

∫

Ω
div u p dx = 0.

For problem (2.6)–(2.8) the following simple a priori estimate is valid

(2.9) ‖u(t)‖2
6 ‖v‖2 +

1

2δ

∫ t

0
‖f(θ)‖2dθ,
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where ‖ · ‖ is the norm in L2(Ω). Estimate (2.9) will be for us a reference point
when considering discrete problems.

3. Approximation in space

In this paper the main attention is paid to computational algorithms for the
transition to a new time level, i.e., approximation in time. To construct discretiza-
tion in time, operator-splitting schemes are used that allow to formulate a problem
for the pressure in the most natural way. The problem of approximation in space
is solved in the standard manner.

There are employed various types of grids: the non-staggered (collocated) grid,
where both the pressure and velocity components are referred to the same points;
next, partially staggered (ALE-type) grid, where the pressure is referred to an
individual grid shifted in all space directions on a one-half step from the basic grid
where all velocity components are defined; and finally, the staggered (MAC-type)
grid, where the pressure is defined at the center points of grid cells, whereas the
velocity components are referred to the corresponding faces of the cell.

For simplicity we consider here uniform rectangular non-staggered grids. Prob-
lem (2.1)–(2.5) is solved in a rectangle

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

The approximate solution is calculated at the points of a uniform rectangular grid
in Ω:

ω̄ = {x | x = (x1, x2), xα = iαhα, iα = 0, 1, . . . , Nα, Nαhα = lα}

and let ω be the set of internal nodes (ω̄ = ω ∪ ∂ω).
For vector grid functions u(x) = 0, x ∈ ∂ω we define a Hilbert space H = L2(ω)

with the scalar product and norm

(u, v) =
∑

x∈ω

u(x)v(x)h1h2, ‖u‖ = (u, u)1/2.

The grid operator A is taken in the form A = −ν∆h, where ∆h is the grid Laplace
operator:

∆hy = −
1

h2
1

(

y(x1 + h1, x2) − 2y(x1, x2) + y(x1 − h1, x2)
)

−
1

h2
2

(

y(x1, x2 + h2) − 2y(x1, x2) + y(x1, x2 − h2)
)

.

In H the operator A is selfadjoint and positive definite:

(3.1) A = −ν∆h = A∗
> νδhE, δh =

2
∑

α=1

4

h2
α

sin2 πhα

2lα
.

The pressure gradient is approximated by directed differences with an error O(h).
We set B = gradh at

(3.2) Bp = {(Bp)1, (Bp)2}, x ∈ ω,
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where

(Bp)1 =
1

h1

(

p(x1 + h1, x2) − p(x1, x2)
)

,

(Bp)2 =
1

h2

(

p(x1, x2 + h2) − p(x1, x2)
)

.

The set of points for the pressure evaluation is denoted as ωp (ωp ⊂ ω̄). For the
grid divergence operator B∗ = − divh we have

B∗u = −
1

h1

(

u1(x1, x2) − u1(x1 − h1, x2)
)

(3.3)

−
1

h2

(

u2(x1, x2) − u2(x1, x2 − h2)
)

, x ∈ ωp.

The adjointness property of the grid gradient and divergence operators is a conse-
quence of the discrete equation

∑

x∈ω

Bp(x)u(x)(x)h1h2 +
∑

x∈ωp

p(x)B∗u(x)(x)h1h2 = 0,

which takes place on the set of vector grid functions u(x) = 0, x ∈ ∂ω.
In view of (3.1)–(3.3) after the spatial approximation of problem (2.6)–(2.8) we

obtain the following problem

du

dt
+ Au + Bp = f ,(3.4)

B∗u = 0, 0 < t 6 T,(3.5)

u(0) = v.(3.6)

For the solution of problem (3.4)–(3.6) a priori estimate (2.9) holds, where now ‖ ·‖
is the norm in H = L2(ω).

4. Domain decomposition

Let Ω be a combination of m particular subdomains Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm.
Particular subdomains can overlap one onto another. We shall construct the
schemes of decomposition where the solution at the new time level for the initial
problem is reduced to the sequential solution of problems in particular subdomains.

Let us define functions for domain Ω

(4.1) ηα(x) =

{

> 0, x ∈ Ωα,

0, x /∈ Ωα,
α = 1, 2, . . . , m.

Generally, see for example,[6, 8], domain decomposition schemes for unsteady prob-
lems are based on the partition of unit for the region Ω, where

m
∑

α=1

ηα(x) = 1, x ∈ Ω.
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It is more convenient to use a somewhat different partition where

(4.2)

m
∑

α=1

η2
α(x) = 1, x ∈ Ω.

For the decomposition of computational domain (4.1), (4.2) we consider the
following additive representation of the identity operator E in H = L2(ω):

(4.3) E =

m
∑

α=1

χ2
α, χα = ηα(x)E, x ∈ ω, α = 1, 2, . . . , m.

Taking into account (4.3) we have

(4.4) u =
m

∑

α=1

uα, uα = χαu, α = 1, 2, . . . , m.

To formulate an appropriate system of equations for determining components
of the solution uα, α = 1, 2, . . . , m, we multiply both sides of equation (3.4) by χα.
This gives

(4.5)
duα

dt
+ χαA

m
∑

β=1

χβuβ + Bαp = fα,

where Bα = χαB, fα = χαf , α = 1, 2, . . . , m. Taking into account that B∗

α = B∗χα,
equation (3.5) in the new notation is written as

(4.6)

m
∑

α=1

B∗

αuα = 0, 0 < t 6 T.

The system of equations (4.5), (4.6) is supplemented by the initial conditions

(4.7) uα(0) = vα, vα = χαv, α = 1, 2, . . . , m.

For U = {u1, u2, . . . , um}, we define in the space Hm the norm and inner

product as follows (U, V )m =
∑m

α=1(uα, vα), ‖U‖m = (U, U)
1/2
m . Let us multiply

scalarly individual equations (4.5) by uα, α = 1, 2, . . . , m and add them together.
Next, multiply equation (4.6) by p. Taking into account (4.4), we obtain

1

2

d

dt

m
∑

α=1

(uα, uα) + (Au, u) =
m

∑

α=1

(fα, uα).

This implies the a priori estimate

(4.8) ‖U‖2
m 6 exp(t)‖V ‖2

m +

∫ t

0
exp(t − θ)‖F (θ)‖2

mdθ

for problem (4.5)–(4.7) with F = {f1, f2, . . . , fm}.
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5. Splitting scheme

In the construction of domain decomposition schemes we shall proceed from
the scheme of splitting with respect to physical processes for the Cauchy problem
(2.6)–(2.8). We shall use a simple additive scheme componentwise splitting [5, 9].
Let un be the difference solution at the time moment tn = nτ , where τ = T/N > 0
is the time-step. Let us separate out a particular stage connected with the pressure
impact[3, 4]. Thus, in the first stage we have

(5.1)
un+1/2 − un

τ
+ Aun+1/2 = fn+1/2.

The pressure gradient is treated only in the second stage:

un+1 − un+1/2

τ
+ Bpn+1 = 0,(5.2)

B∗un+1 = 0.(5.3)

Implementation of (5.2), (5.3) consists of two steps. In the first step we solve the
following problem for the pressure B∗Bpn+1 = 1

τ B∗un+1/2, whereas in the second

one we update the velocity: un+1 = un+1/2 − τBpn+1. Multiplying (5.1) by un+1/2,
we obtain

∥

∥un+1/2
∥

∥

2
6

∥

∥un
∥

∥

2
+

τ

δh

∥

∥fn+1/2
∥

∥

2
.

Similarly, from (5.2) taking into account (5.3) we have ‖un+1‖2 6 ‖un+1/2‖2. Thus,
we obtain the grid analog of estimate (2.9)

∥

∥un+1
∥

∥

2
6

∥

∥un
∥

∥

2
+

τ

2δh

∥

∥fn+1/2
∥

∥

2
.

for difference scheme (5.1)–(5.3).
For simplicity, we shall construct splitting schemes for problem (4.5)–(4.7) by

analogy with splitting scheme (5.1)–(5.3). The first half-step (viscous dissipation)
is associated with the solution of equations

duα

dt
+ χαA

m
∑

β=1

χβuβ = fα, α = 1, 2, . . . , m, tn < t 6 tn+1/2.

Taking into account the fact that the numerical solution is implemented via solving
individual problems in the subdomains, the transition from time level tn to level
tn+1/2 can be realized as follows:

(5.4)
u

n+1/4
α − un

α

τ
+ χαA

α−1
∑

β=1

χβu
n+1/4
β +

1

2
χαAχαun+1/4

α = fn+1/2
α ,

α = 1, 2, . . . , m,

(5.5)
u

n+1/2
α − u

n+1/4
α

τ
+

1

2
χαAχαun+1/2

α + χαA
m

∑

β=α+1

χβu
n+1/2
β = 0,

α = 1, 2, . . . , m.

In view of (5.4), (5.5) in each subdomain Ωα, α = 1, 2, . . . , m we must invert grid

selfadjoint elliptic operator Dα = E + 1
2 χαAχα for finding u

n+1/4
α (α = 1, 2, . . . , m)
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and u
n+1/2
α (α = m, m − 1, . . . , 1). In this case, outside subdomains Ωα, α =

1, 2, . . . , m explicit calculations are used.
Stability of scheme (5.4), (5.5) will be investigated in Hm. Consider the oper-

ator

(5.6) A = {Aαβ}, Aαβ = χαAχβ , α, β = 1, 2, . . . , m.

Taking into account (3.1), (4.2), we have A = A
∗ > 0 in Hm. Scheme (5.4), (5.5)

is based on using the triangular splitting

(5.7) A = A1 + A2, A1 = A
∗

2.

Using notation (5.6), (5.7) we rewrite (5.4), (5.5) in the form

Un+1/4 − Un

τ
+ A1Un+1/4 = F n+1/2,(5.8)

Un+1/2 − Un+1/4

τ
+ A2Un+1/2 = 0.(5.9)

Taking into account that Aα > 0, α = 1, 2 in Hm, for (5.9) we immediately have

(5.10)
∥

∥Un+1/2
∥

∥

2
m

6
∥

∥Un+1/4
∥

∥

2
m

.

Multiplying (5.8) by Un+1/4, we obtain ‖Un+1/4‖2
m 6 ‖Un‖2

m+2τ(F n+1/2, Un+1/4)m.
For the last term on the right-hand side we use the estimate

2τ
(

F n+1/2, Un+1/4)

m
6

(

1 − exp(−τ)
)∥

∥Un+1/4
∥

∥

2
m

+
τ2

1 − exp(−τ))

∥

∥F n+1/2
∥

∥

2
m

.

This leads to the estimate

(5.11)
∥

∥Un+1/4
∥

∥

2
m

6 exp(τ)
∥

∥Un
∥

∥

2
m

+ τ
∥

∥F n+1/2
∥

∥

2
m

.

The second half-step results from the pressure and is connected with the system
of equations

duα

dt
+ Bαp = 0, α = 1, 2, . . . , m,

m
∑

α=1

B∗

αuα = 0, tn+1/2 < t 6 tn+1.

Approximation in time for such systems were considered in [12]. We shall use the
additive scheme

un+1/2+β/2m
α = un+1/2+(β−1)/2m

α , β 6= α, β = 1, 2, . . . , m,(5.12)

u
n+1/2+α/2m
α − u

n+1/2+(α−1)/2m
α

τ
+ Bαpn+1/2+α/2m = 0,(5.13)

B∗

αun+1/2+α/2m
α = 0, α = 1, 2, . . . , m.(5.14)

The implementation of additive scheme (5.12)–(5.14) is conducted by analogy with
scheme (5.2), (5.3).
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For (5.12)–(5.14) we have
∥

∥un+1
α

∥

∥ 6
∥

∥u
n+1/2
α

∥

∥, α = 1, 2, . . . , m and therefore

(5.15)
∥

∥Un+1
∥

∥

2
m

6
∥

∥Un+1/2
∥

∥

2
m

.

Taking into account (5.10), (5.11) and (5.15) we obtain the desired stability estimate
of the additive operator-difference scheme (5.4), (5.5), (5.12)–(5.14)

(5.16)
∥

∥Un+1
∥

∥

2
m

6 exp(τ)
∥

∥Un
∥

∥

2
m

+ τ
∥

∥F n+1/2
∥

∥

2
m

.

Estimate (5.16) is the grid analog of (4.8) for the differential problem.
This allows us to formulate the following main result.

Theorem 5.1. The additive scheme of domain decomposition (5.4), (5.5),
(5.12)–(5.14) is unconditionally stable and estimate (5.16) holds for the numeri-

cal solution.
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