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Abstract. Some new statements concerning the behavior of the argument of
the Riemann zeta function at the Gram points are proved. We apply these
statements to prove Selberg’s formulas connected with Gram’s Law.

1. Introduction

The notion ‘Gram’s Law’ has different senses in different papers. Thus, we
begin this paper with a short survey. This survey contains the results concerning
the peculiar phenomenon observed by Jörgen Pedersen Gram [1] in 1903.

In what follows, we need several definitions. Suppose that 𝑡 > 0 and let 𝜗(𝑡)
be an increment of any fixed continuous branch of the argument of the function
𝜋−𝑠/2Γ

(︀
𝑠
2
)︀

as 𝑡 varies along the segment connecting the points 𝑠 = 1
2 and 𝑠 =

1
2 + 𝑖𝑡. Then Hardy’s function 𝑍(𝜏) = 𝑒𝑖𝜗(𝜏)𝜁

(︀ 1
2 + 𝑖𝜏

)︀
is real for real 𝜏 and its

real zeros coincide with the ordinates of zeros of 𝜁(𝑠) lying on the critical line
Re 𝑠 = 1

2 . Further, if 𝑡 is not an ordinate of a zero of 𝜁(𝑠), then the function
𝑆(𝑡) = 𝜋−1 arg 𝜁

(︀ 1
2 + 𝑖𝑡

)︀
is defined as an increment of any continuous branch of

𝜋−1 arg 𝜁(𝑠) along the polygonal arc connecting the points 2, 2 + 𝑖𝑡 and 1
2 + 𝑖𝑡.

Otherwise, 𝑆(𝑡) is defined by the relation

𝑆(𝑡) = 1
2 lim

ℎ→0

(︀
𝑆(𝑡 + ℎ) + 𝑆(𝑡 − ℎ)

)︀
.

Let 𝑁(𝑡) be the number of zeros of 𝜁(𝑠) in the rectangle 0 < Im 𝑠 6 𝑡, 0 6
Re 𝑠 6 1 counted with multiplicities. At the points of discontinuity 𝑁(𝑡) is defined
as follows:

𝑁(𝑡) = 1
2 lim

ℎ→0

(︀
𝑁(𝑡 + ℎ) + 𝑁(𝑡 − ℎ)

)︀
.
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The equation

(1.1) 𝑁(𝑡) = 1
𝜋

𝜗(𝑡) + 1 + 𝑆(𝑡)

is known as the Riemann–von Mangoldt formula and is true for any 𝑡 > 0.
By 𝜚𝑛 = 𝛽𝑛 + 𝑖𝛾𝑛 we denote the complex zeros of 𝜁(𝑠) lying in the upper half-

plane and ordered as follows: 0 < 𝛾1 < 𝛾2 < · · · 6 𝛾𝑛 6 𝛾𝑛+1 6 · · · . Finally, let 𝑐𝑛

be the real and positive zeros of 𝑍(𝑡) indexed in ascending order and counted with
their multiplicities.

Though the first three positive ordinates of zeros of 𝜁(𝑠) had been already
counted by Riemann, this fact was revealed only in 1932 by Siegel [2]. It seems that
the first mathematical publication devoted to the calculation of zeta zeros belongs
to Gram [3] (1895). He established that 𝛾1 = 14.135, 𝛾2 = 20.82, 𝛾3 = 25.1, but his
method was too laborious and unfit for detecting of higher zeros. In 1902, Gram
invented a more acceptable method for detecting the zeros of 𝜁(𝑠).

The key idea of this method is the following. Let 𝐴(𝑡) and 𝐵(𝑡) be the real
and imaginary parts of 𝜁

(︀ 1
2 + 𝑖𝑡

)︀
correspondingly. Then

𝜁
(︀ 1

2 + 𝑖𝑡
)︀

= 𝑒−𝑖𝜗(𝑡)𝑍(𝑡) = 𝑍(𝑡)(cos 𝜗(𝑡) − 𝑖 sin 𝜗(𝑡)),

and hence 𝐴(𝑡) = 𝑍(𝑡) cos 𝜗(𝑡), 𝐵(𝑡) = −𝑍(𝑡) sin 𝜗(𝑡). We consider the real zeros
of 𝐵(𝑡). These zeros are of two types. The zeros of the first type are the ordinates
𝛾𝑛 of zeros of 𝜁(𝑠) lying on the critical line, and the zeros of the second type are
the roots of the equation sin 𝜗(𝑡) = 0. Using Stirling’s formula in the form

𝜗(𝑡) = 𝑡

2 ln 𝑡

2𝜋
− 𝑡

2 − 𝜋

8 + 𝑂
(︁1

𝑡

)︁
,

and considering the values 𝑡 > 7, it is possible to show that the roots of the
above equation generate the unbounded monotonic sequence: 𝑡0 = 9.6669 . . . , 𝑡1 =
17.8456 . . . , 𝑡2 = 23.1703 . . . , 𝑡3 = 27.6702 . . . , . . . . Here 𝑡𝑛 denotes the 𝑛-th Gram
point, i.e., the unique solution of the equation 𝜗(𝑡𝑛) = (𝑛 − 1)𝜋. Therefore, the
value 𝜁

(︀ 1
2 + 𝑖𝑡𝑛

)︀
is real and

𝜁
(︀ 1

2 + 𝑖𝑡𝑛

)︀
= 𝐴(𝑡𝑛) = 𝑍(𝑡𝑛) cos 𝜋(𝑛 − 1) = (−1)𝑛−1𝑍(𝑡𝑛).

Suppose now that 𝐴(𝑡) has the same sign at the points 𝑡𝑛−1 and 𝑡𝑛 for some 𝑛.
Then the values 𝑍(𝑡𝑛−1) and 𝑍(𝑡𝑛) are of opposite sign. Hence, 𝑍(𝑡) vanishes at
the odd number of points between 𝑡𝑛−1 and 𝑡𝑛.

Using the Euler–MacLaurin summation formula, Gram established that 𝐴(𝑡𝑛)
> 0 for 𝑛 = 1, 2, . . . , 15, and proved that all zeros of 𝜁(𝑠) in the strip 0 < 𝑡 < 66
lie on the critical line. This method allowed him also to find approximately the
ordinates 𝛾1, 𝛾2, . . . , 𝛾15. Thus Gram established that there is exactly one zero 𝑐𝑛 in
each interval 𝐺𝑛 = (𝑡𝑛−1, 𝑡𝑛], 𝑛 = 1, 2, . . . , 15 and, moreover, that 𝑡𝑛−1 < 𝑐𝑛 < 𝑡𝑛.
However, he assumed also that this law is not universal: ‘...the values 𝐴(𝑡𝑛) are
positive for all 𝑡𝑛 lying between 10 and 65. It seems that the function 𝐴(𝑡) is positive
for most part of 𝑡 under consideration. Obviously, the reason is that the first term
of the sum

∑︀𝑛
1 𝑛−1/2 cos (𝑡 log 𝑛) leads to the dominance of positive summands. If

it is so, the regularity in the relative location of 𝑐𝑛 and 𝑡𝑛 will hold true for some
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time for the roots 𝑐 lying closely to 𝑐15 until the equilibrium will set in’ (see [1]; for
simplicity, we use here the notation of the present paper).

The phrase ‘Gram’s law’ appeared for the first time in Hutchinson’s paper [4].
He used this notion to underline the property that 𝑐𝑛 and 𝑐𝑛+1 are separated by
the Gram point 𝑡𝑛. Hutchinson undertook wider calculations of zeros of 𝜁(𝑠) in
order to check the validity of Gram’s assumption. He found the two first values of
𝑛 that do not satisfy Gram’s law: 𝑛 = 127 and 𝑛 = 136. Namely, he established
that

𝑡127 < 𝛾127 < 𝛾128 < 𝑡128, 𝑡134 < 𝛾135 < 𝛾136 < 𝑡135.

Ten years later, Titchmarsh continued in [5, 6] Hutchinson’s calculations using
Brunsviga, National and Hollerith machines. They found a lot of new exceptions
from Gram’s law, but the proportion of these exceptions did not exceed 4.5%1.
The paper [5] contains also the first theoretical results concerning Gram’s law.
Thus, Titchmarsh proved that the inequality 𝐴(𝑡𝑛) = (−1)𝑛−1𝑍(𝑡𝑛) > 0 fails for
infinitely many 𝑛. Moreover, he proved that the sequence of fractions 𝜏𝑛 = 𝑐𝑛−𝑡𝑛

𝑡𝑛+1−𝑡𝑛

is unbounded. The last assertion means that there are infinitely many zeros 𝑐𝑛

lying outside the corresponding intervals 𝐺𝑛.
Though the rule with infinitely many exceptions is not a law in a rigorous sense,

the notion ‘Gram’s law’ is widely used now, but in different senses. We will also use
this notion for any assertion concerning the relative location of ordinates of zeros
of 𝜁(𝑠) and Gram points. Further we present a kind of ‘classification’ of ‘Gram’s
laws’.

Definition 1.1. Gram’s interval 𝐺𝑛 = (𝑡𝑛−1, 𝑡𝑛] satisfies to the Gram’s Strict
Law (GSL) iff 𝐺𝑛 contains a zero 𝑐𝑛 of 𝑍(𝑡).

This definition is close to that of Hutchinson and Titchmarsh. But here we
allow the coincidence of 𝑡𝑛 with a zero of Hardy’s function. The reason is that now
only little is known about the number of such coincidences (or noncoincidences).
It seems that 𝑍(𝑡𝑛) does not vanish for every 𝑛, i.e., 𝑐𝑚 ̸= 𝑡𝑛 for any 𝑚 and 𝑛.
But we only know that 𝑍(𝑡𝑛) ̸= 0 for at least (4 − 𝑜(1))𝑁(ln 𝑁)−1 values of 𝑛,
1 6 𝑛 6 𝑁 (see [7])2. The unboundedness of the fractions 𝜏𝑛 implies that GSL fails
for infinitely many cases. Unfortunately, it is still unknown whether the number of
cases when GSL holds true is finite or infinite.

The Definition 1.1 contains a very rigid restriction. Namely, the index of the
interval 𝐺𝑛 and the index of a zero 𝑐 belonging to 𝐺𝑛 must be equal. If we omit
this restriction, we come to the second version of Gram’s law.

1Titchmarsh mentioned 43 exceptions that he had found during his calculation of the first
1041 zeros of 𝑍(𝑡) lying in the interval 0 < 𝑡 6 1468. However, there are 1042 zeros of Hardy’s
function and 1041 Gram’s points 𝑡𝑛 between 𝑡 = 0 and 𝑡 = 1468, and there are 45 values of 𝑛
such that (−1)𝑛−1𝑍(𝑡𝑛) < 0.

2Selberg’s theorem formulated without a proof in [8] and cited below implies that 𝑍(𝑡𝑛) ̸= 0
for a positive proportion of 𝑛. It’s interesting to note that the values 𝑍(𝑡𝑛) are very close to 0 for
some 𝑛. For example, the minima of |𝑍(𝑡𝑛)| for 𝑛 6 105 and 𝑛 6 106 are equal to 1.238 · 10−5

(𝑛 = 97 281) and to 8.908 · 10−8 (𝑛 = 368 383) respectively.
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Definition 1.2. Gram’s interval 𝐺𝑛 satisfies to Gram’s law (GL) iff 𝐺𝑛 con-
tains exactly one (simple) zero of 𝑍(𝑡).

It is possible to show that GSL and GL are not equivalent. The failure (validity)
of one statement for a given 𝑛 does not imply the failure (validity) of the other
statement. For example, 𝐺1, . . . , 𝐺126 satisfy both GSL and GL; 𝐺127 does not
satisfy neither GSL, nor GL; further, 𝐺128 satisfies GSL, but does not satisfy GL;
finally, 𝐺3359, 𝐺3778, 𝐺4542 satisfy GL, but do not satisfy GSL.

The determination of zeros of 𝑍(𝑡) in a given interval (𝑎, 𝑏) is usually reduced
to an evaluation of number of sign-changes of 𝑍(𝑡) in (𝑎, 𝑏). Therefore, this method
allows one to determine only the parity of the number of zeros. For example, the
inequality 𝑍(𝑎)𝑍(𝑏) < 0 guarantees the existence of an odd number of zeros in
(𝑎, 𝑏) counted with multiplicity. Therefore, it seems natural to consider one more
type of Gram’s law.

Definition 1.3. Gram’s interval 𝐺𝑛 satisfies Gram’s Weak Law (GWL) iff 𝐺𝑛

contains an odd number of zeros of 𝑍(𝑡).

Obviously, GL implies GWL, but the reverse statement is not correct. For
example, if 𝑛 = 2147, then 𝐺𝑛 contains exactly three zeros of Hardy’s function,
namely 𝑐𝑛−1, 𝑐𝑛 and 𝑐𝑛+1. The inequality 𝑍(𝑡𝑛−1)𝑍(𝑡𝑛) < 0 is sufficient (but not
necessary) condition for GWL. Therefore, Titchmarsh’s formula (see [9])∑︁

𝑛6𝑁

𝑍(𝑡𝑛−1)𝑍(𝑡𝑛) ∼ − 2(𝛾 + 1)𝑁

implies that GWL holds true for infinitely many cases (here 𝛾 denotes Euler’s
constant).

The statement ‘GSL holds true for all 𝑛 > 𝑛0’ implies the boundedness of
the fractions 𝜏𝑛 as 𝑛 → +∞. The last fact contradicts to some properties of 𝑆(𝑡)
established by Bohr and Landau [10] in 1913.

In the middle of the 40’s, Selberg invented a new powerful method of researching
of the function 𝑆(𝑡) (see [11,12]) and obtained a lot of very deep results concerning
the distribution of zeros of 𝜁(𝑠). In particular, in [8] he formulated (without a
proof) the following theorem: there exist absolute constants 𝐾 and 𝑁0 such that
for 𝑁 > 𝑁0, 1 6 𝑛 6 𝑁 , the numbers 𝑍(𝑡𝑛−1) and 𝑍(𝑡𝑛) are of different sign in
more than 𝐾𝑁 cases, and of the same sign in more than 𝐾𝑁 cases. This theorem
implies that both GWL and GL fail for a positive proportion of cases, and that
GWL holds true for a positive proportion of cases.

Denote by 𝜈𝑘 = 𝜈𝑘(𝑁) the number of Gram’s intervals 𝐺𝑛, 1 6 𝑛 6 𝑁 , that
contain exactly 𝑘 ordinates of zeros of 𝜁(𝑠) (here we consider all the zeros in the
critical strip, but not only those lying on the critical line). It is not difficult to
prove that Selberg’s theorem implies the following relations:

𝜈0 + 𝜈2 + 𝜈4 + · · · > 𝐾𝑁,(1.2)
𝜈1 + 𝜈3 + 𝜈5 + · · · > 𝐾𝑁,(1.3)

These inequalities are weaker than Selberg’s original assertion. The reason is
that Selberg’s theorem deals with the ordinates in open intervals (𝑡𝑛−1, 𝑡𝑛) (instead



GRAM’S LAW 57

of the interval 𝐺𝑛) and hence with nonvanishing of 𝑍(𝑡) at the endpoints of such
intervals for a positive proportion of 𝑛.

Further, (1.2) implies a weaker estimate

(1.4) 𝜈0 + 𝜈2 + 𝜈3 + 𝜈4 + · · · > 𝐾𝑁.

This inequality shows that the positive proportion of Gram’s intervals contain an
‘abnormal’ number (i.e., ̸= 1) of ordinates. Both (1.2) and (1.4) imply that GWL
and GL fail for positive proportion of 𝑛.

As far as the author knows, the proofs of either Selberg’s theorem or formulas
(1.2), (1.3) have never been published. Estimate (1.4) was proved by Trudgian [14]
in 20093. He also pointed out in [14] that (1.4) implies the inequality

(1.5) 𝜈0 > 𝐾1𝑁

for any fixed 𝐾1, 0 < 𝐾1 < 1
2 𝐾, and for 𝑁 > 𝑁0(𝐾1). Indeed, the following

identities hold true:

0 · 𝜈0 + 1 · 𝜈1 + 2 · 𝜈2 + 3 · 𝜈3 + . . . = 𝑁 + 𝑆(𝑡𝑁 + 0),(1.6)
𝜈0 + 𝜈1 + 𝜈2 + 𝜈3 + . . . = 𝑁.(1.7)

It is easy to see that (1.6) expresses the fact that the number of zeros whose
ordinates are positive and do not exceed 𝑡𝑁 , is equal to 𝑁(𝑡𝑁 +0) = 𝑁 +𝑆(𝑡𝑁 +0),
and (1.7) expresses the fact that the number of 𝐺𝑛 contained in (0, 𝑡𝑁 ] is equal
to 𝑁 . Subtracting (1.7) from (1.6) we find: 𝜈0 = 𝜈2 + 2𝜈3 + 3𝜈4 + · · · − 𝑆(𝑡𝑁 + 0).
Adding 𝜈0 to both parts and using the classical estimate 𝑆(𝑡) = 𝑂(ln 𝑡) (see [13])
we get:

2𝜈0 = 𝜈0 + 𝜈2 + 2𝜈3 + 3𝜈4 + . . .

> 𝜈0 + 𝜈2 + 𝜈3 + 𝜈4 + · · · + 𝑂(ln 𝑁) > 𝐾𝑁 + 𝑂(ln 𝑁).

This proves (1.5). Similarly to (1.2) and (1.4), the inequality (1.5) implies that
both GWL and GL fail for a positive proportion of cases.

It is interesting to note the following. It is expected that 𝜈1(𝑁) > 𝑐𝑁 or even
𝜈1(𝑁) ∼ 𝑐1𝑁 as 𝑁 grows. However, a weaker relation 𝜈1(𝑁) → +∞ as 𝑁 → +∞
is still unproved. Thus, we don’t know whether the number of cases when GL holds
true is finite or not.

There are some reasons to think that Selberg interpreted Gram’s Law in a way
different from Titchmarsh’s one and different from GSL, GL and GWL. In dealing
with Gram’s Law, Titchmarsh considered only the real zeros of Hardy’s function.
We think that Selberg considered all the zeros of 𝜁(𝑠) in the critical strip. The
weighltly arguments that sustain this point of view will be introduced later. Now
we give here some preliminary remarks.

Let 𝛾𝑛 be an ordinate of a zero of 𝜁(𝑠) in the critical strip. Then we determine
a unique integer 𝑚 = 𝑚(𝑛) such that 𝑡𝑚−1 < 𝛾𝑛 6 𝑡𝑚, and set Δ𝑛 = 𝑚 − 𝑛.

3We note that the inequalities 𝜈0 ≫ 𝑁 , 𝜈2 + 𝜈3 + 𝜈4 + · · · ≫ 𝑁 were formulated without a
proof by Fujii in [15].
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Definition 1.4. We say that Gram–Selberg’s Phenomenon (GSP) is observed
for the ordinate 𝛾𝑛 iff Δ𝑛 = 0, i.e., iff 𝑡𝑛−1 < 𝛾𝑛 6 𝑡𝑛.

It seems likely that the property of 𝛾𝑛 to satisfy the condition Δ𝑛 = 0 was
called by Selberg ‘Gram’s Law’.

The above result of Selberg implies that there is a positive proportion of cases
when GSP is not observed. However, it is possible to say much more about GSP.
Selberg established the formulas∑︁

𝑛6𝑁

Δ2𝑘
𝑛 = (2𝑘)!

𝑘!
𝑁

(2𝜋)2𝑘
(ln ln 𝑁)𝑘 + 𝑂

(︀
𝑁(ln ln 𝑁)𝑘−1/2)︀

,(1.8)

∑︁
𝑛6𝑁

Δ2𝑘−1
𝑛 = 𝑂

(︀
𝑁(ln ln 𝑁)𝑘−1)︀

,(1.9)

where 𝑘 > 1 is a fixed integer. In view of (1.8),(1.9) he assumed that the inequalities
1

Φ(𝑛)
√

ln ln 𝑛 < |Δ𝑛| 6 Φ(𝑛)
√

ln ln 𝑛

hold true for ‘almost all’ 𝑛. Here Φ(𝑥) denotes any fixed positive unbounded func-
tion. In particular, this assumption implies that GSP is not observed in ‘almost
all’ cases.

It follows from the remark in [16, p. 355] that Selberg had found a proof of
his own assumption long before 1989, but he did not publish it. For a version of a
proof of Selberg’s assumption, see author’s papers [17,18].

Thus, we can’t expect the occurrence of GSP in positive proportion of cases.
The reason is that Definition 1.4 impose a rigid restriction on 𝛾𝑛 (the ordinate
should belong to Gram’s interval with the same number). Thus, GSP is a very rare
phenomenon. It is natural to ask whether GSP occurs in infinitely many cases or
not. Since no such results had been published, some quantitative statements about
the frequency of occurrence of GSP seem to have some interest (see the recent paper
of the author [19]).

Now we place the results concerning Gram’s law in the table below.
The present paper contains some new statements concerning the behavior of

the function 𝑆(𝑡) at the Gram points. We use them to prove Selberg’s formulas
(1.8), (1.9) and apply them to other problems connected with Gram’s law. The
paper is organized as follows.

First, Section 2 contains auxiliary assertions. In Section 3, the sum

(1.10)
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2𝑘

is evaluated. Here 𝑘 > 0, 𝑚 > 0 are sufficiently large integers, that may grow
slowly with 𝑁 (Theorem 3.1). The correct bound (in the sense of order of growth)
for the sum (1.10) with 𝑚 = 1 is also given here (Theorem 3.2). We note that the
bounds of such type are contained in [15]. But they hold true only for a ‘long’
interval of summation: 1 6 𝑛 6 𝑁 or 𝑁 < 𝑛 6 𝑁 +𝑀 , 𝑀 ≍ 𝑁 . The statements of
the present paper are valid for a ‘short’ interval, namely for the case 𝑀 ≍ 𝑁𝛼+𝜀,
𝛼 = 27

82 = 1
3 − 1

246 .



GRAM’S LAW 59

holds true fails

GSL
it’s unknown, whether
the number of such cases
is finite or not

for infinitely many cases:
– Titchmarsh [5], 1935;

GL

for infinitely many cases:
– Titchmarsh [5], 1935;
for positive proportion of cases:
– Selberg [8], 1946;
– Fujii [15], 1987;
– Trudgian [14], 2009.

GWL

for infinitely many cases:
– Titchmarsh [9], 1934;
for positive proportion of cases:
– Selberg [8], 1946;

for positive proportion of cases:
– Selberg [8], 1946;
– Fujii [15], 1987;
– Trudgian [14], 2009.

GSP for infinitely many cases

for infinitely many cases:
– Titchmarsh [5], 1935;
for ‘almost all’ cases:
– Selberg [16], 1989.

Further, Theorem 3.3 in Section 3 gives a true order of magnitude of the sum∑︁
𝑁<𝑛6𝑁+𝑀

⃒⃒
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

⃒⃒
.

This statement is based on Theorems 3.1 and 3.2 and plays the key role in the proof
of the inequalities 𝜈0(𝑁 + 𝑀) − 𝜈0(𝑁) ≫ 𝑀 ,

∑︀
𝑘>2

(︀
𝜈𝑘(𝑁 + 𝑀) − 𝜈𝑘(𝑁)

)︀
≫ 𝑀

(Theorem 3.4). Analogues of these bounds in the case of ‘long’ intervals of sum-
mation were formulated (without a proof) for the first time by Selberg in [8] as
corollaries of his theorem cited above.

In Section 4, a nontrivial bound for the alternating sum

𝑇𝑘 =
∑︁

𝑁<𝑛6𝑁+𝑀

𝑆𝑘(𝑡𝑛 + 0)
(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀
is given (Theorem 4.1). This estimate leads to a new proof of Selberg’s formulas
(1.8), (1.9) (see Theorem 4.2) and of the assumption that Δ𝑛 ̸= 0 for ‘almost all’ 𝑛.
The proofs of these facts differ from those given in the author’s previous paper [18].
They don’t use the information about the number of solutions of the inequalities
𝑎 < Δ𝑛 6 𝑏 with the condition 𝑁 < 𝑛 6 𝑁 + 𝑀 . It is likely that the proof of
Theorem 4.2 presented here is close to Selberg’s original proof.

Finally, in Section 5 we try to motivate our assumption that Selberg considered
all the complex zeros of 𝜁(𝑠) in dealing with Gram’s law in [8]. This argumentation
leads us to a new equivalent of ‘almost Riemann hypothesis’ (see Theorem 5.1;
‘almost Riemann hypothesis’ claims that almost all complex zeros of 𝜁(𝑠) lie on the
critical line).
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Throughout the paper, 𝜀 denotes an arbitrary small positive number, 0 < 𝜀 <
10−3; 𝑁0(𝑇 ) denotes the number of zeros of 𝜁

(︀ 1
2 + 𝑖𝑡

)︀
in the strip 0 < 𝑡 6 𝑇 ;

𝑁 > 𝑁1(𝜀) > 0 is a sufficiently large integer; 𝐿 = ln ln 𝑁 , 𝑀 is an arbitrary integer
satisfying the conditions 𝑁𝛼+𝜀1 6 𝑀 6 𝑁𝛼+𝜀, 𝛼 = 27

82 , 𝜀1 = 0.9𝜀; 𝜃, 𝜃1, 𝜃2, . . . are
complex numbers whose absolute values do not exceed 1 and which are, generally
speaking, different in different relations. In some cases we use for brevity the
notation Δ(𝑛) for the value 𝑆(𝑡𝑛 + 0).

2. Auxiliary lemmas

Lemma 2.1. The following relations hold true for any 𝑥 > 2:∑︁
𝑝6𝑥

ln 𝑝

𝑝
< ln 𝑥,

∑︁
𝑝6𝑥

1
𝑝

= ln ln 𝑥 + 𝑐 + 𝜃

ln2 𝑥
;

here 𝑐 = 0.26 . . . and − 1
2 < 𝜃 < 1.

For a proof, see [20].

Lemma 2.2. Suppose that 0 < 𝜅 < 1
2 , 0 < 𝑐 < 1

2 − 𝜅, 𝜇, 𝜈 are integers
such that 𝜇, 𝜈 > 0, 𝜇 + 𝜈 = 2𝑘, 𝑘 > 1, 𝑁 > exp (9𝜅−1), 𝑀 > exp (3𝑘𝑐−1),
𝑦 = 𝑀 𝑐/𝑘. Furthermore, let 𝑝1, . . . , 𝑝𝜈 , 𝑞1, . . . , 𝑞𝜇 take values of prime numbers from
the interval (1, 𝑦] and satisfy the condition 𝑝1 . . . 𝑝𝜈 ̸= 𝑞1 . . . 𝑞𝜇. Finally, suppose
that |𝑎(𝑝)| 6 𝛿 for 𝑝 6 𝑦. Then the sum 𝑆,

𝑆 =
∑︁

𝑁<𝑛6𝑁+𝑀

∑︁
𝑝1,...,𝑝𝜈
𝑞1,...,𝑞𝜇

𝑎(𝑝1) . . . 𝑎(𝑝𝜈)𝑎(𝑞1) . . . 𝑎(𝑞𝜇)
√

𝑝1 . . . 𝑞𝜇

(︂
𝑞1 . . . 𝑞𝜇

𝑝1 . . . 𝑝𝜈

)︂𝑖𝑡𝑛

,

satisfies the bound |𝑆| < (𝛿𝑦3/2)2𝑘 ln 𝑁 .

For a proof, see [17].

Lemma 2.3. Let 𝑘 > 1 be an integer, 𝑦 > 𝑒3, and let 𝑝1, . . . , 𝑝𝑘, 𝑞1, . . . , 𝑞𝑘 take
values of prime numbers from the interval (1, 𝑦]. Then the following relation holds:∑︁

𝑝1...𝑝𝑘=𝑞1...𝑞𝑘

𝑎(𝑝1) . . . 𝑎(𝑝𝑘)𝑎(𝑞1) . . . 𝑎(𝑞𝑘)
√

𝑝1 . . . 𝑞𝑘
= 𝑘!

(︀
𝜎𝑘

1 + 𝜃𝑘𝑘2𝜎𝑘−2
1 𝜎2

)︀
,

where 𝜎𝑗 =
∑︀

𝑝6𝑦

(︀ 1
𝑝 |𝑎(𝑝)|2

)︀𝑗, 𝑗 = 1, 2, −1 6 𝜃𝑘 6 0, and 𝜃1 = 0.

For a proof, see [21,22].
Suppose that 𝑥 = 𝑡0.1𝜀

𝑁 . For positive 𝑡 and 𝑦 we define

𝑉 (𝑡) = 𝑉𝑦(𝑡) = 1
𝜋

∑︁
𝑝<𝑦

sin (𝑡 ln 𝑝)
√

𝑝
, 𝑅(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡).

Lemma 2.4. Suppose that 𝑘 is an integer, 1 6 𝑘 6 1
192 ln 𝑥, 𝑦 = 𝑥1/(4𝑘),

𝑉 (𝑡) = 𝑉𝑦(𝑡). Then the following inequality holds∑︁
𝑁<𝑛6𝑁+𝑀

𝑅2𝑘(𝑡𝑛 + 0) 6 (𝐴𝑒−4𝑘)2𝑘𝑀, where 𝐴 = 𝑒21𝜀−1.5.
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Lemma 2.5. Suppose that 𝑘 is an integer, 1 6 𝑘 6
√

𝐿. Then the following
relations hold: ∑︁

𝑁<𝑛6𝑁+𝑀

𝑆2𝑘(𝑡𝑛 + 0) = (2𝑘)!
𝑘!

𝑀𝐿𝑘

(2𝜋)2𝑘

(︀
1 + 𝜃𝐴𝑘𝐿−0.5)︀

,⃒⃒⃒⃒ ∑︁
𝑁<𝑛6𝑁+𝑀

𝑆2𝑘−1(𝑡𝑛 + 0)
⃒⃒⃒⃒
6

3.5√
𝐵

(𝐵𝑘)𝑘𝑀𝐿𝑘−1,

∑︁
𝑁<𝑛6𝑁+𝑀

𝑆2𝑘(𝑡𝑛 + 0) 6 2
(︁ 𝑘𝐴

𝜋2𝑒

)︁𝑘

𝑀𝐿𝑘,

where 𝐵 = 𝐴2𝑒−8, and 𝐴 is defined in Lemma 2.4.

For the proofs of these two lemmas, see [17] (the substitution of 𝑡𝑛 to 𝑡𝑛 + 0
does not affect the truth of the result; the reason is that the above substitution
does not affect the functions that approximate 𝑆(𝑡) in the proofs of Lemmas 2.4
and 2.5).

Lemma 2.6. Suppose that 𝑚 is an integer, 1 6 𝑚 6𝑀 . Then the equality

𝑡𝑛+𝑚 − 𝑡𝑛 = 𝜋𝑚

𝜗′(𝑡𝑁 ) + 3𝜃𝑀

𝑁(ln 𝑁)2

holds true for 𝑁 < 𝑛 6 𝑁 + 𝑀 .

Proof. By Lagrange’s mean value theorem, we have

𝜋𝑚 = 𝜗(𝑡𝑛+𝑚) − 𝜗(𝑡𝑛) = (𝑡𝑛+𝑚 − 𝑡𝑛)𝜗′(𝜉), 𝑡𝑛+𝑚 − 𝑡𝑛 = 𝜋𝑚

𝜗′(𝜉)

for some 𝜉, 𝑡𝑛 < 𝜉 < 𝑡𝑛+𝑚. Since 𝜗′(𝑡), 𝜗′′(𝑡) are monotonic for 𝑡 > 7, by the
inequality

𝑡𝑁

2𝜋
ln 𝑡𝑁

2𝜋
> 𝑁

we get:

0 <
1

𝜗′(𝑡𝑁 ) − 1
𝜗′(𝜉) = 𝜗′(𝜉) − 𝜗′(𝑡𝑁 )

𝜗′(𝑡𝑁 )𝜗′(𝜉)

6
(𝑡𝑁+𝑀 − 𝑡𝑁 )𝜗′′(𝑡𝑁 )(︀

𝜗′(𝑡𝑁 )
)︀2 = 𝜋𝑀

𝜗′(𝜁)
𝜗′′(𝑡𝑁 )(︀
𝜗′(𝑡𝑁 )

)︀2 <
𝜋𝑀𝜗′′(𝑡𝑁 )(︀

𝜗′(𝑡𝑁 )
)︀3 <

3𝑀

𝑁(ln 𝑁)2 .

This proves the lemma.

Lemma 2.7. Suppose that 0 < ℎ0 < 1
2 is a sufficiently small constant, 0<ℎ<ℎ0,

ℎ ln 𝑥 > 2, and let 𝑉 (𝑥; ℎ) =
∑︀

𝑝6𝑥
1
𝑝 sin2(︀ 1

2 ℎ ln 𝑝
)︀
. Then the following relation

holds: 𝑉 (𝑥; ℎ) = 1
2 ln (ℎ ln 𝑥) + 1.05𝜃.
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Proof. Setting 𝑦 = 𝑒𝜆/ℎ for some 1 < 𝜆 < 2, we obtain:

𝑉 (𝑥; ℎ) =
(︂ ∑︁

𝑝6𝑦

+
∑︁

𝑦<𝑝6𝑥

)︂ sin2(︀ 1
2 ℎ ln 𝑝

)︀
𝑝

=

=
∑︁
𝑝6𝑦

sin2(︀ 1
2 ℎ ln 𝑝

)︀
𝑝

+ 1
2

∑︁
𝑦<𝑝6𝑥

1 − cos (ℎ ln 𝑝)
𝑝

= 𝑉1 + 1
2(𝑉2 − 𝑉3).

The application of Lemma 2.1 yields:

𝑉1 6
(︁ℎ

2

)︁2 ∑︁
𝑝6𝑦

(ln 𝑝)2

𝑝
6

(︁ℎ

2

)︁2
(ln 𝑦)

∑︁
𝑝6𝑦

ln 𝑝

𝑝
<

(︁ℎ

2 ln 𝑦
)︁2

= 𝜆2

4 ,

𝑉2 =
(︂ ∑︁

𝑝6𝑥

−
∑︁
𝑝6𝑦

)︂
1
𝑝

= ln(ℎ ln 𝑥) − ln 𝜆 + 2𝜃
(︁ℎ

𝜆

)︁2
.

Now we divide the domain of 𝑝 in 𝑉3 into the intervals of the form 𝑎 < 𝑝 6 𝑏, where
𝑏 6 2𝑎, 𝑎 = 2𝑘𝑦, 𝑘 = 0, 1, 2, . . . . Thus we get: 𝑉3 = Re

∑︀
𝑦<𝑝6𝑥

𝑝𝑖ℎ

𝑝 = Re
∑︀

𝑎 𝑉3(𝑎),
𝑉3(𝑎) =

∑︀
𝑎<𝑝6𝑏

𝑝𝑖ℎ

𝑝 . Setting C(𝑢) =
∑︀

𝑎<𝑝6𝑢
1
𝑝 = ln ln 𝑢 − ln ln 𝑎 + 2𝜃 ln−2𝑎 and

applying the Abel’s summation formula, we have

𝑉3(𝑎) = C(𝑏)𝑏𝑖ℎ −
∫︁ 𝑏

𝑎

C(𝑢)𝑑𝑢𝑖ℎ =
∫︁ 𝑏

𝑎

𝑢𝑖ℎ𝑑𝑢

𝑢 ln 𝑢
+ 3𝜃1

ln2 𝑎
,

and therefore

𝑉3 = Re(𝑗) + 3𝜃2
∑︁
𝑘>0

1
(𝑘 ln 2 + ln 𝑦)2 , 𝑗 =

∫︁ 𝑥

𝑦

𝑢𝑖ℎ𝑑𝑢

𝑢 ln 𝑢
.

Integration by parts yields:

𝑗 = 1
𝑖ℎ

(︂
𝑥𝑖ℎ

ln 𝑥
− 𝑦𝑖ℎ

ln 𝑦
−

∫︁ 𝑥

𝑦

𝑢𝑖ℎ𝑑
1

ln 𝑢

)︂
, |𝑗| 6 2

ℎ ln 𝑦
= 2

𝜆
.

Finally, we obtain

|𝑉3| 6 2
𝜆

+ 9
ln 𝑦

= 2 + 9ℎ

𝜆
, 𝑉 (𝑥; ℎ) = 1

2 ln (ℎ ln 𝑥) + 𝑣(𝑥; ℎ),

where

|𝑣(𝑥; ℎ)| 6 𝜆2

4 + 1
𝜆

+ 1
2 ln 𝜆 + 9ℎ

𝜆
+ ℎ2

𝜆2 .

Setting 𝜆 = 1.5, we arrive at the assertion of the lemma. �

Lemma 2.8. The inequality 𝑁0(𝑡) > (0.4 + 7 · 10−3)𝑁(𝑡) holds for 𝑡 > 𝑡0 > 1.

For a proof, see [23].
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3. On the mean values of the quantities 𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

Suppose that 𝑚 > 1 is an integer. Let us consider the union of 𝑚 adja-
cent Gram’s intervals 𝐺𝑛+1, 𝐺𝑛+2, . . . , 𝐺𝑛+𝑚, that is the interval (𝑡𝑛, 𝑡𝑛+𝑚]. By
Riemann–von Mangoldt’s formula (1.1), the number of ordinates in (𝑡𝑛, 𝑡𝑛+𝑚] is
equal to

𝑁(𝑡𝑛+𝑚+0) − 𝑁(𝑡𝑛+0) = 1
𝜋

(︀
𝜗(𝑡𝑛+𝑚) − 𝜗(𝑡𝑛)

)︀
+ 𝑆(𝑡𝑛+𝑚+0) − 𝑆(𝑡𝑛+0)(3.1)

= 𝑚 + 𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0).
The number of 𝛾𝑛 that do not exceed a given bound equals asymptotically to the
number of Gram points in the same domain. Then it is natural to call the number
𝑚 as an ‘expected’ number of ordinates of zeros of 𝜁(𝑠) in the interval (𝑡𝑛, 𝑡𝑛+𝑚].
Hence, the difference
(3.2) 𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)
is a deviation of the ‘true’ number of ordinates from the ‘expected’ number.

The below Theorem 3.1 shows that this deviation often takes a very large
values (of order

√
ln 𝑚, for example). This fact was observed for the first time by

Fujii [15] for the case when the interval of summation is long (1 6 𝑛 6 𝑁) and
when 𝑚 grows with 𝑁 . He proved that the distribution function for the normalized
differences (3.2) tends to the Gaussian distribution as 𝑁 → +∞.

Theorem 3.1. Let 𝑘 and 𝑚 be integers that satisfy the conditions 𝑘 > 1,
𝑘𝜀−1 exp (𝜆𝑘2) 6 𝑚 6 𝑐 ln 𝑁 , where 𝜆 = (2𝐵𝑒𝜋2)2, 𝐵 is defined in Lemma 2.5,
and 𝑐 is a sufficiently small absolute constant. Then the following relation holds:∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚+0)−𝑆(𝑡𝑛+0)

)︀2𝑘 = (2𝑘)!
𝑘! 𝑀

(︁ 1
2𝜋2 ln 𝑚𝜀

𝑘

)︁𝑘
(︂

1+ 6𝜃
√

𝐵 4𝑘𝑘
√

𝑘√︀
ln (𝑚𝜀/𝑘)

)︂
.

Proof. Let 𝑥 = 𝑡0.1𝜀
𝑁 , 𝑦 = 𝑥1/(4𝑘), 𝑉 (𝑡) = 𝑉𝑦(𝑡). By Lemma 2.6, 𝑡𝑛+𝑚 − 𝑡𝑛 =

ℎ + 𝜀𝑛, where

ℎ = 𝜋𝑚

𝜗′(𝑡𝑁 ) , |𝜀𝑛| 6 3𝑀

𝑁(ln 𝑁)2 .

By Lagrange’s mean value theorem and the inequalities

|𝑉 ′(𝑡)| 6 1
𝜋

∑︁
𝑝<𝑦

ln 𝑝
√

𝑝
<

√
𝑦 = 𝑥1/(8𝑘) < 𝑁𝜀/80

we get

𝑉 (𝑡𝑛+𝑚) = 𝑉 (𝑡𝑛 +ℎ+𝜀𝑛) = 𝑉 (𝑡𝑛 +ℎ)+𝜀𝑛𝑉 ′(𝑡𝑛 +ℎ+𝜃𝜀𝑛) = 𝑉 (𝑡𝑛 +ℎ)+𝜃1𝑁−2/3.

Hence

𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛) = 2
𝜋

𝑊 (𝑡𝑛) + 𝜃2𝑁−2/3,

𝑊 (𝑡) = 1
2

∑︁
𝑝<𝑦

sin ((𝑡 + ℎ) ln 𝑝) − sin (𝑡 ln 𝑝)
√

𝑝
=

∑︁
𝑝<𝑦

sin
(︀ 1

2 ℎ ln 𝑝
)︀

√
𝑝

cos
(︀
(𝑡 + 1

2 ℎ) ln 𝑝
)︀
.
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Using the trivial bound |𝑊 (𝑡)| <
√

𝑦 and Lagrange’s mean value theorem, we
obtain (︀

𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)
)︀2𝑘

=
(︀ 2

𝜋

)︀2𝑘
𝑊 2𝑘(𝑡𝑛) + 𝜃𝑘22𝑘−1(︀

|𝑊 (𝑡𝑛)|2𝑘−1𝑁−2/3 + 𝑁−4𝑘/3)︀
=

(︀ 2
𝜋

)︀2𝑘
𝑊 2𝑘(𝑡𝑛) + 𝜃1𝑥𝑁−2/3.

Summing over 𝑛 and denoting the corresponding sum by 𝑊1, we have

𝑊1 =
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)

)︀2𝑘 =
(︀ 2

𝜋

)︀2𝑘
𝑊2 + 𝜃2𝑁−1/3,

where 𝑊2 =
∑︀

𝑁<𝑛6𝑁+𝑀 𝑊 2𝑘(𝑡𝑛). Next, we put 𝑊 (𝑡) = 1
2
(︀
𝑈(𝑡) + 𝑈(𝑡)

)︀
, where

𝑈(𝑡) =
∑︁
𝑝<𝑦

𝑎(𝑝)
√

𝑝
𝑝𝑖𝑡, 𝑎(𝑝) = 𝑝𝑖ℎ/2 sin

(︀ 1
2 ℎ ln 𝑝

)︀
.

Then

𝑊2 = 2−2𝑘
2𝑘∑︁

𝜈=0

(︂
2𝑘

𝜈

)︂
𝑤𝜈 ,

𝑤𝜈 =
∑︁

𝑁<𝑛6𝑁+𝑀

∑︁
𝑝1,...,𝑝𝜈 <𝑦
𝑞1,...,𝑞𝜇<𝑦

𝑎(𝑝1) . . . 𝑎(𝑝𝜈)𝑎(𝑞1) . . . 𝑎(𝑞𝜇)
√

𝑝1 . . . 𝑞𝜇

(︂
𝑝1 . . . 𝑝𝜈

𝑞1 . . . 𝑞𝜇

)︂𝑖𝑡𝑛

,

where 𝜇 = 2𝑘 − 𝜈. By setting 𝜅 = 1
4 , 𝑐 = (𝑘 ln 𝑦)(ln 𝑀)−1, 𝛿 = 1 in Lemma 2.2, we

obviously have 0 < 𝑐 < 1
4 = 1

2 − 𝜅, 𝑁 > 𝑒36 = exp (9𝜅−1), 𝑦 = 𝑥1/(4𝑘) > 𝑒4,

exp
(︀
3𝑘𝑐−1)︀

= exp
(︁3 ln 𝑀

ln 𝑦

)︁
6 exp

(︀ 3
4 ln 𝑀

)︀
< 𝑀.

Thus, the conditions of Lemma 2.2 are satisfied. Hence, for 𝜈 ̸= 𝑘 we have

|𝑤𝜈 | 6 (𝑦3/2)2𝑘 ln 𝑁 = 𝑥3/4 ln 𝑁 < 𝑥.

The contribution of the terms of 𝑤𝑘 that obey the condition 𝑝1 . . . 𝑝𝑘 ̸= 𝑞1 . . . 𝑞𝑘 is
estimated as above. Therefore,

𝑊2 = 2−2𝑘

(︂
2𝑘

𝑘

)︂
𝑀𝑤 + 𝜃2−2𝑘

2𝑘∑︁
𝜈=0

(︂
2𝑘

𝜈

)︂
𝑥 = 2−2𝑘

(︂
2𝑘

𝑘

)︂
𝑀𝑤 + 𝜃𝑥,

where

𝑤 =
∑︁

𝑝1...𝑝𝑘=𝑞1...𝑞𝑘

𝑎(𝑝1) . . . 𝑎(𝑞𝑘)
√

𝑝1 . . . 𝑞𝑘
.

By Lemma 2.3, 𝑤 = 𝑘!(𝜎𝑘
1 + 𝜃𝑘𝑘2𝜎𝑘−2

1 𝜎2), where

𝜎1 =
∑︁
𝑝<𝑦

1
𝑝

sin2 ( 1
2 ℎ ln 𝑝), 𝜎2 6

∑︁
𝑝

1
𝑝2 <

1
2
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and −1 6 𝜃𝑘 6 0. Since

ℎ ln 𝑦 = 2𝜋𝑚 ln 𝑦

ln 𝑡𝑁

(︀
1 + 𝑜(1)

)︀
= 𝜋𝑚𝜀

20𝑘

(︀
1 + 𝑜(1)

)︀
> 2,

ℎ 6
2𝜋𝑚

ln 𝑁

(︀
1 + 𝑜(1)

)︀
6 2𝜋𝑐

(︀
1 + 𝑜(1)

)︀
,

the conditions of Lemma 2.7 are satisfied for ℎ0 = 7𝑐 and for a sufficiently small 𝑐.
Hence,

𝜎1 = 1
2 ln (ℎ ln 𝑦) + 1.05𝜃 = 1

2 ln 𝜋𝑚𝜀

20𝑘

(︀
1 + 𝑜(1)

)︀
+ 1.05𝜃 = 1

2 ln 𝑚𝜀

𝑘
+ 2𝜃1.

Further, the inequality ln (𝑚𝜀/𝑘) > 100𝑘 implies the following bounds for 𝜎1, 𝑤,
𝑊2 and 𝑊1:

𝜎𝑘
1 6

(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘(︁
1 + 4

ln (𝑚𝜀/𝑘)

)︁𝑘

6
(︁1

2 ln 𝑚𝜀

𝑘

)︁𝑘(︁
1 + 1

25𝑘

)︁𝑘

< 1.1
(︁1

2 ln 𝑚𝜀

𝑘

)︁𝑘

,

𝑤 6 𝑘!𝜎𝑘
1 < 1.1𝑘!

(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

,

𝑊2 6 2−2𝑘 (2𝑘)!
𝑘! 𝑀 · 1.1

(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 𝑥,

𝑊1 6 𝜋−2𝑘 (2𝑘)!
𝑘! 𝑀 · 1.1

(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 𝑥 + 𝑁−1/3 < 2
(︁ 2𝑘

𝜋2𝑒

)︁𝑘(︁
ln 𝑚𝜀

𝑘

)︁𝑘

𝑀.

Moreover,

𝑤 = 𝑘!
(︂(︁1

2 ln 𝑚𝜀

𝑘
+ 2𝜃

)︁𝑘

+ 𝜃𝑘𝑘2
(︁1

2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−2
)︂

=

= 𝑘!
(︂(︁1

2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 2𝜃𝑘
(︁1

2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−1
+ 𝜃𝑘𝑘2

(︁1
2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−2
)︂

=

= 𝑘!
(︂(︁1

2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 4𝜃𝑘
(︁1

2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−1
)︂

,

𝑊1 =
(︁ 2

𝜋

)︁2𝑘
(︂

2−2𝑘

(︂
2𝑘

𝑘

)︂
𝑘!𝑀

(︂(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 4𝜃𝑘
(︁1

2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−1
)︂

+ 𝜃𝑥

)︂
+

+ 𝜃𝑁−1/3

= (2𝑘)!
𝑘!

𝑀

𝜋2𝑘

(︂(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 4.1𝜃𝑘
(︁1

2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−1
)︂

.

Denoting by 𝑊0 the initial sum of the theorem and noting that

𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0) = −
(︀
𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)

)︀
+

(︀
𝑅(𝑡𝑛+𝑚 + 0) − 𝑅(𝑡𝑛 + 0)

)︀
,

we get(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2𝑘 =
(︀
𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)

)︀2𝑘

+ 𝜃𝑘22𝑘−1(︀(︀
𝑅(𝑡𝑛+𝑚 + 0) − 𝑅(𝑡𝑛 + 0)

)︀2𝑘

+
⃒⃒
𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)

⃒⃒2𝑘−1 ⃒⃒
𝑅(𝑡𝑛+𝑚 + 0) − 𝑅(𝑡𝑛 + 0)

⃒⃒)︀
,
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𝑊0 =
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2𝑘 = 𝑊1 + 𝜃1𝑘22𝑘−1(𝑊3 + 𝑊4),

where
𝑊3 =

∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑅(𝑡𝑛+𝑚 + 0) − 𝑅(𝑡𝑛 + 0)

)︀2𝑘
,

𝑊4 =
∑︁

𝑁<𝑛6𝑁+𝑀

⃒⃒
𝑉 (𝑡𝑛+𝑚) − 𝑉 (𝑡𝑛)

⃒⃒2𝑘−1 ⃒⃒
𝑅(𝑡𝑛+𝑚 + 0) − 𝑅(𝑡𝑛 + 0)

⃒⃒
.

By Lemma 2.4,

𝑊3 6 22𝑘−1
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑅2𝑘(𝑡𝑛+𝑚 + 0) + 𝑅2𝑘(𝑡𝑛 + 0)

)︀
6 22𝑘

∑︁
𝑁<𝑛6𝑁+2𝑀

𝑅2𝑘(𝑡𝑛 + 0)

6 22𝑘 · 2𝑀(
√

𝐵𝑘)2𝑘 = 2𝑀(2
√

𝐵𝑘)2𝑘.

Further, combining the above bounds for 𝑊1 and 𝑊3 with Hölder’s inequality, we
have

𝑊4 6𝑊
1−1/(2𝑘)
1 𝑊

1/(2𝑘)
3 6 21/(2𝑘) 2

√
𝐵𝑘 · 21−1/(2𝑘)

(︁ 2𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
𝑀

= 4
√

𝐵𝑘
(︁ 2𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
𝑀.

Therefore,

𝑘22𝑘−1(︀
𝑊3 + 𝑊4

)︀
6 𝑘22𝑘−1 · 4𝑀𝑘

√
𝐵

(︁ 2𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
𝑀

×
(︂

1 +
(︁ 𝑘

√
𝜆

ln (𝑚𝜀/𝑘)

)︁𝑘−1/2
)︂

< 4.1𝑀𝑘2
√

𝐵
(︁ 8𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
.

Finally, we get

𝑊0 = (2𝑘)!
𝑘!

𝑀

𝜋2𝑘

(︂(︁1
2 ln 𝑚𝜀

𝑘

)︁𝑘

+ 4.1𝑘𝜃1

(︁1
2 ln 𝑚𝜀

𝑘
+ 2

)︁𝑘−1
)︂

+ 4.1𝜃2
√

𝐵𝑘2
(︁ 8𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
𝑀 = (2𝑘)!

𝑘! 𝑀
(︁ 1

2𝜋2 ln 𝑚𝜀

𝑘

)︁𝑘(︀
1 + 𝜃(𝛿1 + 𝛿2)

)︀
,

where

𝛿1 = 4.1𝑘
(︁

1 + 4
ln (𝑚𝜀/𝑘)

)︁𝑘−1 2
ln (𝑚𝜀/𝑘) <

8.6𝑘

ln (𝑚𝜀/𝑘) ,

𝛿2 = 𝜋2𝑘𝑘!
(2𝑘)!

4.1
√

𝐵𝑘2(︀ 1
2 ln (𝑚𝜀/𝑘)

)︀𝑘

(︁ 8𝑘

𝜋2𝑒
ln 𝑚𝜀

𝑘

)︁𝑘−1/2
6 5.8

√
𝐵

4𝑘𝑘
√

𝑘√︀
ln (𝑚𝜀/𝑘)

.

It remains to note that

𝛿1 + 𝛿2 < 6
√

𝐵
4𝑘𝑘

√
𝑘√︀

ln (𝑚𝜀/𝑘)
.

Thus the theorem is proved. �
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Corollary 3.1. Suppose that 𝑘 and 𝑚 are integers such that

1 6 𝑘 6 0.1 ln ln ln 𝑁, 𝑘𝜀−1 exp (κ) < 𝑚 6 𝑐 ln 𝑁,

where 𝑐 is a sufficiently small absolute constant, and κ is a maximum of the numbers
(2𝐵𝑒𝜋2𝑘)2 and 122𝐵 42𝑘𝑘3. Then the following inequality holds:∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2𝑘
>

𝑀

2
(2𝑘)!

𝑘!

(︂
1

2𝜋2 ln 𝑚𝜀

𝑘

)︂𝑘

.

In particular, if 𝜀−1 exp
(︀
(2𝐵𝑒𝜋2)2)︀

< 𝑚 6 𝑐 ln 𝑁 , then∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2
>

𝑀

2𝜋2 ln (𝑚𝜀),

and if 𝑚 = [𝜇] + 1, 𝜇 = 𝜀−1 exp (𝑒76𝜀−6), then∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2
> 1.01𝑒73𝜀−6𝑀.

Theorem 3.2. Let 𝑘 be an integer such that 1 6 𝑘 6 1
192 ln 𝑥. Then the

following inequality holds:∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀2𝑘
6 2𝑀𝑘(4𝑘

√
𝐵)2𝑘.

Proof. Using the same arguments as above, in the case 𝑚 = 1 we obtain

𝑊1 =
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑉 (𝑡𝑛) − 𝑉 (𝑡𝑛−1)

)︀2𝑘
6 𝜋−2𝑘 (2𝑘)!

𝑘! 𝑀𝜎𝑘
1 + 𝑥,

where 𝜎1 =
∑︀

𝑝<𝑦
1
𝑝 sin2 (︀ 1

2 ℎ ln 𝑝
)︀
, ℎ = 𝜋

𝜗′(𝑡𝑁 ) . Using the relation

ℎ

2 ln 𝑦 = 𝜋

ln 𝑡𝑁 + 𝑂(1)
ln 𝑥

4𝑘
<

ln 𝑥

𝑘 ln 𝑡𝑁
<

𝜀

10𝑘
,

and applying Lemma 2.1, we get

𝜎1 6
ℎ2

4
∑︁
𝑝<𝑦

ln2 𝑝

𝑝
<

(︁ℎ

2 ln 𝑦
)︁2

<
(︁ 𝜀

10𝑘

)︁2
,

𝑊1 <
(2𝑘)!

𝑘! 𝑀
(︁ 𝜀

10𝜋𝑘

)︁2𝑘

+ 𝑥 <
3
2

(︁ 𝜀2

25𝜋2𝑒𝑘

)︁𝑘

𝑀 + 𝑥 < 𝜀2𝑘𝑀.

The application of Hölder’s inequality to the initial sum 𝑊0 of the theorem yields:

𝑊0 =
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀2𝑘

6𝑊1 + 𝑘22𝑘−1(︀
𝑊3 + 𝑊

1−1/(2𝑘)
1 𝑊

1/(2𝑘)
3

)︀
,

where the sum 𝑊3 =
∑︀

𝑁<𝑛6𝑁+𝑀

(︀
𝑅(𝑡𝑛 + 0) − 𝑅(𝑡𝑛−1 + 0)

)︀2𝑘 was estimated in
the proof of Theorem 3.1. Using the above bounds of 𝑊1 and 𝑊3, we obtain:
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𝑘22𝑘−1(︀
𝑊3 + 𝑊

1−1/(2𝑘)
1 𝑊

1/(2𝑘)
3

)︀
6 1.5𝑀𝑘(4𝑘

√
𝐵)2𝑘,

𝑊0 6 𝜀2𝑘𝑀 + 1.5𝑀𝑘(4𝑘
√

𝐵)2𝑘 < 2𝑀𝑘(4𝑘
√

𝐵)2𝑘.

The theorem is proved. �

The above theorems imply the lower bound for the ‘first moment’ of the differ-
ences 𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0).

Theorem 3.3. There exists a positive constant 𝑐1 = 𝑐1(𝜀) such that∑︁
𝑁<𝑛6𝑁+𝑀

⃒⃒
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

⃒⃒
> 𝑐1𝑀.

Proof. Let us put for brevity 𝑟(𝑛) = 𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0) and denote
by 𝑉𝑘 the sum of 𝑘th powers of |𝑟(𝑛)|. Further, let 𝑚 = [𝜇] + 1, where 𝜇 =
𝜀−1 exp

(︀
𝑒76𝜀−6)︀

. Combining the identity

𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0) = 𝑟(𝑛 + 1) + 𝑟(𝑛 + 2) + · · · + 𝑟(𝑛 + 𝑚)

with Cauchy’s inequality, we get
(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2
6 𝑚

∑︀𝑚
𝜈=1 𝑟2(𝑛 + 𝜈).

Summing both parts of the above relation over 𝑛, we have∑︁
𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 + 0) − 𝑆(𝑡𝑛 + 0)

)︀2
6 𝑚

𝑚∑︁
𝜈=1

∑︁
𝑁<𝑛6𝑁+𝑀

𝑟2(𝑛 + 𝜈)

6 𝑚

𝑚∑︁
𝜈=1

∑︁
𝑁<𝑛6𝑁+𝑀+𝑚

𝑟2(𝑛) = 𝑚2
∑︁

𝑁<𝑛6𝑁+𝑀+𝑚

𝑟2(𝑛).

Hence, by the Corollary of Theorem 3.1, we get:∑︁
𝑁<𝑛6𝑁+𝑀+𝑚

𝑟2(𝑛) > 𝑚−2
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛+𝑚 +0)−𝑆(𝑡𝑛 +0)

)︀2
> 1.01𝑒73𝜀−6𝑚−2 𝑀.

Since |𝑟(𝑛)| 6 |𝑆(𝑡𝑛)| + |𝑆(𝑡𝑛−1)| 6 18 ln 𝑁 for 𝑁 < 𝑛 6 𝑁 + 𝑀 + 𝑚 (see [24]), we
have:

𝑉2 =
∑︁

𝑁<𝑛6𝑁+𝑀

𝑟2(𝑛) > 1.01𝑒73𝜀−6𝑚−2 𝑀 − 𝑚(18 ln 𝑁)2 > 𝑐2𝑀,

where 𝑐2 = 𝑒73𝜀−6𝑚−2 𝑀 . Further, an application of Hölder’s inequality to the
sum 𝑉2 yields

𝑉2 =
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)|2/3|𝑟(𝑛)|4/3

6

(︂ ∑︁
𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)|
)︂2/3(︂ ∑︁

𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)|4
)︂1/3

= 𝑉
2/3

1 𝑉
1/3

4 .
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Therefore, 𝑉1 > 𝑉
3/2

2 𝑉
−1/2

4 . Using both the above bound for 𝑉2 and the inequality
of Theorem 3.2 with 𝑘 = 2, we obtain:

𝑉4 6 214𝐵2𝑀 = 𝑐4𝑀, 𝑉1 =
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)| > (𝑐2𝑀)3/2

(𝑐4𝑀)1/2 = 𝑐1𝑀, 𝑐1 = 𝑐
3/2
2 𝑐

−1/2
4 .

The theorem is proved. �

The following assertion is an analogue (for the short interval of summation) of
corollary of Selberg’s theorem cited in Section 1.

Theorem 3.4. There exist positive constants 𝐾1 and 𝐾2 such that for 𝑁 <
𝑛 6 𝑁 +𝑀 , there are more than 𝐾1𝑀 cases when the interval 𝐺𝑛 does not contain
any ordinate of a zero of 𝜁(𝑠), and more than 𝐾2𝑀 cases when the interval 𝐺𝑛

contains at least two ordinates, i.e.,

𝜈0(𝑁 + 𝑀) − 𝜈0(𝑁) > 𝐾1𝑀,
∑︁
𝑘>2

(︀
𝜈𝑘(𝑁 + 𝑀) − 𝜈𝑘(𝑁)

)︀
> 𝐾2𝑀.

Proof. Since 𝑟(𝑛) = 𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0) is an integer and 𝑟(𝑛) > −1 for
any 𝑛, then the equality (3.1) implies that the interval 𝐺𝑛 does not contain any
ordinate iff 𝑟(𝑛) = −1 and contains more than one ordinate iff 𝑟(𝑛) > 1. In other
words, the number 𝑀1 of ‘empty’ Gram’s intervals is equal to the number of 𝑛 such
that 𝑟(𝑛) is negative, and the number 𝑀2 of Gram’s intervals that contain two or
more ordinates is equal to the number of positive 𝑟(𝑛).

Using the relation

1
2

(︀
|𝑟(𝑛)| − 𝑟(𝑛)

)︀
=

{︃
1, if 𝑟(𝑛) < 0,

0, if 𝑟(𝑛) > 0,

together with the estimate of Theorem 3.3 we get

𝑀1 =
∑︁

𝑁<𝑛6𝑁+𝑀

1
2

(︀
|𝑟(𝑛)| − 𝑟(𝑛)

)︀
= 1

2
∑︁

𝑁<𝑛6𝑁+𝑀

⃒⃒
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

⃒⃒
− 1

2
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀
>

𝑐1

2 𝑀 − 9 ln 𝑁 > 𝐾1𝑀,

where 𝐾1 = 2
5 𝑐1. Further, 𝑀2 is equal to the number of nonzero terms of the sum

𝑊 =
∑︁

𝑁<𝑛6𝑁+𝑀

1
2

(︀
|𝑟(𝑛)| + 𝑟(𝑛)

)︀
.

The application of Theorem 3.2 and Cauchy’s inequality yields:

𝑊 6
√︀

𝑀2

√︃ ∑︁
𝑁<𝑛6𝑁+𝑀

𝑟2(𝑛) 6
√︀

𝑀2
√

32𝐵𝑀.

Since 𝑊 > 𝐾1𝑀 , then 𝑀2 > 𝐾2𝑀 , where 𝐾2 = 𝐾2
1

32𝐵 . The theorem is proved. �
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Remark 3.1. The constants 𝐾1, 𝐾2 are too small. It is easy to see that they
do not exceed exp

(︀
−𝑒75𝜀−6)︀

. At the same time, the calculations of zeros of 𝜁(𝑠)
show that likely 𝐾1 > 0.1, 𝐾2 > 0.1. Thus, it is of some interest to prove the
analogue of Theorem 3.4 with 𝐾1, 𝐾2 ∼= 0.001 − 0.01.

4. The alternating sums connected with the function 𝑆(𝑡).

Here we study the sums of the following type:

𝑇𝑘 =
∑︁

𝑁<𝑛6𝑁+𝑀

𝑆𝑘(𝑡𝑛 + 0)
(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀
.

Theorem 3.4 implies that the difference 𝑟(𝑛) = 𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0) is negative
for a positive proportion of 𝑛, 𝑁 < 𝑛 6 𝑁 + 𝑀 . At the same time, this difference
is positive for a positive proportion of 𝑛. Hence, the sums 𝑇𝑘 are alternating (at
least, for even 𝑘).

The direct application of Cauchy’s inequality does not allow us to take into
account the oscillation in the sum 𝑇𝑘, and therefore does not allow us to obtain a
nontrivial bound for 𝑇𝑘. Namely, the inequalities

|𝑇2𝑘| 6
(︂ ∑︁

𝑁<𝑛6𝑁+𝑀

𝑆4𝑘(𝑡𝑛 + 0)
)︂1/2(︂ ∑︁

𝑁<𝑛6𝑁+𝑀

𝑟2(𝑛)
)︂1/2

≪𝑘

√
𝑀𝐿2𝑘

√
𝑀 ≪𝑘 𝑀𝐿𝑘,

give only the trivial bound. Hence, we need to use some additional tools.

Theorem 4.1. Suppose that 𝑘 is an integer such that 1 6 𝑘 6
√

𝐿. Then the
following inequalities hold:

|𝑇2𝑘−1| < 0.02(𝐴𝑘)𝑘+1𝑀𝐿𝑘−1, |𝑇2𝑘| < 0.02(10𝐴)𝑘+1 (2𝑘)!
𝑘!

𝑀𝐿𝑘−1/2

(2𝜋)2𝑘
.

Proof. We begin with the sum 𝑇2𝑘−1. Setting 𝑎 = 𝑆(𝑡𝑛 + 0), 𝑏 = 𝑟(𝑛) =
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0) in the easy-to-check identity

(𝑎 − 𝑏)2𝑘 = 𝑎2𝑘 − 2𝑘𝑎2𝑘−1𝑏 + 𝜃𝑘222𝑘−2(︀
𝑎2𝑘−2𝑏2 + 𝑏2𝑘

)︀
,

after some obvious transformations we get:

2𝑘 𝑆2𝑘−1(𝑡𝑛 + 0)𝑟(𝑛) = 𝑆2𝑘(𝑡𝑛 + 0) − 𝑆2𝑘(𝑡𝑛−1 + 0)
+ 𝜃𝑘222𝑘−2(︀

𝑟2𝑘(𝑛) + 𝑆2𝑘−2(𝑡𝑛 + 0)𝑟2(𝑛)
)︀
.

Summing over 𝑛, we obtain

2𝑘 𝑇2𝑘−1 = 𝑆2𝑘(𝑡𝑁+𝑀 ) − 𝑆2𝑘(𝑡𝑁 ) + 𝜃 𝑘222𝑘−2(︀
𝑊1 + 𝑊2

)︀
,

where 𝑊1 =
∑︀

𝑁<𝑛6𝑁+𝑀 𝑟2𝑘(𝑛), 𝑊2 =
∑︀

𝑁<𝑛6𝑁+𝑀 𝑆2𝑘−2(𝑡𝑛+0)𝑟2(𝑛). By Theo-
rem 3.2 one gets 𝑊1 6 2𝑀𝑘(4𝑘

√
𝐵)2𝑘. Using Hölder’s inequality and the estimates

of Lemma 2.5, we have:

𝑊2 6

(︂ ∑︁
𝑁<𝑛6𝑁+𝑀

𝑆2𝑘(𝑡𝑛 + 0)
)︂1−1/𝑘

𝑊
1/𝑘
1 6 2 3

√
3(4𝑘

√
𝐵)2

(︂
𝑘𝐴𝐿

𝜋2𝑒

)︂𝑘−1
𝑀.
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Hence

𝑘22𝑘−2(𝑊1 + 𝑊2) 6 𝑘22𝑘−2 2 3
√

3
(︀
4𝑘

√
𝐵

)︀2
(︁𝑘𝐴𝐿

𝜋2𝑒

)︁𝑘−1
𝑀

(︂
1 + 𝑘

3
√

3

(︁𝑘𝐴

4𝐿

)︁𝑘−1
)︂

< 2 · 42 3
√

3𝑒−8𝑘3𝐴2
(︁4𝑘𝐴𝐿

𝜋2𝑒

)︁𝑘−1
<

1
30𝑘3𝐴2(0.15𝑘𝐴𝐿)𝑘−1𝑀

6
1
30(𝐴𝑘)𝑘+1𝑀𝐿𝑘−1,

and therefore |𝑇2𝑘−1| 6 1
60 (𝐴𝑘)𝑘+1𝑀𝐿𝑘−1 + 1

𝑘 (9 ln 𝑁)2𝑘 < 1
50 (𝐴𝑘)𝑘+1𝑀𝐿𝑘−1.

Now we consider the sum 𝑇2𝑘. Setting 𝑎 = 𝑆(𝑡𝑛 + 0), 𝑏 = 𝑟(𝑛) in the identity

(𝑎 − 𝑏)2𝑘+1 = 𝑎2𝑘+1 − (2𝑘 + 1)𝑎2𝑘𝑏 + 𝜃𝑘(2𝑘 + 1)22𝑘−2(︀
|𝑏|2𝑘+1 + |𝑎|2𝑘−1𝑏2)︀

,

after some transformations we get:

(2𝑘 + 1)𝑇2𝑘+1 = 𝑆2𝑘+1(𝑡𝑁+𝑀 + 0) − 𝑆2𝑘+1(𝑡𝑁 + 0) + 𝜃𝑘(2𝑘 + 1)22𝑘−2(︀
𝑊1 + 𝑊2

)︀
,

where 𝑊1 =
∑︀

𝑁<𝑛6𝑁+𝑀 |𝑟(𝑛)|2𝑘+1, 𝑊2 =
∑︀

𝑁<𝑛6𝑁+𝑀 |𝑆(𝑡𝑛 + 0)|2𝑘−1𝑟2(𝑛). We
have

𝑊1 =
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)|2𝑘−1𝑟2(𝑛)

6

(︂ ∑︁
𝑁<𝑛6𝑁+𝑀

𝑟2𝑘(𝑛)
)︂1−1/(2𝑘)(︂ ∑︁

𝑁<𝑛6𝑁+𝑀

𝑟4𝑘(𝑛)
)︂1/(2𝑘)

6
(︀
2𝑘

(︀
4𝑘

√
𝐵

)︀2𝑘)︀1−1/(2𝑘)(︀4𝑘
(︀
8𝑘

√
𝐵

)︀4𝑘)︀1/(2𝑘)
𝑀 < 8

√
2𝑘𝑀

(︀
4𝑘

√
𝐵

)︀2𝑘+1

= (2𝑘)!
𝑘!

𝑀

(2𝜋)2𝑘
(𝐴𝐿)𝑘−1/2𝛿1,

where

𝛿1 = (2𝜋)2𝑘𝑘!
(2𝑘)!

8
√

2𝑘(4𝑘
√

𝐵)2𝑘+1

(𝐴𝐿)𝑘−1/2 6 𝑘2𝐴
√

𝐴𝐿

(︂
(4𝜋)2𝐴𝑘

𝑒7𝐿

)︂𝑘

< 1.

Next, the application of Lemmas 2.4 and 2.5 yields:

𝑊2 6

(︂ ∑︁
𝑁<𝑛6𝑁+𝑀

𝑆2𝑘(𝑡𝑛 + 0)
)︂1−1/(2𝑘)(︂ ∑︁

𝑁<𝑛6𝑁+𝑀

𝑟4𝑘(𝑛)
)︂1/(2𝑘)

6

(︂
1.1
𝐴

(2𝑘)!
(2𝜋)2𝑘𝑘! (𝐴𝐿)𝑘

)︂1−1/(2𝑘)
(4𝑘)1/(2𝑘)(︀8𝑘

√
𝐵

)︀2
6

(2𝑘)!
𝑘!

𝑀

(2𝜋)2𝑘
(𝐴𝐿)𝑘−1/2𝛿2,

where

𝛿2 = 2𝜋

(︂
𝑘!

(2𝑘)!

)︂1/(2𝑘)√︂1.1
𝐴

(4𝑘)1/(2𝑘)(︀8𝑘
√

𝐵
)︀2

< 0.01(𝑘𝐴)3/2.
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Let us note that

𝑘22𝑘−2(︀
𝑊1 + 𝑊2

)︀
6 𝑘 22𝑘−2 (2𝑘)!

𝑘!
𝑀

(2𝜋)2𝑘
(𝐴𝐿)𝑘−1/2(𝛿1 + 𝛿2)

<
(2𝑘)!

𝑘!
𝑀𝐿𝑘−1/2

(2𝜋)2𝑘
· 0.01(10𝐴)𝑘+1.

Therefore,

(2𝑘 + 1)|𝑇2𝑘| 6 (2𝑘 + 1) · 0.01(10𝐴)𝑘+1 (2𝑘)!
𝑘!

𝑀𝐿𝑘−1/2

(2𝜋)2𝑘
+ 2(9 ln 𝑁)2𝑘+1,

|𝑇2𝑘| < 0.02(10𝐴)𝑘+1 (2𝑘)!
𝑘!

𝑀𝐿𝑘−1/2

(2𝜋)2𝑘
.

The theorem is proved. �

Lemma 4.1. Let 𝑘 and 𝑛 be arbitrary natural numbers and suppose that the
interval 𝐺𝑛 = (𝑡𝑛−1, 𝑡𝑛] contains (𝑟 + 1) ordinates of zeros of 𝜁(𝑠), 𝑟 = 𝑟(𝑛) > −1.
Then the following relations hold:∑︁

𝑡𝑛−1<𝛾𝑚6𝑡𝑛

Δ2𝑘
𝑚 = (𝑟 + 1)Δ2𝑘(𝑛) + 𝜃1𝑘22𝑘

(︀
|Δ(𝑛)|2𝑘−1𝑟2 + |𝑟|2𝑘+1)︀

,(4.1)

∑︁
𝑡𝑛−1<𝛾𝑚6𝑡𝑛

Δ2𝑘−1
𝑚 = −(𝑟 + 1)Δ2𝑘−1(𝑛) + 𝜃2𝑘22𝑘

(︀
Δ2𝑘−2(𝑛)𝑟2 + 𝑟2𝑘

)︀
.(4.2)

Proof. First we consider the case 𝑟 = −1. Then 𝐺𝑛 does not contain any
ordinate, and the sums in the left-hand sides of (4.1),(4.2) are empty. Thus the
assertion of lemma is true for 𝜃1 = 𝜃2 = 0.

Now let us consider the case 𝑟 > 0. Suppose that the inequalities
𝛾𝑠−1 6 𝑡𝑛−1 < 𝛾𝑠 6 𝛾𝑠+1 6 . . . 6 𝛾𝑠+𝑟 6 𝑡𝑛 < 𝛾𝑠+𝑟+1

hold for some 𝑠 > 1. Then Δ(𝑛) = 𝑆(𝑡𝑛 +0) = 𝑁(𝑡𝑛 +0)−𝜋−1𝜗(𝑡𝑛)−1 = 𝑠+𝑟−𝑛,
and hence

Δ𝑠 = 𝑛 − 𝑠 = 𝑟 − Δ(𝑛),
Δ𝑠+1 = 𝑛 − 𝑠 − 1 = 𝑟 − 1 − Δ(𝑛),

. . .

Δ𝑠+𝑟 = 𝑛 − 𝑠 − 𝑟 = −Δ(𝑛).
Therefore, ∑︁

𝑡𝑛−1<𝛾𝑚6𝑡𝑛

Δ2𝑘
𝑚 =

𝑠+𝑟∑︁
𝑚=𝑠

Δ2𝑘
𝑚 =

𝑟∑︁
𝑗=0

(︀
𝑗 − Δ(𝑛)

)︀2𝑘

=
𝑟∑︁

𝑗=0

(︀
Δ2𝑘(𝑛) + 𝜃 2𝑘𝑗 22𝑘−2(|Δ(𝑛)|2𝑘−1 + 𝑗2𝑘−1)

)︀
= (𝑟 + 1)Δ2𝑘(𝑛) + 𝜃1𝑘22𝑘

(︀
|Δ(𝑛)|2𝑘−1𝑟2 + 𝑟2𝑘+1)︀

.

The proof of (4.2) follows the same arguments. The lemma is proved. �
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The below theorem reduces the evaluation of the sums (1.8), (1.9) to the cal-
culation of the sums of the quantities Δ𝑘(𝑛) = 𝑆𝑘(𝑡𝑛 + 0) (see Lemma 2.5).

Theorem 4.2. Let 𝑘 be an integer such that 1 6 𝑘 6
√

𝐿. Then the following
relations hold: ∑︁

𝑁<𝑛6𝑁+𝑀

Δ2𝑘
𝑛 = (2𝑘)!

𝑘!
𝑀𝐿𝑘

(2𝜋)2𝑘

(︀
1 + 𝜃(10𝐴)𝑘+1𝐿−0.5)︀

,⃒⃒⃒⃒ ∑︁
𝑁<𝑛6𝑁+𝑀

Δ2𝑘−1
𝑛

⃒⃒⃒⃒
6 𝑒9(𝐵𝑘)𝑘𝑀𝐿𝑘−1.

Proof. We define the numbers 𝜇 and 𝜈 by the inequalities 𝛾𝜇 6 𝑡𝑁 < 𝛾𝜇+1,
𝛾𝜈 6 𝑡𝑁+𝑀 < 𝛾𝜈+1. Using the definition of Δ(𝑛), we obtain:

𝜇 = 𝑁(𝑡𝑁 + 0) = 𝜋−1𝜗(𝑡𝑁 ) + 1 + 𝑆(𝑡𝑁 + 0) = 𝑁 + Δ(𝑁),
|𝜇 − 𝑁 | = |Δ(𝑁)| < 9 ln 𝑁,

and, similarly, |𝜈 − (𝑁 + 𝑀)| = |Δ(𝑁 + 𝑀)| < 9 ln 𝑁 . These inequalities and the
bound |Δ𝑚| < 9 ln 𝑁 (see Lemma 2.7 and a posterior remark in [18]) imply that
the difference between the sums

∑︀
𝑁<𝑚6𝑁+𝑀 Δ2𝑘

𝑚 and 𝑉 =
∑︀

𝜇<𝑚6𝜈 Δ2𝑘
𝑚 does not

exceed in modulus (18 ln 𝑁 + 1)(9 ln 𝑁)2𝑘 < 3(9 ln 𝑁)2𝑘+1.
On the other hand, Lemma 4.1 implies that

𝑉 =
∑︁

𝑁<𝑛6𝑁+𝑀

∑︁
𝑡𝑛−1<𝛾𝑚6𝑡𝑛

Δ2𝑘
𝑚

=
∑︁

𝑁<𝑛6𝑁+𝑀

(︀
(𝑟(𝑛) + 1)Δ2𝑘(𝑛) + 𝜃𝑘 22𝑘(|Δ(𝑛)|2𝑘−1𝑟2(𝑛) + |𝑟(𝑛)|2𝑘+1)

)︀
=

∑︁
𝑁<𝑛6𝑁+𝑀

Δ2𝑘(𝑛) + 𝑇2𝑘 + 𝜃1𝑘 22𝑘
(︀
𝑊1 + 𝑊2

)︀
,

where 𝑟(𝑛) = 𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0) and

𝑊1 =
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑟(𝑛)|2𝑘+1 =
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)|2𝑘+1,

𝑊2 =
∑︁

𝑁<𝑛6𝑁+𝑀

|Δ(𝑛)|2𝑘−1𝑟2(𝑛)

=
∑︁

𝑁<𝑛6𝑁+𝑀

|𝑆(𝑡𝑛 + 0)|2𝑘−1(︀
𝑆(𝑡𝑛 + 0) − 𝑆(𝑡𝑛−1 + 0)

)︀2
.

Proving Theorem 4.1, we found that

|𝑇2𝑘| 6 0.02(10𝐴)𝑘+1 (2𝑘)!
𝑘!

𝑀𝐿𝑘−0.5

(2𝜋)2𝑘
,

𝑘 22𝑘
(︀
𝑊1 + 𝑊2

)︀
< 0.08(10𝐴)𝑘+1 (2𝑘)!

𝑘!
𝑀𝐿𝑘−0.5

(2𝜋)2𝑘
.
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Using both these inequalities and the assertion of Lemma 2.5, we get:∑︁
𝑁<𝑚6𝑁+𝑀

Δ2𝑘
𝑚 =

∑︁
𝑁<𝑛6𝑁+𝑀

Δ2𝑘(𝑛) + 0.1𝜃1(10𝐴)𝑘+1 (2𝑘)!
𝑘!

𝑀𝐿𝑘−0.5

(2𝜋)2𝑘

+ 3𝜃2(9 ln 𝑁)2𝑘+1 = (2𝑘)!
𝑘!

𝑀𝐿𝑘

(2𝜋)2𝑘

(︀
1 + 𝜃3𝐴𝑘𝐿−0.5 + 0.2𝜃4(10𝐴)𝑘+1𝐿−0.5)︀

= (2𝑘)!
𝑘!

𝑀𝐿𝑘

(2𝜋)2𝑘

(︀
1 + 𝜃(10𝐴)𝑘+1𝐿−0.5)︀

.

Applying the same arguments, we obtain

𝑉 =
∑︁

𝜇<𝑚6𝜈

Δ2𝑘−1
𝑚 = −

∑︁
𝑁<𝑛6𝑁+𝑀

Δ2𝑘−1(𝑛) − 𝑇2𝑘−1 + 𝜃𝑘 22𝑘
(︀
𝑉1 + 𝑉2

)︀
,

where 𝑉1 =
∑︀

𝑁<𝑛6𝑁+𝑀 𝑟2𝑘(𝑛),
∑︀

𝑁<𝑛6𝑁+𝑀 Δ2𝑘−2(𝑛)𝑟2(𝑛). Proving Theorem
4.1, we also found that

𝑘 22𝑘
(︀
𝑉1 + 𝑉2

)︀
6 0.14(𝐴𝑘)𝑘+1𝑀𝐿𝑘−1, |𝑇2𝑘−1| < 0.02(𝐴𝑘)𝑘+1𝑀𝐿𝑘−1.

By these estimates and by the inequalities of Lemma 2.5 we have:⃒⃒⃒⃒ ∑︁
𝑁<𝑚6𝑁+𝑀

Δ2𝑘−1
𝑚

⃒⃒⃒⃒
6

⃒⃒⃒⃒ ∑︁
𝑁<𝑛6𝑁+𝑀

Δ2𝑘−1(𝑛)
⃒⃒⃒⃒
+ |𝑇2𝑘−1| + 𝑘 22𝑘

(︀
𝑉1 + 𝑉2

)︀
+ 3(9 ln 𝑁)2𝑘 6

3.5√
𝐵

(𝐵𝑘)𝑘𝑀𝐿𝑘−1 + 0.16(𝐴𝑘)𝑘+1𝑀𝐿𝑘−1

= (𝐵𝑘)𝑘𝑀𝐿𝑘−1
(︂

3.5√
𝐵

+ 0.16𝐴𝑘
(︁𝑒8

𝐴

)︁𝑘
)︂

< 𝑒9(𝐵𝑘)𝑘𝑀𝐿𝑘−1.

The theorem is proved. �

The approximate expression for the distribution function of a discrete random
quantity with the values 𝛿𝑛 = 𝜋Δ𝑛

√︀
2/𝐿, 𝑁 < 𝑛 6 𝑁 + 𝑀 , and the proof of the

assertion that Δ𝑛 ̸= 0 for ‘almost all’ 𝑛 follow now from Theorem 4.2 by standard
tools (see, for example, [17, Theorem 4]).

5. On some equivalents of ‘almost Riemann hypothesis’

The last section is devoted to some new equivalents of the ‘almost Riemann
hypothesis’. This hypothesis asserts that ‘almost all’ complex zeros of 𝜁(𝑠) lie on
the critical line, that is

lim
𝑇 →+∞

𝑁0(𝑇 )
𝑁(𝑇 ) = 1.

Moreover, the below arguments imply that Selberg interpreted Gram’s law in [8]
in a way different from those of Titchmarsh. Namely, the below assertions show
that Selberg considered all the complex zeros of 𝜁(𝑠) (but not only the zeros on the
critical line) in handling with the quantities Δ𝑛. Thus, Selberg’s definition of Δ𝑛

is equivalent to our Definition 1.4.
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Suppose that 0 < 𝑐1 < 𝑐2 < . . . 6 𝑐𝑛 6 𝑐𝑛+1 6 . . . are the ordinates of zeros of
𝜁(𝑠), lying on the critical line and counting with theirs multiplicities. For a fixed
𝑛 > 1, we define the number 𝑚 = 𝑚(𝑛) by the inequalities

(5.1) 𝑡𝑚−1 < 𝑐𝑛 6 𝑡𝑚

and set 𝐷𝑛 = 𝑚 − 𝑛. Of course, if the Riemann hypothesis is true then 𝑐𝑛 = 𝛾𝑛

and 𝐷𝑛 = Δ𝑛 for any 𝑛.

Theorem 5.1. The validity of the relation

(5.2)
∑︁
𝑛6𝑁

|𝐷𝑛| = 𝑜(𝑁2)

as 𝑁 → +∞, is the necessary and sufficient condition for the truth of the ‘almost
Riemann hypothesis’.

Proof. Suppose that the ‘almost Riemann hypothesis’ is true. Then

𝑁(𝑐𝑛 + 0) = (1 + 𝑜(1))𝑁0(𝑐𝑛 + 0) = (1 + 𝑜(1))(𝑛 + 𝑂(ln 𝑛)) = 𝑛 + 𝑜(𝑛)

(the term 𝑂(ln 𝑛) takes into account the multiplicity of the zero with the ordinate
𝑐𝑛; by Lemma 2.8, this multiplicity is 𝑂(ln 𝑐𝑛) = 𝑂(ln 𝑛)). On the other hand,
by (5.1) we have 𝑚 − 1 + 𝑆(𝑡𝑚−1 + 0) < 𝑁(𝑐𝑛 + 0) 6 𝑚 + 𝑆(𝑡𝑚 + 0), and hence
𝐷𝑛 = 𝑚 − 𝑛 = 𝑜(𝑛) + 𝑂(ln 𝑚) = 𝑜(𝑛). Therefore,

∑︀
𝑛6𝑁 |𝐷𝑛| = 𝑜(𝑁2).

Suppose now that condition (5.2) is satisfied. Noting that 𝑁(𝑐𝑛 +0) > 𝑛+𝜀(𝑛),
where 𝜀(𝑛) is the number of zeros of 𝜁(𝑠) with the condition 0 < Im 𝑠 6 𝑐𝑛, Re 𝑠 ̸= 1

2 ,
we get 𝑛+𝜀(𝑛) 6 𝑁(𝑡𝑚 +0) = 𝑚+𝑆(𝑡𝑚 +0). Hence, 0 6 𝜀(𝑛) 6 |𝐷𝑛|+ |𝑆(𝑡𝑚 +0)|.
Summing this estimate over 𝑛 6 2𝑁 and applying Cauchy’s inequality, we obtain∑︁

𝑛62𝑁

𝜀(𝑛) 6
∑︁

𝑛62𝑁

|𝐷𝑛| +
∑︁

𝑛62𝑁
𝑚=𝑚(𝑛)

|𝑆(𝑡𝑚 + 0)| 6
√

2𝑁
√

𝑊 + 𝑜(𝑁2),

where
𝑊 =

∑︁
𝑛62𝑁

𝑚=𝑚(𝑛)

𝑆2(𝑡𝑚 + 0).

Let 𝜇 be the maximum of 𝑚(𝑛) for 𝑛 6 2𝑁 . Then 𝑡𝜇−1 < 𝑐2𝑁 6 𝑡𝜇 and hence

𝑁(𝑐2𝑁 + 0) > 𝑁(𝑡𝜇−1 + 0) = 𝜇 + 𝑂(ln 𝜇).

By Lemma 2.8, we have for 𝑡 = 𝑐2𝑁 :

𝑁(𝑐2𝑁 ) 6
(︀ 5

2 − 10−3)︀
𝑁0(𝑐2𝑁 ) =

(︀ 5
2 − 10−3)︀

(2𝑁 + 𝑂(ln 𝑁)),

and therefore 𝜇 < 5𝑁 . Changing the order of summation in 𝑊 , we obtain:

𝑊 6
∑︁

𝑙65𝑁

𝑆2(𝑡𝑙 + 0)
∑︁

𝑛62𝑁
𝑚(𝑛)=𝑙

1.

For a fixed 𝑙, the number of 𝑛 that satisfy the conditions 𝑛 6 2𝑁 , 𝑚(𝑛) = 𝑙, does
not exceed the number of all ordinates of zeros of 𝜁(𝑠) lying in the interval (𝑡𝑙−1, 𝑡𝑙],
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that is 𝑁(𝑡𝑙 + 0) − 𝑁(𝑡𝑙−1 + 0) = 1 + 𝑆(𝑡𝑙 + 0) − 𝑆(𝑡𝑙−1 + 0) = 1 + 𝑟(𝑙). Thus we
have

𝑊 6
∑︁

𝑙65𝑁

𝑆2(𝑡𝑙 + 0)(1 + 𝑟(𝑙)).

Using the first formula of Lemma 2.5 and the estimate of Theorem 4.1, we find that

𝑊 6
5𝑁

2𝜋2 ln ln 𝑁 + 𝑂
(︀
𝑁

√
ln ln 𝑁

)︀
< 1

3 𝑁 ln ln 𝑁,∑︁
𝑛62𝑁

𝜀(𝑛) < 𝑁
√

ln ln 𝑁 + 𝑜(𝑁2) = 𝑜(𝑁2).

By obvious inequality 𝜀(𝑁 + 1) + 𝜀(𝑁 + 2) + · · · + 𝜀(2𝑁) > 𝑁𝜀(𝑁) we get:

𝑁𝜀(𝑁) = 𝑜(𝑁2), 𝜀(𝑁) = 𝑜(𝑁).

Suppose now that 𝑡 is sufficiently large. Then, defining 𝑁 from the inequalities
𝑐𝑁−1 < 𝑡 6 𝑐𝑁 and using the above relations, we obtain:

𝑁(𝑡) > 𝑁 − 1, 𝑁(𝑡) − 𝑁0(𝑡) 6 𝜀(𝑁) = 𝑜(𝑁) = 𝑜(𝑁(𝑡)).

The theorem is proved.

Corollary 5.1. The validity of the relation∑︁
𝑛6𝑁

|𝐷𝑛|𝑘 = 𝑜
(︀
𝑁𝑘+1)︀

, 𝑁 → +∞

for at least one fixed value of 𝑘 > 1 is the necessary and sufficient condition for the
truth of the ‘almost Riemann hypothesis’.

The proof is similar to the previous one. The difference is that we should use
the inequality

𝑁𝜀(𝑁) 6
∑︁

𝑛62𝑁

|𝐷𝑛| + 𝑁
√

ln ln 𝑁 6 (2𝑁)1−1/𝑘

(︂ ∑︁
𝑛62𝑁

|𝐷𝑛|𝑘
)︂1/𝑘

+ 𝑁
√

ln ln 𝑁

for the proof of sufficiency.
This assertion shows, in particular, that if Selberg’s formulas (1.8), (1.9) hold

true after the replacement of the quantities Δ𝑛 by 𝐷𝑛, then the ‘almost Riemann
hypothesis’ is also true.

Corollary 5.2. The assertion ‘𝐷𝑛 = 𝑜(𝑛) as 𝑛 → +∞’ is the necessary and
sufficient condition for the ‘almost Riemann hypothesis’.

The below theorem shows that the upper bound for 𝐷𝑛 causes the main diffi-
culty.

Theorem 5.2. Suppose that 𝑁0(𝑡) > κ𝑁(𝑡) for any 𝑡 > 𝑡0 > 1 and for some
constant κ, 0 < κ < 1. Then the following inequalities hold for all sufficiently
large 𝑛:

−9 ln 𝑛 6 𝐷𝑛 6 ( 1
κ − 1)𝑛 + 9( 1

κ + 1) ln 𝑛.
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Proof. By (5.1), we get:
(5.3) 𝑁(𝑐𝑛 + 0) > 𝑁(𝑡𝑚−1 + 0) = 𝑚 − 1 + 𝑆(𝑡𝑚−1 + 0).
By the assumption of the theorem, we get for 𝑡 = 𝑐𝑛 + 0:
(5.4) 𝑁(𝑐𝑛 + 0) < 1

κ 𝑁0(𝑐𝑛 + 0) 6 1
κ (𝑛 + 𝜅𝑛),

where 𝜅𝑛 denotes the multiplicity of the ordinate 𝑐𝑛. Comparing (5.3) and (5.4)
and using the inequality |𝑆(𝑡)| 6 8.9 ln 𝑡, we obtain:

𝑚 6 1
κ 𝑛 + 9( 1

κ + 1) ln 𝑛, 𝐷𝑛 = 𝑚 − 𝑛 < ( 1
κ − 1)𝑛 + 9( 1

κ + 1).
On the other hand,

𝑛 6 𝑁0(𝑐𝑛 + 0) 6 𝑁(𝑐𝑛 + 0) 6 𝑁(𝑡𝑚 + 0) = 𝑚 + 𝑆(𝑡𝑚 + 0),
and therefore 𝐷𝑛 > −𝑆(𝑡𝑚 + 0) > −9 ln 𝑛. The theorem is proved. �

In [8], Selberg referred to the formulas
(5.5) lim inf

𝑛→+∞
Δ𝑛 = −∞, lim sup

𝑛→+∞
Δ𝑛 = +∞,

as to the result of Titchmarsh from [5]. Indeed, the relations (5.5) hold true, and
the modern omega -theorems for the function 𝑆(𝑡) imply a much deeper result,
namely

Δ𝑛 = Ω±

(︂
3

√︂
ln 𝑛

ln ln 𝑛

)︂
,

as 𝑛 grows (see [18]). On the other hand, in [5], Titchmarsh considered the fractions

𝜏𝑛 = 𝑐𝑛 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛

instead of the quantities Δ𝑛 (one can easily see that the difference between 𝜏𝑛 and
𝐷𝑛 is 𝑂(1)), and established the unboundedness of 𝜏𝑛. As far as can be seen, the
methods of [5] allows one to show only that 𝜏𝑛 ̸= 𝑂(1) and 𝐷𝑛 ̸= 𝑂(1), as 𝑛 → +∞.
A slight modification of these methods and the omega -theorems for 𝑆(𝑡) lead to
the following assertion

𝐷𝑛 = Ω−

(︂
3

√︂
ln 𝑛

ln ln 𝑛

)︂
, 𝑛 → +∞.

So, the problem of unboundedness of 𝐷𝑛 from above still remains open.
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