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Abstract. Concerning a question of Yi [18], we study the problem of unique-
ness of meromorphic functions sharing two sets with the notion of weighted
sharing of sets and obtain four results which will not only improve the results
of Lahiri [12], Lin-Yi [20] but also improve a recent result of the present author
[3] and thus provide an answer to the question of Gross [6] in a more compact
and convenient way. We exhibit two examples to show that a condition in one
of our results is sharp. Till now our result is the best in this regard.

1. Introduction, Definitions, and Results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane. It will be convenient to let 𝐸 denote any set of
positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any nonconstant meromorphic function ℎ(𝑧) we denote by 𝑆(𝑟, ℎ)
any quantity satisfying 𝑆(𝑟, ℎ) = 𝑜(𝑇 (𝑟, ℎ)) (𝑟 → ∞, 𝑟 /∈ 𝐸). We denote by 𝑇 (𝑟) the
maximum of 𝑇 (𝑟, 𝑓) and 𝑇 (𝑟, 𝑔). The notation 𝑆(𝑟) denotes any quantity satisfying
𝑆(𝑟) = 𝑜(𝑇 (𝑟)) as 𝑟 → ∞, 𝑟 /∈ 𝐸.

We use 𝐼 to denote any set of infinite linear measure of 0 < 𝑟 < ∞. We
adopt the standard notations of the Nevanlinna theory of meromorphic functions
as explained in [7].

Let 𝑓 and 𝑔 be two nonconstant meromorphic functions and let 𝑎 be a finite
complex number. We say that 𝑓 and 𝑔 share 𝑎 CM, provided that 𝑓 − 𝑎 and 𝑔 − 𝑎
have the same zeros with the same multiplicities. Similarly, we say that 𝑓 and 𝑔
share 𝑎 IM, provided that 𝑓 −𝑎 and 𝑔−𝑎 have the same zeros ignoring multiplicities.
In addition we say that 𝑓 and 𝑔 share ∞ CM, if 1/𝑓 and 1/𝑔 share 0 CM, and we
say that 𝑓 and 𝑔 share ∞ IM, if 1/𝑓 and 1/𝑔 share 0 IM.
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Let 𝑆 be a set of distinct elements of C∪{∞} and 𝐸𝑓 (𝑆) =
⋃︀

𝑎∈𝑆{𝑧 : 𝑓(𝑧) = 𝑎},
where each point is counted according to its multiplicity. If we do not count the
multiplicity, the set

⋃︀
𝑎∈𝑆{𝑧 : 𝑓(𝑧) = 𝑎} is denoted by �̄�𝑓 (𝑆). If 𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆)

we say that 𝑓 and 𝑔 share the set 𝑆 CM. On the other hand if �̄�𝑓 (𝑆) = �̄�𝑔(𝑆),
we say that 𝑓 and 𝑔 share the set 𝑆 IM. Evidently, if 𝑆 contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared values.
The problem of determining a meromorphic (or entire) function on C by its single
pre-images, counting with multiplicities, of finite sets is an important one and it
has been studied by many mathematicians.

In 1926, R. Nevanlinna showed that a meromorphic function on the complex
plane C is uniquely determined by the preimages, ignoring multiplicities, of 5 dis-
tinct values. A few years later, he showed that when multiplicities are considered, 4
points are sufficient (with one exceptional situation). In 1977 F. Gross extended the
study by considering pre-images of a set and introduced the notion of unique range
set. We recall that a set is called a unique range set (counting multiplicities) for a
particular family of functions if the inverse image of the set counting multiplicities
uniquely determines the function in the family.

Now let ℱ be a nonempty subset of the set of meromorphic functions. A subset
𝑆 of C∪{∞} is called a unique range set (a URS in short) for ℱ if for any 𝑓 , 𝑔 ∈ ℱ
such that 𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) one has 𝑓 ≡ 𝑔. In 1982 the first example of URS for
entire functions was found by F. Gross and C. C. Yang that is

𝑆 = {𝑧 ∈ C : 𝑒𝑧 + 𝑧 = 0}.

Note that 𝑆 is an infinite set. Since then, the study of URS is focused mainly on
two problems: finding different URS with the number of elements small as possible,
and characterizing the URS. To reduce the number of elements in the range set as
small as possible Gross [6] proved that there exist three finite sets 𝑆𝑗 (𝑗 = 1, 2, 3)
such that any two entire functions 𝑓 and 𝑔 satisfying 𝐸𝑓 (𝑆𝑗) = 𝐸𝑔(𝑆𝑗) for 𝑗 = 1, 2, 3
must be identical.

In [6] Gross asked the following question: Can one find two finite sets 𝑆𝑗

(𝑗 = 1, 2) such that any two nonconstant entire functions 𝑓 and 𝑔 satisfying 𝐸𝑓 (𝑆𝑗)
= 𝐸𝑔(𝑆𝑗) for 𝑗 = 1, 2 must be identical?

During the last two decades a famous problem in value distribution theory has
been to give explicitly a set 𝑆 with 𝑛 elements and make 𝑛 as small as possible such
that any two meromorphic functions 𝑓 and 𝑔 that share the value ∞ and the set
S must be equal. Naturally several authors investigate the possible answer in the
above direction and continuous efforts are being carried out to relax the hypothesis
of the results; cf. [1]–[5], [8], [12], [16], [18], [20], [21].

In the direction to the question of Gross, in 1995 Yi [18] proved for meromor-
phic functions the following result.

Theorem A. [18] Let 𝑆 = {𝑧 : 𝑧𝑛 + 𝑎𝑧𝑛−𝑚 + 𝑏 = 0}, where 𝑛 and 𝑚 are two
positive integers such that 𝑚 > 2, 𝑛 > 2𝑚 + 7, with 𝑛 and 𝑚 having no common
factor, 𝑎 and 𝑏 be two nonzero constants such that 𝑧𝑛 + 𝑎𝑧𝑛−𝑚 + 𝑏 = 0 has no
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multiple root. If 𝑓 and 𝑔 are two nonconstant meromorphic functions satisfying
𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓 ({∞}) = 𝐸𝑔({∞}), then 𝑓 ≡ 𝑔.

In the same paper Yi also asked the following question: What can be said
if 𝑚 = 1 in Theorem A? In connection to this question he proved the following
theorem.

Theorem B. [18] Let 𝑆 = {𝑧 : 𝑧𝑛 + 𝑎𝑧𝑛−1 + 𝑏 = 0}, where 𝑛 (> 9) be an
integer and 𝑎 and 𝑏 be two nonzero constants such that 𝑧𝑛 + 𝑎𝑧𝑛−1 + 𝑏 = 0 has
no multiple root. If 𝑓 and 𝑔 are two nonconstant meromorphic functions such that
𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓 ({∞}) = 𝐸𝑔({∞}), then either 𝑓 ≡ 𝑔 or 𝑓 ≡ −𝑎ℎ(ℎ𝑛−1−1)

ℎ𝑛−1

and 𝑔 ≡ −𝑎(ℎ𝑛−1−1)
ℎ𝑛−1 , where ℎ is a nonconstant meromorphic function.

To provide an answer to the question of Yi and to find under which condition
𝑓 ≡ 𝑔 Lahiri [8] proved the following result.

Theorem C. [8] Let 𝑆 be defined as in Theorem B and 𝑛 (> 8) be an integer.
If 𝑓 and 𝑔 are two nonconstant meromorphic functions having no simple poles such
that 𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓 ({∞}) = 𝐸𝑔({∞}), then 𝑓 ≡ 𝑔.

Fang and Lahiri [5] improved Theorem C by further reducing the cardinality
of the same range set and proved the following theorem.

Theorem D. [5] Let 𝑆 be defined as in Theorem B and 𝑛(> 7) be an integer.
If 𝑓 and 𝑔 are two nonconstant meromorphic functions having no simple poles such
that 𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓 ({∞}) = 𝐸𝑔({∞}), then 𝑓 ≡ 𝑔.

Let 𝑆 = {𝑧 : 𝑧7 − 𝑧6 − 1 = 0} and

𝑓 = 𝑒𝑧 + 𝑒2𝑧 + · · · + 𝑒6𝑧

1 + 𝑒𝑧 + · · · + 𝑒6𝑧
, 𝑔 = 1 + 𝑒𝑧 + · · · + 𝑒5𝑧

1 + 𝑒𝑧 + · · · + 𝑒6𝑧
.

Obviously 𝑓 = 𝑒𝑧𝑔, 𝐸𝑓 (𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓 ({∞}) = 𝐸𝑔({∞}) but 𝑓 ̸≡ 𝑔. So for
the validity of Theorem D, 𝑓 and 𝑔 must not have any simple pole.

If two meromorphic functions 𝑓 and 𝑔 have no simple pole, then clearly
Θ(∞; 𝑓) > 1

2 and Θ(∞; 𝑔) > 1
2 . So Fang and Lahiri did not provide the exact

lower bound of Θ(∞; 𝑓) + Θ(∞; 𝑔).
To proceed further we require the following definition, known as weighted shar-

ing of sets and values, which renders a useful tool for the purpose of relaxation of
the nature of sharing the sets.

Definition 1.1. [10, 11] Let 𝑘 be a nonnegative integer or infinity. For 𝑎 ∈
C ∪ {∞} we denote by 𝐸𝑘(𝑎; 𝑓) the set of all 𝑎-points of 𝑓 , where an 𝑎-point
of multiplicity 𝑚 is counted 𝑚 times if 𝑚 6 𝑘 and 𝑘 + 1 times if 𝑚 > 𝑘. If
𝐸𝑘(𝑎; 𝑓) = 𝐸𝑘(𝑎; 𝑔), we say that 𝑓, 𝑔 share the value 𝑎 with weight 𝑘.

We write 𝑓 , 𝑔 share (𝑎, 𝑘) to mean that 𝑓 , 𝑔 share the value 𝑎 with weight 𝑘.
Clearly if 𝑓 , 𝑔 share (𝑎, 𝑘), then 𝑓 , 𝑔 share (𝑎, 𝑝) for any integer 𝑝, 0 6 𝑝 < 𝑘. Also
we note that 𝑓 , 𝑔 share a value 𝑎 IM or CM if and only if 𝑓 , 𝑔 share (𝑎, 0) or (𝑎, ∞)
respectively.
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Definition 1.2. [10] Let 𝑆 be a set of distinct elements of C ∪ {∞}, and 𝑘
be a nonnegative integer or ∞. We denote by 𝐸𝑓 (𝑆, 𝑘) the set 𝐸𝑓 (𝑆) =

⋃︀
𝑎∈𝑆{𝑧 :

𝑓(𝑧) − 𝑎 = 0}. Clearly 𝐸𝑓 (𝑆) = 𝐸𝑓 (𝑆, ∞) and �̄�𝑓 (𝑆) = 𝐸𝑓 (𝑆, 0).

Improving Theorem D Lahiri [12] proved the following theorem.

Theorem E. [12] Let 𝑆 be defined as in Theorem B and 𝑛 (> 7) be an integer.
If for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ(∞; 𝑓) + Θ(∞; 𝑔) > 1,
𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞), then 𝑓 ≡ 𝑔.

In 2006 to deal with a question of Gross, Yi and Lin [20] proved the following
results.

Theorem F. [20] Let 𝑆 be defined as in Theorem B and 𝑛 (> 7) be an integer.
If for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ(∞; 𝑓) > 1

2 , 𝐸𝑓 (𝑆, ∞) =
𝐸𝑔(𝑆, ∞) and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞), then 𝑓 ≡ 𝑔.

Theorem G. [20] Let 𝑆 be defined as in Theorem B and 𝑛 (> 8) be an
integer. If for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ(∞; 𝑓) > 2

𝑛−1 ,
𝐸𝑓 (𝑆, ∞) = 𝐸𝑔(𝑆, ∞) and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞), then 𝑓 ≡ 𝑔.

Recently the present author [3] has not only generalized Theorem E by inves-
tigating the problem of further relaxation of the nature of sharing the set {∞}
in Theorem E, but also given an exact lower bound of Θ(∞; 𝑓) + Θ(∞; 𝑔) at the
expense of allowing 𝑛 > 8 in Theorem E in which the multiplicities of the poles
cease to matter.

The present author has proved the following results.

Theorem H. [3] Let 𝑆 be defined as in Theorem B and 𝑛 (> 7) be an integer.
If for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ(∞; 𝑓) + Θ(∞; 𝑔) > 1 +

29
6𝑛𝑘+6𝑛−5 , 𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, 𝑘) = 𝐸𝑔({∞}, 𝑘), where 0 6 𝑘 < ∞,
then 𝑓 ≡ 𝑔.

Theorem I. [3] Let 𝑆 be defined as in Theorem B and 𝑛(> 8) be an integer.
If for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ(∞; 𝑓) + Θ(∞; 𝑔) > 4

𝑛−1 ,
𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, 0) = 𝐸𝑔({∞}, 0), then 𝑓 ≡ 𝑔.

Regarding Theorems B–I following example establishes the fact that the set 𝑆
can not be replaced by any arbitrary set containing six distinct elements.

Example 1.1. Let 𝑓(𝑧) =
√

𝛼𝛽𝛾 𝑒𝑧 and 𝑔(𝑧) =
√

𝛼𝛽𝛾 𝑒− 𝑧 and 𝑆 = {𝛼
√

𝛽,
𝛼

√
𝛾, 𝛽

√
𝛼, 𝛽

√
𝛾, 𝛾

√
𝛼, 𝛾

√
𝛽}, where 𝛼, 𝛽 and 𝛾 are three nonzero distinct complex

numbers. Clearly 𝐸𝑓 (𝑆, ∞) = 𝐸𝑔(𝑆, ∞) and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞), but
𝑓 ̸≡ 𝑔.

So it remains an open problem whether the degree of the equation defining 𝑆
in Theorems B–I can be reduced to six. We here provide a solution. Also from the
above discussion the following query is natural.

(i) Keeping 𝑛 intact in Theorem E and Theorem I, is it at all possible to further
relax the conditions over ramification indexes in both theorems?
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We also provide an affirmative answer to the above question.
The following four theorems are the main results of the paper, which improve

and complete all the previous results.

Theorem 1.1. Let 𝑆 be defined as in Theorem B, where 𝑛 = 6. If for two
nonconstant meromorphic functions 𝑓 and 𝑔, Θ𝑓 + Θ𝑔 > 2, 𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2)
and 𝐸𝑓 ({∞}, 0) = 𝐸𝑔({∞}, 0), then 𝑓 ≡ 𝑔, where Θ𝑓 + Θ𝑔 = Θ(0; 𝑓) + Θ(∞; 𝑓) +
Θ(0; 𝑔) + Θ(∞; 𝑔).

Theorem 1.2. Let 𝑆 be defined as in Theorem B, where 𝑛 = 7. If for two
nonconstant meromorphic functions 𝑓 and 𝑔, Θ𝑓 + Θ𝑔 > 1, 𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2)
and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞), then 𝑓 ≡ 𝑔, where Θ𝑓 , and Θ𝑔 have the same
meaning as defined in Theorem 1.1.

Theorem 1.3. Let 𝑆 be defined as in Theorem B, where 𝑛 = 7. If for two
nonconstant meromorphic functions 𝑓 and 𝑔, Θ𝑓 + Θ𝑔 > 4

3 , 𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2)
and 𝐸𝑓 ({∞}, 0) = 𝐸𝑔({∞}, 0), then 𝑓 ≡ 𝑔, where Θ𝑓 and Θ𝑔 have the same
meaning as defined in Theorem 1.1.

Theorem 1.4. Let 𝑆 be defined as in Theorem B and 𝑛 (> 8) be an integer. If
for two nonconstant meromorphic functions 𝑓 and 𝑔, Θ𝑓 + Θ𝑔 > 4

𝑛−1 , 𝐸𝑓 (𝑆, 2) =
𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, 0) = 𝐸𝑔({∞}, 0), then 𝑓 ≡ 𝑔, where Θ𝑓 and Θ𝑔 have the
same meaning as defined in Theorem 1.1.

The following examples show that the condition Θ𝑓 + Θ𝑔 > 4
𝑛−1 is sharp in

Theorem 1.4.

Example 1.2. Let 𝑓 = −𝑎 1−ℎ𝑛−1

1−ℎ𝑛 and 𝑔 = −𝑎ℎ 1−ℎ𝑛−1

1−ℎ𝑛 , where ℎ = 𝛼2(𝑒𝑧−1)
𝑒𝑧−𝛼 ,

𝛼 = exp( 2𝜋𝑖
𝑛 ) and 𝑛 (> 3) is an integer. Then 𝑇 (𝑟, 𝑓) = (𝑛 − 1)𝑇 (𝑟, ℎ) + 𝑂(1)

and 𝑇 (𝑟, 𝑔) = (𝑛 − 1)𝑇 (𝑟, ℎ) + 𝑂(1) and 𝑇 (𝑟, ℎ) = 𝑇 (𝑟, 𝑒𝑧) + 𝑂(1). Further we see
that ℎ ̸= 𝛼, 𝛼2 and so for any complex number 𝛾 ̸= 𝛼, 𝛼2, �̄�(𝑟, 𝛾; ℎ) ∼ 𝑇 (𝑟, ℎ).
We also note that a root of ℎ = 1 is not a pole and zero of 𝑓 and 𝑔. Hence
Θ(∞; 𝑓) = Θ(∞; 𝑔) = 2

𝑛−1 . On the other hand

Θ(0, 𝑓) = 1 − lim sup
𝑟→∞

∑︀𝑛−2
𝑘=1 �̄�(𝑟, 𝛽𝑘; ℎ) + �̄�(𝑟, ∞; ℎ)

(𝑛 − 1)𝑇 (𝑟, ℎ) + 𝑂(1) = 0,

Θ(0, 𝑔) = 1 − lim sup
𝑟→∞

∑︀𝑛−2
𝑘=1 �̄�(𝑟, 𝛽𝑘; ℎ) + �̄�(𝑟, 0; ℎ)

(𝑛 − 1)𝑇 (𝑟, ℎ) + 𝑂(1) = 0,

where 𝛽 = exp ( 2𝜋𝑖
𝑛−1 ). Clearly 𝑓 and 𝑔 share (∞; ∞) and 𝐸𝑓 (𝑆, ∞) = 𝐸𝑔(𝑆, ∞),

because 𝑓𝑛−1(𝑓 + 𝑎) ≡ 𝑔𝑛−1(𝑔 + 𝑎) but 𝑓 ̸≡ 𝑔.

Example 1.3. Let 𝑓 and 𝑔 be given as in Example 1.2, where ℎ = 𝛼(𝛼𝑒𝑧−1)
𝑒𝑧−1 ,

𝛼 = 𝑒𝑥𝑝( 2𝜋𝑖
𝑛 ) and 𝑛(> 3) is an integer.

Though the standard definitions and notations of the value distribution theory
are available in [7], we explain some definitions and notations which are used in
the paper.
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Definition 1.3. [9] For 𝑎 ∈ C ∪ {∞}we denote by 𝑁(𝑟, 𝑎; 𝑓 | = 1) the count-
ing function of simple 𝑎-points of 𝑓 . For a positive integer 𝑚 we denote by
𝑁(𝑟, 𝑎; 𝑓 | 6 𝑚)(𝑁(𝑟, 𝑎; 𝑓 | > 𝑚)) the counting function of those 𝑎-points of 𝑓
whose multiplicities are not greater(less) than 𝑚, where each 𝑎-point is counted
according to its multiplicity.

�̄�(𝑟, 𝑎; 𝑓 | 6 𝑚)(�̄�(𝑟, 𝑎; 𝑓 | > 𝑚)) are defined similarly, where in counting the
𝑎-points of 𝑓 we ignore the multiplicities.

Also 𝑁(𝑟, 𝑎; 𝑓 | < 𝑚), 𝑁(𝑟, 𝑎; 𝑓 | > 𝑚), �̄�(𝑟, 𝑎; 𝑓 | < 𝑚) and �̄�(𝑟, 𝑎; 𝑓 | > 𝑚)
are defined analogously.

Definition 1.4. [11] Let 𝑁2(𝑟, 𝑎;𝑓) denote the sum �̄�(𝑟, 𝑎; 𝑓)+ �̄�(𝑟, 𝑎; 𝑓 | > 2).

Definition 1.5. We denote by �̄�(𝑟, 𝑎; 𝑓 | = 𝑘) the reduced counting function
of those 𝑎-points of 𝑓 whose multiplicities is exactly 𝑘, where 𝑘 > 2 is an integer.

Definition 1.6. [10, 11] Let 𝑓 , 𝑔 share a value 𝑎 IM. We denote by �̄�*(𝑟, 𝑎; 𝑓, 𝑔)
the reduced counting function of those 𝑎-points of 𝑓 whose multiplicities differ from
the multiplicities of the corresponding 𝑎-points of 𝑔.

Clearly �̄�*(𝑟, 𝑎; 𝑓, 𝑔) ≡ �̄�*(𝑟, 𝑎; 𝑔, 𝑓) and �̄�*(𝑟, 𝑎; 𝑓, 𝑔) = �̄�𝐿(𝑟, 𝑎; 𝑓)+�̄�𝐿(𝑟, 𝑎; 𝑔),
where by �̄�𝐿(𝑟, 𝑎; 𝑓) (�̄�𝐿(𝑟, 𝑎; 𝑔)) we denote the reduced counting function of those
𝑎-points of 𝑓 (𝑔) which are greater than the 𝑎-points of 𝑔 (𝑓).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
𝐹 and 𝐺 be two nonconstant meromorphic functions defined by

(2.1) 𝐹 = 𝑓𝑛−1(𝑓 + 𝑎)
−𝑏

, 𝐺 = 𝑔𝑛−1(𝑔 + 𝑎)
−𝑏

.

Henceforth we shall denote by 𝐻 the following function

(2.2) 𝐻 =
(︂

𝐹 ′′

𝐹 ′ − 2𝐹 ′

𝐹 − 1

)︂
−

(︂
𝐺′′

𝐺′ − 2𝐺′

𝐺 − 1

)︂
.

Lemma 2.1. [15] Let 𝑓 be a nonconstant meromorphic function and let 𝑅(𝑓) =∑︀𝑛
𝑘=0 𝑎𝑘𝑓𝑘/

∑︀𝑚
𝑗=0 𝑏𝑗𝑓 𝑗 be an irreducible rational function in 𝑓 with constant coef-

ficients {𝑎𝑘} and {𝑏𝑗}, where 𝑎𝑛 ̸= 0 and 𝑏𝑚 ̸= 0. Then

𝑇 (𝑟, 𝑅(𝑓)) = 𝑑𝑇 (𝑟, 𝑓) + 𝑆(𝑟, 𝑓),

where 𝑑 = max{𝑛, 𝑚}.

Lemma 2.2. [12, Lemma 5] If 𝑓 , 𝑔 share (∞, 0), then for 𝑛(> 2)

𝑓𝑛−1(𝑓 + 𝑎)𝑔𝑛−1(𝑔 + 𝑎) ̸≡ 𝑏2,

where 𝑎,𝑏 are finite nonzero constants.
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Lemma 2.3. [3, Lemma 2.13] Let 𝐹, 𝐺 share (1, 2), (∞, 𝑘) and 𝐻 ̸≡ 0. Then

i) 𝑇 (𝑟, 𝐹 ) 6 𝑁2(𝑟, 0; 𝐹 ) + 𝑁2(𝑟, 0; 𝐺) + �̄�(𝑟, ∞; 𝐹 ) + �̄�(𝑟, ∞; 𝐺)

+ �̄�*(𝑟, ∞; 𝐹, 𝐺) − 𝑚(𝑟, 1; 𝐺) − �̄�
(3
𝐸 (𝑟, 1; 𝐹 ) − �̄�𝐿(𝑟, 1; 𝐺)

+ 𝑆(𝑟, 𝐹 ) + 𝑆(𝑟, 𝐺)
ii) 𝑇 (𝑟, 𝐺) 6 𝑁2(𝑟, 0; 𝐹 ) + 𝑁2(𝑟, 0; 𝐺) + �̄�(𝑟, ∞; 𝐹 ) + �̄�(𝑟, ∞; 𝐺)

+ �̄�*(𝑟, ∞; 𝐹, 𝐺) − 𝑚(𝑟, 1; 𝐹 ) − �̄�
(3
𝐸 (𝑟, 1; 𝐹 ) − �̄�𝐿(𝑟, 1; 𝐹 )

+ 𝑆(𝑟, 𝐹 ) + 𝑆(𝑟, 𝐺)

Lemma 2.4. If 𝑓 , 𝑔 be two nonconstant meromorphic functions such that
Θ(0; 𝑓) + Θ(∞; 𝑓) + Θ(0; 𝑔) + Θ(∞; 𝑔) > 4

𝑛−1 , then 𝑓𝑛−1(𝑓 + 𝑎) ≡ 𝑔𝑛−1(𝑔 + 𝑎)
implies 𝑓 ≡ 𝑔, where 𝑛 (> 3) is an integer and 𝑎 is a nonzero finite constant.

Proof. Let

(2.3) 𝑓𝑛−1(𝑓 + 𝑎) ≡ 𝑔𝑛−1(𝑔 + 𝑎)

and suppose 𝑓 ̸≡ 𝑔. We consider two cases:
Case I Let 𝑦 = 𝑔

𝑓 be a constant. Then from (2.3) it follows that 𝑦 ̸= 1,
𝑦𝑛−1 ̸= 1, 𝑦𝑛 ̸= 1 and 𝑓 ≡ −𝑎 1−𝑦𝑛−1

1−𝑦𝑛 , a constant, which is impossible.
Case II Let 𝑦 = 𝑔

𝑓 be nonconstant. Then

(2.4) 𝑓 ≡ −𝑎
1 − 𝑦𝑛−1

1 − 𝑦𝑛
≡ 𝑎

(︁ 𝑦𝑛−1

1 + 𝑦 + 𝑦2 + · · · + 𝑦𝑛−1 − 1
)︁

.

From (2.4) we see by Lemma 2.1 that

𝑇 (𝑟, 𝑓) = 𝑇

(︂
𝑟,

𝑛−1∑︁
𝑗=0

1
𝑦𝑗

)︂
+𝑂(1) = (𝑛−1) 𝑇 (𝑟, 1

𝑦 )+𝑆(𝑟, 𝑦) = (𝑛−1) 𝑇 (𝑟, 𝑦)+𝑆(𝑟, 𝑦).

We first note that the zeros of 1 + 𝑦 + 𝑦2 + · · · + 𝑦𝑛−2 contributes to the zeros of
both 𝑓 and 𝑔. In addition to this the poles of 𝑦 contributes to the zeros of 𝑓 and
since 𝑔 = 𝑓𝑦 the zeros of 𝑦 contributes to the zeros of 𝑔. So from (2.4) we see that

𝑛−2∑︁
𝑗=1

�̄�(𝑟, 𝑣𝑗 ; 𝑦) + �̄�(𝑟, ∞; 𝑦) 6 �̄�(𝑟, 0; 𝑓),
𝑛−1∑︁
𝑘=1

�̄�(𝑟, 𝑢𝑘; 𝑦) 6 �̄�(𝑟, ∞; 𝑓)

where 𝑢𝑘 = exp( 2𝑘𝜋𝑖
𝑛 ) for 𝑘 = 1, 2, . . . , 𝑛−1 and 𝑣𝑗 = exp( 2𝑗𝜋𝑖

𝑛−1 ) for 𝑗 = 1, 2, . . . , 𝑛−2.
By the second fundamental theorem we get

(2𝑛 − 4)𝑇 (𝑟, 𝑦) 6 �̄�(𝑟, ∞; 𝑦) +
𝑛−2∑︁
𝑗=1

�̄�(𝑟, 𝑣𝑗 ; 𝑦) +
𝑛−1∑︁
𝑘=1

�̄�(𝑟, 𝑢𝑘; 𝑦) + 𝑆(𝑟, 𝑦)

6 �̄�(𝑟, 0; 𝑓) + �̄�(𝑟, ∞; 𝑓) + 𝑆(𝑟, 𝑦)
6 (2 − Θ(0; 𝑓) − Θ(∞; 𝑓) + 𝜀) 𝑇 (𝑟, 𝑓) + 𝑆(𝑟, 𝑦)
= (𝑛 − 1) (2 − Θ(0; 𝑓) − Θ(∞; 𝑓) + 𝜀) 𝑇 (𝑟, 𝑦) + 𝑆(𝑟, 𝑦)



184 BANERJEE

i.e.,

(2.5) 2𝑛 − 4
𝑛 − 1 𝑇 (𝑟, 𝑦) 6 (2 − Θ(0; 𝑓) − Θ(∞; 𝑓) + 𝜀) 𝑇 (𝑟, 𝑦) + 𝑆(𝑟, 𝑦),

where 0 < 2𝜀 < Θ(0; 𝑓) + Θ(∞; 𝑓) + Θ(0; 𝑔) + Θ(∞; 𝑔).
Again noting that

∑︀𝑛−2
𝑗=1 �̄�(𝑟, 𝑣𝑗 ; 𝑦) + �̄�(𝑟, 0; 𝑦) 6 �̄�(𝑟, 0; 𝑔), by the second

fundamental theorem we get

(2𝑛 − 3)𝑇 (𝑟, 𝑦)

6 �̄�(𝑟, ∞; 𝑦) + �̄�(𝑟, 0; 𝑦) +
𝑛−2∑︁
𝑗=1

�̄�(𝑟, 𝑣𝑗 ; 𝑦) +
𝑛−1∑︁
𝑘=1

�̄�(𝑟, 𝑢𝑘; 𝑦) + 𝑆(𝑟, 𝑦)

6 �̄�(𝑟, ∞; 𝑦) + �̄�(𝑟, 0; 𝑔) + �̄�(𝑟, ∞; 𝑔) + 𝑆(𝑟, 𝑦)
6 �̄�(𝑟, ∞; 𝑦) + (𝑛 − 1) (2 − Θ(0; 𝑔) − Θ(∞; 𝑔) + 𝜀) 𝑇 (𝑟, 𝑦) + 𝑆(𝑟, 𝑦),

i.e.,

(2.6) 2𝑛 − 4
𝑛 − 1 𝑇 (𝑟, 𝑦) 6 (2 − Θ(0; 𝑔) − Θ(∞; 𝑔) + 𝜀) 𝑇 (𝑟, 𝑦) + 𝑆(𝑟, 𝑦),

Adding (2.5) and (2.6) we get(︂
4𝑛 − 8
𝑛 − 1 − 4 + Θ(0; 𝑓) + Θ(∞; 𝑓) + Θ(0; 𝑔) + Θ(∞; 𝑔) − 2𝜀

)︂
𝑇 (𝑟, 𝑦) 6 𝑆(𝑟, 𝑦),

which is a contradiction. Hence 𝑓 ≡ 𝑔 and this proves the lemma. �

3. Proofs of the theorems

Proof of Theorem 1.1. Let 𝐹 and 𝐺 be given by (2.1) with 𝑛 = 6. Since
𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, 0) = 𝐸𝑔({∞}, 0) it follows that 𝐹 , 𝐺 share (1, 2)
and (∞, 0). So �̄�*(𝑟, ∞; 𝐹, 𝐺) 6 �̄�(𝑟, ∞; 𝑓) = �̄�(𝑟, ∞; 𝑔).

Case 1. If possible let us suppose that 𝐻 ̸≡ 0. Then from Lemmas 2.1–2.3 we
obtain for 𝜀 (> 0)

6𝑇 (𝑟, 𝑓) 6 𝑁2(𝑟, 0; 𝐹 ) + 𝑁2(𝑟, 0; 𝐺) + �̄�(𝑟, ∞; 𝐹 ) + �̄�(𝑟, ∞; 𝐺)(3.1)
+ �̄�(𝑟, ∞; 𝑓) + 𝑆(𝑟, 𝐹 ) + 𝑆(𝑟, 𝐺)
6 2�̄�(𝑟, 0; 𝑓) + 𝑁2(𝑟, 0; 𝑓 + 𝑎) + 2�̄�(𝑟, 0; 𝑔) + 𝑁2(𝑟, 0; 𝑔 + 𝑎)

+ �̄�(𝑟, ∞; 𝑓) + �̄�(𝑟, ∞; 𝑔) + 1
2{�̄�(𝑟, ∞; 𝑓) + �̄�(𝑟, ∞; 𝑔)}

+ 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)

6
1
2{�̄�(𝑟, 0; 𝑓) + �̄�(𝑟, 0; 𝑔)} + 𝑁2(𝑟, 0; 𝑓 + 𝑎) + 𝑁2(𝑟, 0; 𝑔 + 𝑎)

+ 3
2{�̄�(𝑟, 0; 𝑓) + �̄�(𝑟, 0; 𝑔) + �̄�(𝑟, ∞; 𝑓) + �̄�(𝑟, ∞; 𝑔)}

+ 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)

6 3𝑇 (𝑟) + 3
2(4 − Θ(0; 𝑓) − Θ(∞; 𝑓) − Θ(0; 𝑔) − Θ(∞; 𝑔) + 𝜀)𝑇 (𝑟) + 𝑆(𝑟).
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Similarly we obtain
6𝑇 (𝑟, 𝑔) 6 3𝑇 (𝑟)(3.2)

+ 3
2(4 − Θ(0; 𝑓) − Θ(∞; 𝑓) − Θ(0; 𝑔) − Θ(∞; 𝑔) + 𝜀)𝑇 (𝑟) + 𝑆(𝑟).

Combining (3.1) and (3.2) we obtain
(3.3)

[︀ 3
2
{︀

Θ(0; 𝑓) + Θ(∞; 𝑓) + Θ(0; 𝑔) + Θ(∞; 𝑔)
}︀

− 3 − 𝜀
]︀

𝑇 (𝑟) 6 𝑆(𝑟).

Clearly (3.3) leads to a contradiction for 0 < 𝜀 < [ 3
2 (Θ𝑓 + Θ𝑔) − 3].

Case 2. 𝐻 ≡ 0. On integration we get from (2.2)

(3.4) 1
𝐹 − 1 ≡ 𝐴

𝐺 − 1 + 𝐵,

where 𝐴, 𝐵 are constants and 𝐴 ̸= 0. From (3.4) we obtain

(3.5) 𝐹 ≡ (𝐵 + 1)𝐺 + 𝐴 − 𝐵 − 1
𝐵𝐺 + 𝐴 − 𝐵

.

Clearly (3.5) together with Lemma 2.1 yields
(3.6) 𝑇 (𝑟, 𝑓) = 𝑇 (𝑟, 𝑔) + 𝑂(1).

Subcase 2.1. Suppose that 𝐵 ̸= 0, −1. If 𝐴 − 𝐵 − 1 ̸= 0, from (3.5) we obtain

�̄�
(︁

𝑟,
𝐵 + 1 − 𝐴

𝐵 + 1 ; 𝐺
)︁

= �̄�(𝑟, 0; 𝐹 ).

From above, Lemma 2.1 and the second fundamental theorem we obtain

6𝑇 (𝑟, 𝑔) < �̄�(𝑟, ∞; 𝐺) + �̄�(𝑟, 0; 𝐺) + �̄�
(︁

𝑟,
𝐵 + 1 − 𝐴

𝐵 + 1 ; 𝐺
)︁

+ 𝑆(𝑟, 𝑔)

6 �̄�(𝑟, ∞; 𝑔)+�̄�(𝑟, 0; 𝑔)+�̄�(𝑟, 0; 𝑔+𝑎)+�̄�(𝑟, 0; 𝑓)+�̄�(𝑟, 0; 𝑓 +𝑎)+𝑆(𝑟, 𝑔)
6 2𝑇 (𝑟, 𝑓) + 3𝑇 (𝑟, 𝑔) + 𝑆(𝑟, 𝑔),

which in view of (3.6) implies a contradiction. Thus 𝐴 − 𝐵 − 1 = 0 and hence (3.6)
reduces to 𝐹 ≡ (𝐵+1)𝐺

𝐵𝐺+1 . From this we have �̄�(𝑟, −1
𝐵 ; 𝐺) = �̄�(𝑟, ∞; 𝑓). Again by

Lemma 2.1 and the second fundamental theorem we have
6𝑇 (𝑟, 𝑔) < �̄�(𝑟, ∞; 𝐺) + �̄�(𝑟, 0; 𝐺) + �̄�(𝑟, −1

𝐵 ; 𝐺) + 𝑆(𝑟, 𝑔)
6 �̄�(𝑟, ∞; 𝑔) + �̄�(𝑟, 0; 𝑔) + �̄�(𝑟, 0; 𝑔 + 𝑎) + �̄�(𝑟, ∞; 𝑓) + 𝑆(𝑟, 𝑔)
6 𝑇 (𝑟, 𝑓) + 3𝑇 (𝑟, 𝑔) + 𝑆(𝑟, 𝑔),

which in view of (3.6) leads to a contradiction.
Subcase 2.2. Suppose that 𝐵 = −1. From (3.5) we obtain

(3.7) 𝐹 ≡ 𝐴

−𝐺 + 𝐴 + 1 .

If 𝐴 + 1 ̸= 0, from (3.7) we obtain �̄�(𝑟, 𝐴 + 1; 𝐺) = �̄�(𝑟, ∞; 𝑓). So using the
same argument as in the above subcase we can again obtain a contradiction. Hence
𝐴+1 = 0 and we have from (3.7) that 𝐹𝐺 ≡ 1 that means 𝑓𝑛−1(𝑓 +𝑎)𝑔𝑛−1(𝑔+𝑎) ≡
𝑏2, which is impossible by Lemma 2.2.
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Subcase 2.3. Suppose that 𝐵 = 0. From (3.5) we obtain

(3.8) 𝐹 ≡ 𝐺 + 𝐴 − 1
𝐴

.

If 𝐴 − 1 ̸= 0, from (3.8) we obtain �̄�(𝑟, 1 − 𝐴; 𝐺) = �̄�(𝑟, 0; 𝐹 ). So in the same
manner as above we again get a contradiction. So 𝐴 = 1 and hence 𝐹 ≡ 𝐺 that is
𝑓𝑛−1(𝑓 + 𝑎) ≡ 𝑔𝑛−1(𝑔 + 𝑎). Now the theorem follows from Lemma 2.4. �

Proof of Theorem 1.2. Let 𝐹 and 𝐺 be given by (2.1) with 𝑛 = 7. Since
𝐸𝑓 (𝑆, 2) = 𝐸𝑔(𝑆, 2) and 𝐸𝑓 ({∞}, ∞) = 𝐸𝑔({∞}, ∞) it follows that 𝐹 , 𝐺 share
(1, 2) and (∞, ∞). So �̄�*(𝑟, ∞; 𝐹, 𝐺) = 0. We now omit the proof since the
remaining part of the theorem can be proved in the line of proof of Theorem 1.1 �

Proof of Theorem 1.3. We omit the proof since the proof of the theorem
can be carried out in the line of proof of Theorem 1.1. �

Proof of Theorem 1.4. Let 𝐹 and 𝐺 be given by (2.1). When 𝐻 ̸≡ 0 we
adopt the same procedure as done in the proof of Theorem 1.2 in [3]. When 𝐻 ≡ 0,
using Lemmas 2.8, 2.11, 2.12 of [3] and Lemmas 2.2, 2.3 and 2.4 we can easily get
the desired result. So we omit it. �

References
1. A. Banerjee, On a question of Gross, J. Math. Anal. Appl. 327(2) (2007), 1273–1283.
2. , On uniqueness of meromorphic functions that share two sets, Georgian Math. J.

15(1) 2008, 21–38.
3. , Uniqueness of meromorphic functions sharing two sets with finite weight, Portugal.

Math. J. 65(1) (2008), 81–93.
4. M. Fang and H. Guo, On meromorphic functions sharing two values, Analysis 17 (1997),

355–366.
5. and I. Lahiri, Unique range set for certain meromorphic functions, Indian J. Math.

45(2) (2003), 141–150.
6. F. Gross, Factorization of Meromorphic Functions and Some Open Problems, Proc. Conf.

Univ. Kentucky, Leixngton, 1976; Lect. Notes Math. 599 (1977), 51–69.
7. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
8. I. Lahiri, The range set of meromorphic derivatives, Northeast. Math. J. 14(3) (1998), 353–

360.
9. , Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28(2)

(2001), 83–91.
10. , Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161

(2001), 193–206.
11. , Weighted value sharing and uniqueness of meromorphic functions, Complex Vari-

ables, Theory Appl. 46 (2001), 241–253.
12. , On a question of Hong Xun Yi, Arch. Math. (Brno) 38 (2002), 119–128.
13. and A. Banerjee, Uniqueness of meromorphic functions with deficient poles, Kyung-

pook Math. J. 44 (2004), 575–584.
14. and S. Dewan, Value distribution of the product of a meromorphic function and its

derivative, Kodai Math. J. 26 (2003), 95–100.
15. A. Z. Mohon’ko, The Nevanlinna characteristics of certain meromorphic functions, Teor.

Funkts. Funkts. Anal. Prilozh. 14 (1971), 83–87, in Russian.
16. P. Li and C. C. Yang, On the unique range sets for meromorphic functions, Proc. Amer.

Math. Soc. 124 (1996), 177–185.



SOME FURTHER RESULTS ON A QUESTION OF YI 187

17. H. X. Yi, Meromorphic functions that share one or two values, Complex Variables, Theory
Appl. 28 (1995), 1–11.

18. , Unicity theorems for meromorphic or entire functions II, Bull. Austral. Math. Soc.
52(1995), 215–224.

19. , Meromorphic functions that share three sets, Kodai Math. J. 20 (1997), 22–32.
20. and W. C. Lin, Uniqueness of meromorphic functions and a question of Gross, Kyung-

pook Math. J. 46 (2006), 437–444.
21. and W. R. Lü, Meromorphic functions that share two sets II, Acta Math. Sci. Ser. B

(Engl. Ed.) 24(1) (2004), 83–90.

Department of Mathematics (Received 27 11 2011)
West Bengal State University
Barasat, 24 Prgs. (North)
Kolkata-700126, West Bengal
India

Current Address:
Department of Mathematics
University of Kalyani
Nadia, 741235, West Bengal
India
abanerjee_kal@yahoo.co.in
abanerjee_kal@rediffmail.com


	1. Introduction, Definitions, and Results
	2. Lemmas
	3. Proofs of the theorems
	References

